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In the paper an effort is made to give a possibly complete account of the results concerned with 
the existence of open-loop Nash equilibrium solutions for non-zero-sum differential games. The 
Fan-Glicksberg fixed-point theorem is used to prove, first, the existence of the equilibrium in the 
class of ordinary controls for games with linear dynamics ap.d convex scot functionals, and,. next, 
the existence of the equilibrium in the class of relaxed controls for general, non-linear game problems. 1 

The first part of the paper is mostly a recapitilation of the results known from the literature. The 
second part, however, contains a theorem which is apparently new. 

1. Introduction 

Consider a game with N players, where for i E 1={1, ... , N} the i-th player 
chooses a strategy u1 from a convex, compact subset U1 of a linear topological 
space Z 1, trying to minimize a cost functional (minus payoff) J1 (u1 , ••• , u1, ... , uN), 

defined on the set U= U1 x ... x UN. According to Nash [7], a point uo:-=(u;, ... , u~) 
is an equilibrium solution of the game F=(/, {U1}, {J1}) if 

(1) 

Suppose now, that for i E I the strategy u1 is a measurable function from a given 
time interval T=[t0 , tf] to m1 - dimensional space Rm1, U1 is closed, bounded, 
convex subset of the Hilbert space L~' (T) (it follows, that U1 is weakly compact) 
and cost functional J1 is defined as 

tr 
J1 (u1 , ... , uN) = J L1 (x(t), u1 (t), ... , uN (t), t) dt+K1 (x (tf)), (2) 

to 

where 

X (t)= f(x (t), u1 (t), ... ,UN (t), t), x (t0)=X0 (3) 
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and for t E T x (t) is the n-dimensional vector. This game is known in the literature 
as the open-loop, N-person, non-zero-som differential game. If the system of diffe
rential equations (3) is linear, i.e. 

N 

x(t)=A(t)x(t)+ I: B1(t)u1(t),x(t0)=x0 (4) 
1=1 

then the game is referred to as the differential game with linear dynamics, or some
times simply as the linear differential game. In the following the game (2)-(3) will 
be denoted by rd and the game (2)-(4) by T 1• 

The problem of the existence of equilibrium solutions for games defined in 
general linear, topological spaces was investigated by several authors in early fifties 
[2, 4, 8]. For example, Nikaido and Isoda [8], analysing the function 

N 

(/J (u, v)= .2; J1 (v1, ... , vi_ 1, u1, vu 1, ... , vN) 
i= 1 

(5) 

where u=(u1, ... , uN), v=(v1, ... , vN), and using the Brouwer's fixed point theorem, 
proved the existence of the equilibrium solution for the game r under assumptions, 
that J1 are convex and, that they satisfy some continuity conditions. Fifteen years 
later, Varaiya [12], using the same method, proved the existence of the equilibrium 
point for the game T 1, provided functions L 1 have some special form and satisfy, 
as we.ll as functions K;, some regularity and convexity ~ssumptions. An approach 
to the problem, which is much simpler than the method of Nikaido and Isoda, 
although it is slightly less general, is based on the generalization of the Kakutani's 
fixed point theorem [5] for the infinite dimensional linear spaces. This approach was 
suggested by Bohnenblast and Karlin [2], who extended the Kakutani's theorem 
for the case of an arbitrary Banach space. This result was further extended on the 
general, locally convex, linear, topological spaces by Fan [3] and Glicksberg [4]. 
In the context of differential games the Fan-Glicksberg theorem was first used by 
Skerus and JaCiauskas [11], and then, un,tler more general assumptions about the 
game, by Vidyasagar [13]. For the game T 1 the latter authpr obtained in a very 
simple way an existence, theorem, which was more general than this of Varaiya 
(Varaiya, however, obtained also a result for games, where sets U1 were not bound
ed- see Section 5). It is worth to note, that the problem of the existence of the 
equilibrium solution for the games T 1 was also investigated by Scalzo [10], who 
obtained the result similar to that of Vidyasagar but in a considerably more compli
cated way. 

