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Nash equilibrium solution for a two-person nonzero-sum linear quadratic closed-loop partial 
differential game with a parabolic system having Neumann boundary conditions is developed 
using the optimal control approach. It is assumed that the first player exercises his control in the 
spatial domain and the other acts with his at the boundary . . Feedback strategies are characterized 
by a system of integro-differential Riccati equations. 

1. Introduction 

Differential games with infinite dimensional systems have been recently widely 
studied, especially from the theoretical viewpoint. We recall the papers by Ben
soussan, Grove and Papadakis, Chan, Ichikawa, and Underwood (references [1 ]- [5]). 
In Bensoussan's paper [I] , the problem of Nash points for N-person games with 
linear systems in Hi.lbert spaces (including those of parabolic type) has been con
sidered. Open-loop and closed-loop strategies have been derived and characteriz
ed by solutions of operator Riccati equations, similar to those of Starr and Ho [6]. 

Since infinite-dimensional models of real-life phenomena hardly exist yet in 
the fields where the game theory is applied, i.e. in economics and decision-making, 
so do partial differential games. It is worthwile to point out, however, that Beck
manu [7] has developed some parabolic equations as models of economic diffusion 
processes for cases where •spread of information about economic variables as well 
as movement 'of commodities are important. He has also mentioned wave equa
tions in this context. Distributed models of investory replenishment policies in
volving deteriorating items (for instance food products) have been presented in [8]. 
In this case "spatial" variable denotes a deterioration state. Models like those de
veloped in [7] and [8] make applications of parti~l differential games more realistic. 

Here Nash strategies are derived for a two-person nonzero-sum linear quadratic 
feedback differential game with a parabolic system having Neumann-type boundary 
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conditions. It is assumed that the first player uses his contr?l in the spatial domain 
and the other is allowed to act on the boundary. The game problem is formulated 
in Section 2. Next, the first player's optimal feedback strategy is found under the 
assumption that the second player applies an arbitrary linear feedback strategy. 
In Section 4 we do the same for the second player and present a final system of Ric
cati integro-differential equations characterizing kernels of the Nash feedback 
operators. By Bensoussan's result [1], our Nash point is unique in the class of all 
feedback strategies. 

2. Problem formulation 

Let Q be an open set in Rn with boundary r which is a c oo -manifold of dimension 
(n-1). Locally, Q is on one side of r. Let t denote time, tE [0, T], T <oo. We define 

Q=Q x (O, T), l:=F x (O, T) 

Let au (x, t), i, j=1, 2, .. . , n, and a0 (x, t) be given functions in L 00 (Q) satisfy
ing the conditions 

n n 

}; au(x, t) ~i ~1 ~rx}; ~i 
it j=l i=l 

a0 (x, t)~fJ<O 

for (x, t) E Q, where IY. > 0, ~i E R. Define on 1: another function q (s, t) EL oo (E) 
such that 

q(s, t)~O for (s,t)El:. 

We consider the following scalar parabolic system of secohd order 

r oy(x, t) I ot +(A (t) y(.' t)) (x)=ul (x, t) on Q, 

~ oy (s, t) I O'IJA + q(s, t) y(s, t)=u2 (s, t) on 1:, 
(I) 

l y (x, 0)=y0 (x) on Q, 

where 

· '6 a. ( oy(x,t)) 
(A(t) y(•, t)) (x)=-~ OXt au(X, t) oxi +a0 (x, t) y(x , t) 

!,J= 1 . 

(2) 

and 

'6 oy (s, t) 
~ au (s, t) ox

1 
cos (rt. x;) 

! , J=l 

(3) 

11 - vector unit outward normal to r. 
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So the state y is given by the solution of a mixed problem (in the sense of Ha
damard) with a Neumann boundary condition. External forces u1 and u2 , called 
further policies or controls, are e~ercised in the spatial domain Q and through its 
boundary r, respectively (Fig. 1). It is assumed that u1 and u2 are generated by 
two players in a two-person differential game . 

