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The paper presents a generalization of the Morrison's method, i.e. one-parameter shifted penalty 
function technique for equality constrained optimization problems, which can be applied to mini
mize a ftmctional on a topological space under constraints of various types. A modification of the 
penalty function, which depends in this case on three parameters, has been performed and the 
influence of parameters p and r on the rate of convergence of the method has been investigated. 

1. Introduction 

. The penalty function techniques is one of the most general tools for the numerical 
solution of constrained minimization problems. A method, which avoids most of 
the difficulties associated with unconstrained methods described so far, was introduced 
by Rockafellar in 1970 [7] under the name of augmented Lagrangean method. The 

original idea, presented independently by Hestenes and Powell in 1969 ([3], [6]) for 

equality constrained problems, leads to the development of several algorithms for 

inequality-constrained minimization problems, for example: the shifted penalty 

function- Wierzbicki in 1971 [8]. A comprehensive survey of works dealing with 

this problem has been given by Mangasarian [4]. He presents optimality conditions, 

without inequalities, in the form of n+ m equations, for following problem: 

Problem 1. 
minimize f(x) subject to g (x)~O 

where f: Rn~R and g: Rn~Rm. 

Then, he offers an interp:t;etation of the m-parameters augmented Lagrangean 

method as a means of finding a solution of the system considered. 

For the equality constrained problem, Morrison gives in 1968 [5] a one-parameter 

exact penalty function, which is always non-negative, reaching the zero value at 
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the solution of the problem. This property of the function is in practice a con
venient termination criterion. 

It appears that the Morrison's method may be applied to Problem 1. Let 

Q= [x EX: g (x)~ 0]. 

We assume that a number M 0 is known, such that 

Define 

and 

where 

f(x)"J::.M0 >-oo for x E Q. 

lk (x)=(f(x) - Mk) 2 + G (x) for x ERn 

Mk+l = Mk+{Ik (xk)}1 12, k=O, 1, 2, ... , 

lk (xk)~(j(x)-Mk)2+G (x) for x ERn 

m 

G(x)= I; [g1 (x)+]2 ,g1(x)+=max{O,g1 (x)}. 
i=l 

Thus, it follows that for Problem 1, particularly if m is large, the Morrison's 
method have the advantage of being a one-parameter exact penalty method. 

In the paper we will discuss a generalization of this method to the case of the 
minimization of a functional on a topological space under constraints of various 
types. Besides, we will modify the penalty function so. that it depends now on three 
parameters, only one of them being a variable. In this case the penalty function 
for Problem 1 has the following form: 

where 

For example 

Ik (x)=p (j(x) - MS+ + G (x), k = O, 1, 2, .. . 

p > O, r > O, p, r- fixed, 

G (x)";i!;O for x ERn, 

G(x)=~xEQ. 

m 

G(x)= I; [g1(x)+]'. 
i=l 

Observe that Ik (x) retains some properties of f(x) and g (x) (convexity, lower 
semicontinuity), which the Morrison's penalty function lacks. In this paper we will 
give very general sufficient conditions for the numerical convergence of the method 
and explain the influence of p and r on the rate of convergence of the method. The 
material presented is based on the doctoral dissertation ([2] Pt. I), written under 
the supervision of Dr. S. Z£!bek. 

2. One-parameter shifted penalty function 

Let X denote a topological space 

F: X~ R - a real functional, 

Q c X, Q - a non-empty set. 
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Problem 2. Calculate D =inf F (x) assuming that 
XEQ 

D~M>-oo, M- a known number. (l) 

Let there be two numbers p>O and r > O. We take a functional G: X"""">R, such 
that 

G (x)~O for x EX, 

G (x)=O<:o>x E Q. 
Define a functional I as 

I(x)= p (F(x)-M)~ + G (x), x EX 

where 

(F(x) - M)+=max {0, F(x) - M} 

(we can also take (F(x) - M)+= IF(x) - M I) and establish O<e< l. 

Problem 3. Find x 0 EX such that 

inf I(x):::;I(x0 ):::;(I + a) inf I(x0 ). 

xeX XEX 

(2) 

(3) 

(4) 

(5) 

We assume that the forms of functional G and r > O are such that we known an 
efficient method of solving Problem 3. From the method presented below it follows 
that Problem 2 is to be replaced by an equivalent sequence of problems of the 
Problem 3 type. The introduction of a assures the existence of x EX satisfying (5), 
and also assures the convergence of the method even if the minimization of I (x) 
is not too exact. Moreover, one can apply this method to find x E Q if it exists such 
that 

F(x)= inf F(x) = D. 
XEQ 

This results from the following fact. If we know the number D and there exists 
x E Q, such that F (x)=D, then 

Iv (x)=O and Iv (x)~O for all x EX, 

where 

Iv (x)=p (F(x)-D)~ +G (x),p>O, r> O, 

and, conver~ely, if there exists x E X such that 

Iv (x)=O then F (x)=D and x E Q. 