I 

The existence of equilibrium solutions in pure strategies is assured only for the 
games with convex cost functionals. In the context of the differential games it means, 
that one can hardly hope to obtain a meaningful! result for the games with nonlinear 
dynamics, if only classical controlfunctions are considered. According to Glicksberg 
[4], the general continuous games of the type r, have equilibrium solutions in the 
dass of mixed strategies o,, i E /, defined as the Radon probability measures con
centrated on U1• In the case of the differential games it seems rather fruitless ot 
consider the strategies defined as measures on the .E-fields of the spaces L~ (T) 
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Much more suitable approach is to assume, that the players use the so-called relaxed 
controls [14,15], i.e. measurable functions a1 ( • ), i E /, from T to the spaces of 
Radon probability measures, concentrated on some compact subsets of Euclidean 
spaces Rm'. 

The aim of this paper is to recapitulate the known results concerned with the 
existence of the Nash open-loop equilibrium solution in the class of ordinary con
trols, for the differential games with linear dynamics, and to present a new theorem. 
which states the existence of the equilibrium point in the class of relaxed controls, 
for the games with nonlinear state equations. In the next Section a simple conclusion 
for the Fan-Glicksberg theorem is given. This conclusion is basic for the proofs 
of theorems from Sections 3 and 4, which deal with games rz and rd, respectively. 
The last Section contains some remarks on differential games, where sets U; of 
admissible controls are unbounded. 

2. The basic lemma 

The foliowing theorem is fundamental for the greater part of this paper. 

THEOREM 1. Let U be a compact, convex set in a real, linear, locally convex, topo
logical space Z; and let !f1 be a mapping that assigns, to each u E U, a compact. 
convex subset lfl (u) of U, such that, for any sequence {u"} in U, 

U"-"U, Y" E If/ (u"), Y11-"Y=>Y E If/ (u) · (6) 

Then, there exists an u'' E U with the property that u':· E If/ (u':·). 

This theorem implies the following lemma, which is a slight modification of the 
theorem 2.1 of [13]. 

LEMMA 1. Consider the game F=<I. {UJ, {J;}) and assume 
Al. ViE I U1 is a compact, convex subset of locally convex, topological space Z1• 

A2. ViE I J1 is continuous in ui,j;;t=i, for fixed u1• 

A3. ViE 1 J1 is lower semi-continuous in u1• 

A4. \fiE] 

lfl, (u) = { w1 E U1 I J1 (u1, .. . , u1 _1, w1, u1 +1• •.. , uN)= 

= inf J1 (u1, ... , u1_1, v1, u1+ 1, ... , uN)}, (7) 

is a convex subset of U1• 

Then, there exists an equilibrium solution of the game r. 

Proof (13]. Because of the continuity of J1 and the comp11ctness of U1 J1 attains its 
infimum on U;, what implies, that 'f/; (u) are nonempty. Next, by (A3) If/; (u) are 
dosed and by (A4)- convex. Let U=U1 x ... x UN and ![! (u)={lf/1 (u), ... ,'fiN (u)}. 
We want ,to show, that If/ satisfies the hypothesis of Theorem I. Obviously, for all 
u E U 1f1 (u) is a nonempty, compact, convex subset of U. Now, let { ui} be a sequence 
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in U, ui-4U0
, wi E If/ (ui), and wi-4w0

; we must show, that w• E If/ (u•). Suppose p 

is any element of If/ (u•). Then, for i E I, 

(8) 

From the definition of wi, for any j we have 

As j-HX> (9) becomes 

j-HX) 

From (A3) we have 

liminfJ, (u{, ... , u{_ 1, w{, uf+ 1, ... , u~)";?;J, (u~, ... , u~_ 1 , wr, ur+ 1, ... , u~). (11) 
i-+00 

Combining (10) and (11) gives 

Since p E If/ (u0
), what means p, E If/; (u•) for i E I, inequality (12) must in fact 

be equality, and w~ E If/; (u•). Therefore, the map !f1 satisfies the hypothesis of Theo
rem 1. It follows, that there exists a point u'' E U such that u'' E !f1 (u'') Obviously u'~ 
is an equilibrium solution of the game r. 