.. 

Fig. I. Location of the player's controls: u1 (x, t) in the 
domain Q, u2 (s, t)-on the boundary r. 

It is known that if the data ut> u2 , y 0 are of appropriate classes L 2 then there 
exists a unique solution y to (1) with the properties 

y(x, t)EU(O, T; H 1 (Q)), (x, t)EQ 

y (s, t)EL2 (0, T; H 112(r)) , (s, t)EI:, 

where ifl (Q) and H 112 (F) are Sobolev spaces. 

(4) 

As in nonzero-sum games (6] we associate with each player a quadratic payoff 
functional given by (i=l, 2) 

T 

J;(u1 , U 2 )=( P;r y(T), y(T)) L2(.!2)+ J ( Q; (t) y(t), y(t)) L2{0) dt+ 
0 

T 

+ J [(n; ~_ (t) u1 (t) , u1 (t)) L2r.o)+ 
0 ' . . 

+ ( n; 2 (t) u2 (t) , u2 (t)) L2 (r)] dt, (5) 

where P,r and Q; (t) are bounded linear mappings transforming U (Q) into itself, 
such that 

(1) P;rY(T)=(P;rY(·,T))(x)= j P;r(x, ()y((,T)d(, 

P;r (x , ()-kernel of P;r 

P;r(x, () EL00 (Q x Q), P;r(x, ()=P;r((, x) 
(6) 

f P;r(x, () ~p(()2 d(~O for all ·~pEU(Q). 
Q 
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(2) Q;(t)y(t) = (Q;(t)y(·, t)) (x)= J Q;(x, C:, t)y(C:, t)d!;, 

Q; (x, C:, t)- kernel of Q; (t) 

Qi (x, C:, t) EL oo (Q. x Q) 

(7) 

Q; (x, C:, t) - symmetric with respect to x and C:, and nonnegative definite for all 
t E (0, T) (in the sense as PiT (x; C:) above). 

In (5), nn (t)= nil (x, t) and n;2 (t)= ni2 (s, t) ar~ functions in L oo (Q) and L oo (.E), 

where n21 (x, t), n12 (s, t) are nonnegative and n11 (x, t), n22 (s, t) strictly 
positive, i.e. 

n11 (x, t);?:91>0, 

n22 (s, t);?=92>0 . 
(8) 

Introduce two mappings K 1 (t) and K 2 (t) transforming the space V (0, T; V (0)) 
into V (Q) and V (.E), respectively, which define the players' feedback strategies 

u1 (x, t) = (K1 (t) y( · , t)) (x) 

u2 (s, t) = (K2 (t)y(·, t)) (s). 

Let K 1 (t) and K2 (t) be such that the following equation 

r oy(x, t) . I ot +(A(t)y(·,t))(x)= (Kl(t)y(·,t))(x) 

~ oy(s, t) I OIJA +q(s, t) y(s, t)=(K2 (t) y(·, t) (s) 

{ y(x, O)=Yo(x) 

has a unique solution, so the game makes sense. 

Using (9), one can formally write l; (u1 , u2 ) as 

(9) 

on Q 

on .E 
(10) 

on Q 

(11) 

The players to play best should perform minimization of 11 and 12 with 
respect to K 1 (t) and K2 (t), respectively. 

The game problem: Find optimal feedback strategies K1 (t) and K2 (t) ,defined 
by the following inequalities 

l1 (Kl> Kz) ~l2 (Kt. K2) 

lz (K1, K2) ~l2 (Kt. Kz) 

for all K1 (t) and K2 (t) such that the system (10) is well posed. 