To solve Problem 2 we define the following iteration: 
Let M 0 =0. We find a sequence xk EX, k=O, 1, 2, ... , such that 

dk:::;Ik (xk):::;(I +e) dk> (6) 

and a sequence Mk 

I 
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where h (x)=p (F(x)-M")~ +G(x), x EX 

d"= inf I" (x). 
XEX 

Now we shall prove the following 

S. M. GRZEG6RSKI 

(8) 

(9) 

THEOREM 1. If M0~D, the sequence xk satisfies (6) and M" is defined by (7), then 

Proof. Since 

then 

and 

Mk+l ~D, k=O, 1, 2, ... , 

lim F(x")= lim M"~D, 
k-700 k-+00 

lim I" (xk)= lim G (x")=O. 
k - HX) k_,..OO 

(1 - s) 10 (x0)~d0= inf 10 (x)~ inf 10 (x)~p (D-M0)~, 
XEX XEQ 

D ~M1 • 

(10) 

(11) 

(12) 

Similarly, one can prove that M"~D for k=l, 2, ... From this and the fact 
that the sequence M" is increasing it follows that there exists lim Mk~D. Hence 

which implies that 

k-+ co k--,.. oo 

The next theorem provides a condition for 

limM"= D. 

k-+CO 

Let 
Q1= [x EX: G (x)~t] , t~O, 

h (t) = inf F (x). 
xeQ, 

Since Q0 =Q, then h (O)=D. 

THEOREM 2. If h (t) is right continuous at t= O, then · 

limM"=D, 
k -+ CO 

where M" is defined by (7). 

Proof. Let tk=G (xk), k=O, 1, 2, .... Clearly 

F(xk)~h (tk) and lim tk= O. 
k -+00 

k-+oo 

Q.E.D. 

(13) 

(14) 
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Hence 

Q.E.D. 

The result presented below refers to the weak convergence of sequence xk. 

THEOREM 3. Let X be a reflexive Banach space, F, G be weak lower semicontinuous 
on X and let there exists R>O and <5 > 0, such that 

then 
there exists x E Q, such that F (x)=D= inf F (x) 

lim Mk= lim F (xk)=D 
k-..+oo k...:; oo 

the sequence xk has a weak cluster point x':· E X and, 

moreover, x'~ E Q, F (x':·)=D 

and, if there exists exactly one point x E Q such 

that F(x)=D, then xk-+x (weakly). 

xeQ 

(15) 

(16) 

(17) 

(18) 

(19) 

Proof. Since the set Qn[xeX:(F(x)-D)++G(x)~J] is non-empty, bounded 
and weakly closed, then the Generalized Theorem of Weierstrass implies (16). 

If Jlxk,ll-+oo, then by (12) and (15) we ha:ve 

J 
F(xk)~D+2 for i~n0 eN. 

From (11) it follows that the sequence xk is bounded and ip.cludes a subsequence 
convergeding weakly to x* Ex 

The assumptions of the Theorem under discussion imply that 

0= lim G (xk)~ G (x'~)~ 0-+x'~ E Q, F (x>:·)~D 
and k-+00 

D~ lim F(xk)~F(x'~)~D . 
k-->oo 

Thus -, 

k--+oo k-+oo 

which implies also (19). Q.E.D. 
' In the space X=Rn a weak convergence is, at the same time, a strong convergence. 

Let F: X -+R, X- a reflexive Banach space, F- Frechet-differentiable on X, 
and let there exists c>O su~h that 

F(x)-F(y)~(F' (y), x-y)+c llx-yW for all x, yE X (20) 

then one can verify that 

~ =>{jjxk-x'~ ll--~0}. 
xk--~x'~ (weakly) } 

F(xk)--~F(x .. ·) 

4 
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Example. Let 

Q= [(x, u) E H
11

1 [0, T] x L!, [0, T]: x (t)=A (t) x (t)+B (t) u (t) 

x (O)=x0 ER", O~t~T< +oo, T- fixed], 

where n; [0, T] - a Sobolev space, and let A [n x n], B [n x n] be continuous. 
Let 

F(x, u)= !lx- qW+I!uW, q EL;; [0, T], q- fixed. 

Problem S . Minimize F(x~ u): (x, u) E Q. 
Here we take 

M 0 = 0 

G (x, u)= !lx'-Ax- BuW+ !Ix (O)-x0 W 

Ik (x , u)= p (F(x, u) - MS'+ +G (x, u),p > O, r > O, 

By Theorem 3 there exists (x, ii) E Q such that 
\ 

F(x, ii) < F(x, u) for all (x, u) E Q. 