3. Differential games with nonlinear dynamics 

In this Section we consider differential games of the type r', with dynamics 
described by the equation (4), and cost functionals of the form 

tf 

J; (u1, ... , uN) = J L, (x (t), u; (t), t) dt+ K; (x (tf)). (13) 
to 

The theorem below gives sufficient conditions for the existence of the equilibrium 
solution of the game (4), (13). 

THEOREM 2. Assume the following conditions are satisfied 

Bl. ViE I, U; is closed, bounded, convex subset of L';_1 (T). 

B2. The materices A, B;, i E I, have appropriate dimension and their coefficients are 
bounded, measurable functions of t. 

B3. ViE I L; (x, u,, t) is convex in (x, u;) and K, (x) is convex in x. 

B4. ViE I L; (x, u;, t) is measurable in t, Lipschitz continuous in x on every bounded 
subset of Rn, continuous and bounded from below in u1 on R"'1; K1 (x) is con
tinuous on Rn. 

Then the game ( 4), (13) has an equilibrium solution. 
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Proof. To prove the theorem we have to show, that the game under consideration 
satisfies the hypothesis of Lemma 1. From (Bl) it follows, that for any i E I Ut 

is a weakly compact, convex subset of L~• (T). Now observe, that for any t ET 
we have 

N t 

x(t) =<P (t, t0 ) x0 +}; J <P (t, r) B;(-r) u;(-r) dr (14) 
i=l to 

where <P is the transition matrix function associated with (4). The operator 

t ~ 

h!(u1)= J <P(t,-r:)B;(-r:)u;(-r:)dr= J X[t
0
,,.](-r:)<P(t,-r:)B;(r)u;(-r:)d-r: (15) . 

to to 

where 
if 1: E [t0 , t] 

if 7: E [t, tf] 
(16) 

is a strongly continuous linear operator of L~'' (T) into the finite-dimensional space Rn. 
Hence, the operator h! is weakly continuous and, in consequence, the function 

(17) 

is weakly continuous for any t E T. Next, we see, that by assumption, for any i E I, 
the set of admissible controls u, is bounded in L~' (T) norm. Combining this with [14] 
gives 

llx (t, u)llsup=sup jx (t, u)j~M (18) 
t E T 

for some M< =. uniformly for all admissible u=(u1 , ••• , uN)· This implies, that x ( ·) 
takes values only in a bounded subset of Rn. Now, consider a sequence {u~}= 
={(u~, ... , u7_ 1 , u1, u~+l' ... , u~)}. where u1 is fixed, and assume, that it converges 
weakly to uf. Let x7=x ( ·, u7). By (17) we have 

x~(t)-+xf(t) for any teT. (19) 

Combining (B4) "with (19) ·gives 

IK; (x~ (tf))-K; (.x~ (tf)) 1 k->CXJ ~ o (20) 

'f J IL;(x~(t), u;(t), t)-L;(;r~(t), u;(t), t)j dt~ 
to lf 

~ J M' l x7(t)-x~(t) l dt~MV(t/-to) ll x7-xfll L~(T) k-+oo~o (21) 
to 

and finally 
(22) 

Thus, we have shown, that J1 is weakly continuous in u1,f:;Ci, for any fixed u;. 
The next step is to show, that J; is strongly lower semi-continuous in u1• To do this, 
it is enough to prove, that the set 

. { I ,f vr= Ut EL~'(T) ,! L; (x(t, u), U; (t), t) dt~o:} (23) 
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for any real oc and fixed ui,j=;6i, is strongly closed. Let {u~} be a sequence of element 
from V1 converging to u? inL~1 (T) norm and let xk=x (·, u1 , .•. , u1 _ 1 , u~, u,+ 1, . •• , uN), 
where ui,j=;6i, are arbitrary but fixed. Of course, x"~xo everywhere on T. Next, 
by Jegorov's theorem there exists a subsequence of {u~}, which converges to u~ 
a.e. on T (from this moment {u~} will denote such a subsequence, if necessary). 
By (B4) and (18) L1 hounded from below. Thus, we have by Fatou's lemma 