(12) 

The pair (K; (t), K2 (t)) is called a Nash equilibri um s~lution to the partial di
fferential game. 
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3. First player's feedback strategy 

For the time being we assume that K2 (t) is linear. Since u2 =K2 y, so for the 
first player the system (1) formally looks like 

1 ay(x, t) • I ot +(A(t)y(·,t))(x)=ul(x,t) . onQ 

. { oy (s, t) • 

I ~ +q(s, t)y(s, t)=(K2 (t) y(·, t)) (s)"' 
· UIJA 

on .E 

ly(x, 0)=y0 (x) on Q 

and the payoff functional 1 1 (u 1, u2 ) becomes 

J;f(ut)=Jl (ul, Kz y)= <PlT y(T), y(r)) Lz(nJ + 
T • 

+ J ((Ql(t)+Ll(t))y(t),y(t))Lz(n)dt+ 

where 

0 

T 

+ J ( n11 (t) U1 (t), U1 (t)) L•(n) dt , · 
0 

L 1 (t) y (t)= ( K; (t)(n 12 ( ·, t) ( K 2 (t) y ( .. , t)) ( ·)) (x). 

x; (t) is defined by 

( rp, K 2 (t) lfi )Lz(n~(K; (t) rp , lf/) L• (n) 

for all rpEU(r) and lf/EU(Q). Assumed linearity of K2 (t) justifies (16). 

Now we have two standard problems to solve 
' . 

(1) Find optimal open-loop policy ut. E U (Q) defined by 

Jlf (ii 1) ~Jlf (ul) 

(13) 

(14) 

(15) 

(16) 

for all u1 .<=L2 (Q). The existence of such u1 may be proved by methods given in 
[9] and is assumed here. 

(2) Express u1 in a feedback form 

u1 (x, t)=(K1 (t).Y(·, t)) (x), j)=y(u1) (17) 

determining the optimal feedback strategy K1 (t) (in dependence on K2 (t)). 

We have the following result 

PROPOSITION 1. The first player's optimal policy Ct; and the resulting solution y 
minimize the payoff functional (14) if and orily if 

Ct1 (x, t)= -nu (x, t)-t P1 (x, t) (18) 

r 
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for almost all (x, t) E Q, where p1 (x, t) is the solution of the adjoint system* 

( 
apl (x, t) . 

--a-t ·- +((A*(t)-K;(t))pJ·, t)) (x)= 

=((Q 1 (t)+L1 (t)).Y(·, t)) (x) on Q 
apl (s, t) 
- a --+q(s, t)p1 (s, t)=O 

1JA• 

. t 

on 1: 
(19) 

Pt(x, T)=(PlT.Y(·, T)) (x). on Q 

The minimal value of (15) is given by 

Ju (u1)= J P1 (x, 0) Yo (x) dx. 
. Q 

(20) 

Proof. See Appendix A. 

Since for a linear K 2 (t) the solution p 1 to (19) has the same properties as y in 
(4) we can apply the Schwartz kernel theorem [9] and seek a representation . . . 

P1 (x, t)= J P1 (x, ( , t) Y((, t) d( 
Q 

such that the function kernel P 1 is symmetric with respect to x and c; 
P1 (x, c!, t)=P1 (c;, x, t). 

We claim that 

PROPOSITION 2. The kernel P 1 of (21) satisfies the following equation 

J[ oP1 (x,c;,t) * * 
u - ot +(Ax(t)Pt(· , c; .. t))(x)+Ae(t)P1 (x,·,t))(c!)+ 

+ J P1 (x, (, t) n11 ((, t)- 1 P 1 ((, c;, t) d(-
. u 

- (K; (t) P1 ( ·, c;, t)) (x)- Q 1 (x, (, t)]y((, t) d(= 

= J P 1 (x,s,t)(K2 (t)y( · ,t))(s)ds+ 
r 

+(K;(t) n12 (·, t) (K2 (t)y(··, t)) (·)) (x) on Q 

with the terminal and boundary c6nditions 

f P 1 (x, (, T)=PlT{x, c!) on Q x Q 

I oPl (x,s, t) . 

{ 
~ +q(s, t)Pdx, s,t)=O 
U1JA• 

on Q x E 

j oP1 (s, r;, t) 

t 
,., +q(s, t)P1(s, ( , t)=0 
U1JA• 

on r x Q. 