We assume that 

0< F(x1 , u1)~F (x, u) for (x, u) E Q, 

0< F(x2 , u2)~F (x , u) for (x , u) E Q, 

then we take A. E (0, 1), and denoting 

X;. = Ax1 + (1 - J,) X 2 , U;. = AU1 + (1 - A) Uz 

we get G (x;., u;.) = O, 

F(x;_, u;)~ A.2 F(x 1 , u1)+ (1 - A.)2 F(x1 , u2 )< F(x 1 , u1 ) . 

Consequently, x 1 = x 2 = x and u1 = U2 = ii. 
Since F (x, u) satisfies the condition (20) with c= 1, then Theorem 3 implies 

llxk-x l!--o.O} 
as k--o.oo 

!!uk- ii ll--o.O 

where the sequence (xk, uk) is defined as {xk} in (6). 

3. Influence of p and r on the rate of convergence of the 
Morrison's method 

.In this section we will consider the influence of p and r on the rate of convergence 
of the Morrison's method in the limit case e=O. However, as previously, we fix 
M > -oo such that 

M~D= inf F(x) , 
where X is a topological space. XEQ 
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We denote 
d(p, r)= inf {p (F(x) - M): +G (x)},p > O, r > O, (21) 

x ·EX 

il1(p, r)=M+ {d(p, r)jp}llr. (22) 

Applying Theorem 1 we see that M(p, r)~D. 
Here we are interested in choosing the values p and r, so that M (p, r) may 

attain the ~rea test possible value. First, we shall introduce some additional notations. 
For a fixed p > O and r>O we take a sequence xk EX such that 

lim {p (F(xk) - M): +G (xk)}=d(p, r). 
k->00 

The sequence F (xk), G (xk) are bounded, so that one can select a subsequence 
xk, such that there exist the limits 

lim F (xk) and lim G (xk). 
Then we define i-;.. 00 i.->00 

f(p, r)= lim F (xk,) 
i-+ 00 

g (p, r)= lim G (xk) 
and we have i-+00 

d(p, r)=p (f(p, r) - M): + g(p, r) for p > O, r > O. 

Now we can discuss the influence of r on M(p, r). 

THEOREM 4. Apart from (21)-(25), M ~D, assume that 

r > s> O and (f(p, s)-M)'+~lje 
or 

s>r>O and (f(p, s)-M)"+ + g(p, s)fp~ 1/e , 
then 

M(p, r) ~M(p, s). 
Proof. Let 

then 
y' (t)<O<:>(a1)a' < (a'+b)a'+b. 

(23) 

(24) 

(25) 

(26a) 

(26b) 

(27) 

Let u=a'. The function rp (u)=u" is increasing, if u~ lje, and decreasing if 
O<u~ 1je. Hence, by hypothesis (26) we have 

M(p, s)=M+{(f(p, s) - M): +g (p, s)jp}ll•~ 

~M+{(f(p, s)-M)':r +g (p, s)jp}ll•. 

Now (21), (22) imply (26). 
Thus, we see that in constructing the functional 

Ik (x)=p (F(x)-Mk)':r +G(x), x EX 

we usually take small r's for small k's. 

Q.E.D. 
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However, this situation will change in the iteration, in which 

(f(p, r)-M)~ + g(p, r)jp~ lje. 

In practice, we most often choose r= 1, 2, 3. We are still less restricted in the 
selection of the value p, whose role will be explained by Theorems 5 and 6. 

THEOREM 5. Assuming (21)-(24), let M~D, q>p > O, then 

Proof. Since 

M(q, r)~M(p, r) 

g (q, r)~g (p, r) 

lim M (p, r)~D 
p-.0+ 

limg(p, r)= O. 
p -+ O+ 

(f(p, r)-M)~ +g(p, r)jp~(f(p, r)-M)~ + g(p, r)jq~ 

~(f(q, r)-M)~ + g (q, r)jq, then (28). 

Adding the inequalities 

we have 

d(p, r)-p (f(p, r)-M)~ + g (p, r)~p (f(q, r)-M)~ + g (q, r) 

d (q, r)=q (f(q, r)-M)~ + g (q, r)~q (f(p, r)-M)~ + g (p, r) 

(f(q, r) -M)+~(f(p, r) - M) + 

and, consequently, due to (32) 

d(p, r)=p (f(p, r)-M)~ +g(p, r)~p (f(p, r) - M): +g(p, r) 

which implies (29). 

The condition (10) implies 

M~M(p, r)~D for p > O, r> O. 

Thus, due to (28), there exists a limit 

lim M (p, r)~D. 