lf 

oc~liminfJ L1 (xk(t),u7(t),t)dt~ 
to 

~ ~ 

~ J liminfL1 (xk(t),uz(t),t)dt = J L,(x•(t),u~(t),t)d~. (24) 
to to 

Hence, ur E Vt, what means, that v; is closed, and l; is strongly lower semi
continuous in u1• Because of the linearity of the state equation and the assumption 
(B3) 11 is convex in u1• So, lf/ 1 (u) is convex and the strongly lower semi-continuous 
functional 11 is also weakly lower semi-continuous. This complete the proof. 

Theorem 2 differs from the Vidyasagar's result only in details. The cost functionals 
Ji, as given by'(13), a-re slightly more general than those in [13], and regularity a.ssump
tions about functions L 1 are made more explicit. 

It is worth to note, that in an important case, when the control functions take 
values in compact, convex subsets of R'"1, the condition (B4) of Theorem 2 can 
be replaced by a weaker one. This fact can be stated in the following form . 

CoROLLARY 1. Suppose, for i E I and t ET, u, (t) E S;, where S 1 is compact, convex 
subset of the Euclidean space Rm'. Then, for the existence of the equilibrium solution 
of the ' game F 1 defined by (4) and (13) it is sufficient to assume (B2), (B3) and 

B4'. ViE I L 1 (x, u;, t) is measurable in t, continuous in x on R" and continuous in 
u1 on S 1 ; K 1 (x) is continuous on R". 

Proof. There exists a finite number M such that lu1 (t) I:(M for iEI and tET. 

Combining this with (14) gives 

lx (t, u) - x (t', u)I:::;:;M' lt - t'l (25) 

for some finite M', any t, t' ET, and all admissible controls u. Thus, the family 
of functions x ( · , u) for all admissible u is equicontinuous and uniformly bounded. 
By a well known result this implies (see [15] theorem 1.5.3), that if xk converges 
to x 0 a.e. on T, then xk converges to X 0 uniformly on T. Reconsidering the proof 
of the Theorem 2, we see, that no:w the weak convergence of u7 to u? implies the 
uniform convergence of .X~ to .xr. In consequence 

lf 

J Lt(x~(t),ul(t),t)-Li(x~(t),u;(t),t)dt k-"" -+0. (26) 
to 

The observation, that the continuous function L, is bounded from below on the 
compact set S1 completes the proof. 
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4. Differential games with nonlinear dynamics 

The linearity of the state equation has been the crucial assumption for the results 
of the previous Section. Without this assumption it is extremly difficult to say 

anything either of the continuity of the cost functionals (with respect to the weak 
topology of L~1 (T)), or of the convexity of the sets lfl (u) in the space of the ordinary 
controls. Thus, to deal with the differential games with nonlinear dynamics (as 
defined by (2) and (3)), one has to use a different approach. A convenient method 
is to consider the game in a new space of controls, i.e. in the space of the so-called 
relaxed controls, introduced to the calculus of variations and the optimal control 
theory by Young [15]. For the differential games this concept is even more meaning
full, as it is similar (although not identical) to the concept of mixed strategies, which 
plays a crucial role in the classical theory of games [4, 7]. The use of the rather 
sophisticated topological space of relaxed controls is also justified by the fact, 
that the existence of the equilibrium solution in the class of these controls implies 
the existence of the e-equilibrium in the class of ordinary controls, what makes the 
theory applicable to practical situations. 

The principal result of this Section is the theorem stating the sufficient conditions 
for the existence of the equilibrium solution for the general differential game rd, 
in the class of relaxed controls. To formulate this theorem we shall need the following 
facts concerned with the concept of relaxed controls (see [14] Chap. IV). Consider 
an optimal control problem, or a differential game, where control functions are 
constrained to take values in a compact subsetS of Rm, i.e. u (t) E S a.e. on T, where 
T is a given, finite time interval. Let rpm (S) be the set of nonnegative unit measures 
(probability measures) on R111

, wholly concentrated on S. By Riesz's theorem rpm (S) 
can be identified with a subset of the space C (S)" . Thus, we can consider rpm (S) 
as the topological space with the relative weak star topology of c csr·. 
DEFINrriON. A relaxed control is any function (J ( ·): T -+rpm (S), which is measurable 
with respect to the Lebesgue measure on T. 

Let r!J> (S) be the set of all relaxed controls corresponding to a given T. By Dan
ford-Pettis' theorem r!J> (S) can be identified with a subset of the space L 1 (T, C (S)Y" 
({0 EL1 (T, C, (S)) iff {0: T X S-+R, {0 (·, s) integrable fors E S, and {0 (t, ·)continuous 
fortE T). The set r!J> (S) turns out to be convex and compact in the weak star topo
logy of L 1 (T, C (S)y. Suppose (J E r!J> (S), then 

rp (t, (J (t)) _!!_~ J rp (t, s) d(J (t) (27) 
R"' 

for any t ET, and rp (t, (J(t)) is integrable on T for all rp EL1 (T3 C(S)). Let ak, 

(J E r!J> (S), k= 1, 2, ... , then lim (Jk= (J in the weak star topology of L 1 (T, C (S))" iff 

lf lf 

lim J rp (t, (Jk (t)) dt= J rp (t, (J (t)) dt (28) 
to to 

for all rp E L 1 (T, C (S)). 
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Consider the differential game (2), (3) and assume, that the i-th player chooses 
its control u1 in such way, that u1 (t) E S; a.e. on T, where S1 is a compact subset 
of Rm. :tet a1 E [!} (S1) denotes a relaxed control of the i-th player, and let a= 
=(a1 , •.. ,aN) and S=S1 x .. . x SNcRm. The game (2), (3) considered in the class 
of relaxed controls takes the form 

tr 

J1 (a)= J L 1 (x (t), a 1 (t), ... ,aN (t), t) dt+K1 (x (tf)) (29) 
to 

x (t)=f(x (t), a 1 (t), ... ,aN (t), t), x (t0)=x0 (30) 

or equivalently 

tr 
J 1 (a)= J dt J- ... JL1 (x(t),s1 , ... ,sN,t)da1 (t) ... daN(t)+ 

to Rm1 R 111N 

tf 

+K;(x(tf))= J dt JL1 (x(t),s,t)da(t)+K1 (x(tf)) (29') 
to Rm _,.-

X(t)= J .. . jf(x(t),Sl,· ··•SN,t)dal(t) .. daN(t)= 
Rm1 RmN 

= J f(x(t), s, t) da(t), x(t0 )=x0 • (30') 
Rm 

THEOREM 3. Assume the following conditions are satisfied: 

Cl. The exists a c> O such that 

lf(x, u, t) l:(c (lxl + l) for all (x, u, t) ER" x S x T. 

C2. The functions f: Rn x Rm x r~Rn and L 1: Rn xRm xr~R and their 
derivatives of/ox, oL;/ox exist and are continuous on Rn X S X T. 

Then, there exists a relaxed control a'' = (a: , .. . ,a~) E f!J (S) such that 

J ( '') J ( * * * *) i a-· ~ i al, ... , ai-l' ai, ai+l ' .. . ,aN 

for all a1 E f!J ( S;) and i E I. 

partial 

(31) 

Proof. We have to show, that the game (29), (30) satisfies the assumptions (Al)-(A4) 
of Lemma 1. For i E I we know the set f!J> (S1) to be convex, compact subset of locally 
convex space L 1 (T, C (S;))'=" with weak star topology. We now show, using the 
method of Warga ([15] Chap. V), that J1 is continuous in this topology, in all its 
arguments a 1 , .. • , aN. First, observe, that under conditions (Cl), (C2), for any 
relaxed control a, there exists an absolutly continuous function x(·, a): r~Rn, 

that is the unique solution to (30). Furthermore, there exists a c1 > 0 such that 

llx(· , a) ll sup:(c1 for aEf!J>(S). 