(28) 

(29) 

(30) 

(31) 

(32) 

Since (29) and g (p, r)~O and lim M (p, r)~D, then there exist the limits 
p-+0 + 

lim g (p, r)jp and lim g (p, r)= O. Q.E.D. 
p-+0+ p-+O+ 

In Theorem 6 we give a condition for 

lim M (p, r)=D. 
p-.0+ 
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THEoREM 6. Let h (t) be defined by (14) and let h (t) be right continuous at t=O, 
M~D. then 

lim M (p, r)= limf(p, r)=D, (33) 
p-+O+ p-+0+ 

lim g (p, r)jp=O. (34) 
p-+0+ 

Proof. Since lim g (p, r)=O, then we have 
p-+O+ 

D~ lim M(p, r)~ lim {M+ (.f(p, r)-M)}= 
v-+o+ v-o+ 

= lim f(p, r)~ lim h (g (p, r))=D. 
P-+0+ p->0+ 

Thus 
lim M(p, r)= lim f(p, r)= D 

P-+0+ p-+O+ 

and also 
lim {(.f(p, r)-M)'+ g(p, r)jp}1 f'=D-M 

p-'}>Q+ 

which implies (34). Q.E.D. 

REMARKS: 1. Theorem 6 states that the sequence Mk defined by (7) is parametrically 
superlinearly convergent. 

2. For O< e< 1 one can prove that 

lim M(p, r)~D-[1 -(1 -e)1 1'] (D -M). 
P-+ 0+ 

Below we present an example of the influence of parameter p on the costs of the 
method. 

Example. Let 

g1 (x)= x1 - x3 -x4 +3, 

gz (x)=x2 -x3 -x4 , 

Q = [x E R4 : g 1 (x)=O, g2 (x)=O]. 

Find .XEQ, such that F(x)~F(x) for xEQ. 

• 

The solution of this problem is .X=( -1.5, ~0.5, 0.5, -1.0). For this problem 
we apply the Generalized Morrison's Method with r (er) =2. 

Let M 0 =0 (because F (x)~O for x E R4), G (x)=gi (x)+g~ (x), x E R4 . 

We have performed the computation on a computer, using the procedure "qnm
der" [1], the initial point x0 =(0, 0, 0, 0) and the identical termination criterion 

1/Vlk+l (xk)l/~1o-s 

and have obtained 
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p itr nf 

1 45 1088 
0.1 14 344 

0.01 6 142 
0.001 4 81 

where: itr- the number of iterations (the sequence Mk), nf- the number of 
computed values of Ik (x)~ 

Thus, we see that the insertion of parameter p to the Morrison's penalty function 
can, in practice, radically reduce the costs of the method. 

Acknowledgments. I am greatly indebted to Prof. K. Goebel, Prof. T. LeZa.nski, 
and Prof. A. P. Wierzbicki for· valuable comments on the paper. 
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Uogolnienie metody Morrisona 

Przedstawiono uog6lnienie metody Morrisona, to jest metody jednoparametrowej przesuwanej 
funkcji kary dla zadan optymalizacji z ograniczeniami r6wnosciowymi, kt6ra moze bye stosowana 
do minimalizacji funkcjonalu okreslonego na przestrzeni topologicznej przy r6znego typu ograni
czeniach. Przedstawiono modyfikacj~ funkcji kary, zaleznej w tym przypadku od trzech parametr6w, 
i zbadano wplyw parametr6w p oraz r na szybkosc zbieznosci metody. 
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06o6~enue MeTO)J;a Moppncona 

B pa6oTe rrpe,n:crrumello o6o6IIJ;e:HHe MeTo,n:a MoppacoHa, T.e. MeTo,n:a C,n:BHTaeMoll: m'I'pa$Holl: 

$y~lm C OAHRM rrapaMe'l'pOM ,L{JUI 3a,n:a'I OI1THMR3aiUIII C orpalill'ieHIDIMR THIIa paBeHCTB, KOTOpbril: 

MOlKeT 6biTh I1pHMeHeH ,L{JUI MIDUIMH3aqlm $~0HaJia orrpe,n:eneHHOTO Ha TOI10JIOTH'iecKOM 

rrpoc'l'paHCTBe rrpH pa3Itoro po,n:a orpalill'ieHIDIX. llpe,n:c'I'aBJieHa MOAII$1IKaWUI I11Tpa$Holl: $yHKrum, 

KOTOpasr 3aBIICIIT B 3TOM Cnyqae 01' Tpex rrapaMe'l'pOB li liCCJie):(OBaHO BJlRlllille rrapaMe'l'pOB p li r 
Ha CKOpOCTh CXO,n:IIMOCTR MCTO,ZJ;a. 
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