Next, by the continuity of of/ox, there exists a c2 such that 

jj(Ojox)f(x(·, a), a, ·)llsup:(c2 for all aEf!J>(S) 

(32) 

(33) 
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(33) implies, that f is Lipschitz continuous in x. Now suppose, that ak-+a0 in the 
weak star topology of L 1 (T, C (S)y-, and ak, a0 E r!J (S). Let xk ( • )=x ( ·, ak). 
Then 

t 

lxk (t) -X0 (t)i ~ I J [f(xk (r),. ak (r), r)- f(xo (r), a 0 (r), r)] dr I~ 
to 

t 

~I J [f(x0 (r), ak (r), r)- f(x 0 (r), a0 (r), r)[ dr I + 
to 

t 

+ J lf(xk(r), ak(r), r)-f(x0 (T), ak(r), r) I dr~ 
to 

t t 

~ c2 J lxk (r) -X0 (r)l dr+ I J f(xo (r), ak (r)- a 0 (r), r) dr I· (34) 
to to 

The last inequality follows from (33) ~nd from the fact, that for any a, a', x 
and r we have 

f(x, a, r)-f(x, a', r) = J f(x, s, r)da(r)- J f(x, s, r) da' (r)= 
R"' R'" 

= J f(x,s,r)d(a(r)-a'(r))=f(x,a(r) - a'(r),r). (35) 
R'" 

Let 
t 

hk(t) def J f(x0 (r),ak(r)-a0 (r),r)dr= 
to 

tf 

= J X£to,tJf(x"(r),ak(r)-a"(r),r)dr (36) 
to 

and 

qJt (r, ak (r)-a" (r))=X[t
0
,rJI(x" (r), ak (r)-a" (r), r). (37) 

Then qJt E L1 (T, C (S)). 
Combining (28) with (37) gives 

(38) 

Thus h" ( ·) converges to 0 a. e. on T. Next, we see, that there exists a c3 such that 

lf(x" (r), ak (r)-a" (r), r)J~c3 for all rE T and k=l, 2, ... . (39) 

It means that the functions {hk ( ·)} are equicontinuous and uniformly bounded. 

Hence, by [15] theorem 1.5.3 hk ( • )-+0 uniformly on T. Combining (34) with the 
Gronwell inequality gives 

t 

lxk(t) - x"(t)l ~hk(t)+c J hk (r) dr, 

where c=c2 exp (c2 (tf-10 )). 

(38) implies 

s 

to 

(40) 
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We have shown, that if ak~a0 in the assumed topology, then x ( ·, ak)~x ( ·, a0
) 

in the strong topology of C (T, Rn), i.e., that the function a~x ( ·, a): £'1 (S)~ 
~c (T, Rn) is continuous. It is now easy to show, that ak~ao implies ll; (ak)
-J; (a0 )1 ~o for i E I, what means the continuity of the functionals (28). 

To complete the proof we have to show the convexity of 1f1 (a), where 1f1 is defined 
by (7), with a substituted for u and £'1 (S;) for U;. Let a;, a~ E If/; (a), A. E (0, I) and 
J.=J; (a1 , ... , a;_ 1 , a~, a;+ 1 , ... ,aN), where k=l or 2. Then 

l; (at, ... , A.ai+(l-A.) a~, ... , aN)= 

=U; (au ... ,a;, ... , aN)+(l - A.)J; (a1 , •.. , ~~, ... , aN)=l; (43) 

and A.at+(l-A.) a; E If/; (a). 

REMARK 1. Instead of (Cl) one can assume more generally, that for any 0' there 
exists a unique solution to (30) and (32) is satisfied for a c1 >0 and 0' E £'1 (S). 

REMARK 2. Theorem 3 remains true for the game (29), (30) with additional cons
trains on control and state variables, of the type 

x (tf) E A 1 for a compact, convex set A 1 eRn and/or 

'it ET x (t) E A 2 for a convex, closed set A 2 eRn. 

REMARK 3. A result concerned with the existence . of the equilibrium solution of 
the differential game, in class of the relaxed controls was also obtained in [9], but 
under considerably stronger assumptions about the form of the state equation 
and the cost functionals. 

Theorem 3 implies the existence of e-equilibria in class of ordinary controls, for 
a large 'class of differential games satisfying conditions (Cl) and (C2). It follows 
from the fact, that the set of measurable functions u such that u (t) E S a.e. on T 
is dense in £'1 (S) ( u is identified with p E £'1 (S) such that for t E T p (t) is wholly 
concentrated in the point u (t)). We state this result in the form of the following 
corollary. 

CoROLLARY 2. If the differential game (2), (3) satisfies conditions (Cl), (C2) for 
some compact set SeRm, then, for any e>O there exist sets Vt, iEI, of measurable 
functions u;: T ~si such that for any u• E V"= V;" X .. . X V~ and all i E I 

(44) 

Proof. For any e> O define the set v• as the intersection of the set U of ordinary 
controls with the set 

(45) 

where a':· is the equilibrium solution in the class of relaxed controls. As all l; are 
continuous on £'1 (S) and U is dense in ?JJ (S), the proof is completed. 

. . .. . . ' ' ' 
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5. Differential games with unbounded sets of controls 

We shall now consider the differential game without constraints, i.e. the game, 
where the i-th player minimizes the functional (2) subject to (3) or (4), choosing its 
strategy U; from the whole space L~ 1 (T). Clearly, the methodology used in the pre
vious Sections does not apply to this problem and only much weaker results, con
cerned with the existence of the equilibrium solution, can be obtained. The theorem 
below, which is due to Varaiya [12], gives the sufficient conditions for the local 
existence of an equilibrium solution for the differential game (2), (4) with convex 
cost functionals. 

THEOREM 4. Consider the differential game (2), (4) without constraints, and assume, 
that for i E IL; is of the forrri 

Assume furthermore, that the following conditions are satisfied 
Dl. The matrices A, B;, i E I, are bounded, measurable functions of t. 

(46) 

D2. Vi K; (x), g; (u;, t) , h; (x, t) are continuous in all variables, bounded from 
below, and for each t, they are convex in remaining variables. 

D3. Vi ir; (x), K; 
1 

(x), g;
11

, (u;, t), g;~, 
111 

(u;, t), h;x (x, t), h;~x (x, t) are continuous 
in all variables and, furthermore, there exist positive numbers e1 , e2 such that 
for all t, x, u; 

g;~ 1111 (u;, t)~e~ I, ez I~h;~x .Cx, t), e2 I~K; 
1 

(x), 

where I denotes the identity matrix. 

(47) 

Then, there 'is a T0 >0 such that if the duration T= tf - t0 of the game satisfies 
T<T0 , then this game has an equilibrium solution. 

The proof of this theorem can be found in [12]. The theorem remains valid also 
for the game with nonlinear dynamics, provided/is twice continuously differentiable 
with respect to (x, u). (It follows from the fact, that for small T jean be linearized 
in x and u). In [6] , where games with linear dynamics and quadratic cost functi'onals 
are considered, it is shown, that, in general, the theorem is false for arbitrary dura
tion T. Finally, it is worth to note, that sufficient conditions for the existence of the 
equilibrium for linear-quadratic games can be obtained from the analysis of the 
Riccati equations [1] . The form of such conditions is, however, rather complicated 
and their verification may not be. an easy task . . 

6. Conclusion 

The analysis of open-loop games is only one, a11d possibly less important aspect 
of the differential game theory. However, in the situation, where there exists no 
result c.oncerned with the existence of closed-loop equilibria, it is interesting to note; 
that the existence of open-loop equilibria for linear games, and open-loop e~equilibria 
for nonlinear ones, is not a rare phenomenon. 
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0 istnieniu punkt6w r6wnowagi Nasha dla gier r6zniczkowych 
z liniowymi i nieliniowymi r6wnaniami stanu 

Przedstawiono warunki wystarczajlj,ce istnienia rozwilj,zania r6wnowagi Nasha bez sprz«:l:enia 

zwrotnego dla gier r6:l:nifzkowych nieantagonistycznych (z niezerowlj, sum~). W pierwszej cz«sci 
podsumowano znane z literatury wyniki dotyczlj,ce gier z liniowymi r6wnaniami stanu i wypuklymi. 

funkcjonalami koszt6w, w drugiej cz«sci natomiast przedstawiono nowy rezultat stwierdzajlj,cy 

istnienie punktu r6wnowagi w klasie uog6lnionych sterowan dla dowolnych gi.er nieliniowych. 

Dowody twierdzen o istnieniu punkt6w r6wnowagi oparto na twierdzeniu o punkcie stalym Fana-
' -Glicksberga. 
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0 cyiQeCTBOBanro TO'IeK pasnosecnB H3ma ,n;JIB ,n;ucflcflepeu

~aJILHLIX Hrp C JIHHeHHLIMH If HeJIUHeHHbiMH ypOBHeHHHMH 

COCTOBHHB 

69 

B craTbH paccMaTpHBaeTcH rrpo6neMa cym;ecTBOBaHIDI rrporpaMMHhiX TO'IeK paBHOBecwr 

HJma HeaHTaroHHC1'H'IecKHX ,1:\H<l><l>epeHrzyraJibHbiX nrp MHOniX JIHIJ;. <l>opMyJIHPYIDTCH ,1:\0CTaTO'i· 

Bbie YCJIOBIDl cy~eC1'BOBaHID! 'I'O'IeK paBHOBecHH B 'IHCTbiX CTpaTerrurx ,1:\JIH Hrp C JIHHeillibuvm: ypoB· 

HeHIDIMH COCTOHHHH H BbirryKJibiMH $yHKizyiOHaJiaMH Ka'ieCTBa H ,1:\0CTaTO'IHbie YCJIOBIDl cy~ecTBO· 

BaHIDI TO'IeK paBHOBeCIDl B o6o6~eHHbiX CTpaTerHHX .!J:JIH Ofi~ero KJiaCCa Hrp C rrpOH3BOJibHbiMH 

ypOBHeHHHM:H COCTOHHID!. ,[(JIH ,1:\0KaJaTeJibCTBa rrpHBe):leHbiX TeopeM HCIIOJibJyeTCH HJBeCTII}'lO 

TeopeMy <l>aaa-rJIHKc6epra o aerrO.n:BHlKHo:li TO'iKe. 
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On March 12, ' 1978 died tragically in Cleveland, USA, Dr. STANISLA W KUR
CYUSZ, a talented Polish control engineer and mathematician . 

Dr. Stanislaw Kurcyusz was born on December 12, 1947, in Warsaw, Poland. 
He received his M.Sc. degree in Electronics from Technical University of Warsaw 
in 1971, with distinction. At the same time he studied Mathematics at the Uni
versity o Warsaw. He obtained his Ph.D. degree in Automatic Control in 1974 
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cessary optimality conditions for problems with function space constraints", with 
special distinction. From 1974 he was an Assistant Professor in the Institute of 
Automatic Control, Faculty of Electronic Engineering, Technical University of 
Warsaw. From August 1977 he was on a leave to the Case Western Reserve Uni
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contributions to the field o control and optimization theory and applications. He 
developed regularity and normality conditions or general optimization problems 
in Banach spaces with operator equality and inequality constraints. Applied abstract 
methods to systems with delays and obtained regularity conditions and necessary 
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space type. He worked also on the problems of projection on cones, generalized 
lagrangians and penalty function methods in optimization; the results in this field 
are of great importance both for theory and for applications in numerical algorithms. 
His recent brilliant work on {,D-convexity concept is a generalization of well-known 
separation theorems to the case of nonlinear separating or cupporting functionals. 
His late research was related to various types of penalty algorithms for optimization. 
He received niany awards for his work, including an award of the Polish Academy 
of Sciences. The scienti~c findings of S. Kurcyusz are kept alive and are being 
extended by his students in Warsaw and colleagues in Poland and other countries . • 

Dr Stanislaw Kurcyusz was a man of great culture and broad horizons, of a gentle 
and warm character. The charm of his personality will be long remembered by those 
who knew him well. 
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