* Adjoint A* (t) to A (t) is defined by the Green's formula 

/o<p) * ( olfl) (A(t)<p,lf/)L2(1l)+\-~- , If/ = (<p, A (t)lf/) L2(o)+ <p, -~-
2 

• 
UlfA L2 (r) UI'JA* L (T) 

(21) 

(22) 

(23) 

(24) 
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Proof. The proof is given in Appendix B. 

Using (21), the optimal control Ll 1 can be written in the following form 

u1 (x, t)= -nu (x, t)- 1 f P 1 (x, c:;, t) .Y<C::, t) dC::=(K1 (t)Y( · , t)) (x) (25) 
Q 

which defines the first player's optimal feedback strategy K1 (t) in dependence 
on some linear K2 (t) . 

4. Second player's feedback trategy 

This time, instead of writing u1 with the help of K1 y, we employ the expression 
(25) explicitly." Thus the second player wishes to minimize the cost 

]zf(uz)= ( PzT y(T), ytT)) L2(n)+ 
T 

+ J <(Qz(t)+Lz(t))y(t),y(t))L2(n!dt+ 
0 

T 

+ J ( n22 (t) U2 (t) , u2 (t) ) L2 (T) dt (26) 
0 

with respect to u2 .EL2 (.E), where 

Lz (t) y (t)= J [ J P 1 (x, ( , t) n11 ((, t)- 1 n21 ((, t) nu((, t)- 1 
• t 

n n ·P1 ((, c!;,t)d( ]y((, t)d( , 

subject to the restriction 

at +(A(t)y(·,t))(x)=-n11 (x,t)- 1n P 1 (x,(,t)y((,t)d( I 
ay(x, t) J 

ay (s, t) (27) I aiJA + q(s, t) y(s, t)=Uz (s, .t) 

I y(x, 0)=y0 (x) . 

Deriving similarly as in Appendix A one obtains 
(i) optimal control 

Uz(S, t)=-n22 (s, t)- 1 Pz(S, t) 

for almost all (s, t) E .E; 
(ii) adjoint system 

apz (x , t) . J f- a +(A*(t)pz(•,t)(x)+ P 1 (x,(,t)n11 ((,t)- 1 p 2 ((, t)d(= 
t Q 

ap 2 (s, t) 
-a - - +q(s, t)p2 (s, t)=O 

IJA• 

lPz (x , T)=(PzT .Y(·, T)) (x) 

y (x, t)=y (x, t; u2); 

=((Q2 (t)+L2 (t)) y(·, t)) (x) 

(28) 

(29) 
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(iii) minimal value of (26) 

As before we take 

lzf (ilz) = J Pz (x, 0) Yo (x) dx . 
f1 

P2 (x , ~' t)=P2 (~, x, t). 

Using (3la, b) in (29) yields (compare Appendix B) 
(iv) integro-differential system of Riccati type 

oP2 (x,~,t) * * · 
ot +(Ax(t)Pz(·,~,t))(x) +(A~(t)P2 (x, ·,t))(()-

I 

.- J Pl(x,~, t)n 11 (~, t)- 1 n21 ((,t)n 11 ((,t) !... 1 P1 ((,~,t)d(+ 
0 

+ J.P1 (x,(,t)n 11 ((,t)- 1 P2 ((,~,t)d(+ 
f1 

+ J P2 (x, (, t) n11 ((, t)- 1 P1 ((, ~' t) d( + 
f1 

+ J P2(x, s, t) n22 (s, t)- 1 P2 (s, ~,.t) ds=Q 2 (x, ~' t) 
r 

P2 (x, ~, T)~P2T(x, ~) 

oP2 (x, s, t) 
~ + q(s, t) P2 (x, s, t)=O 
UIJA• 

oP2 (s, ~' t) · I a + q(s, t)Pz (s, ~' t)=o·. 
1'/A• 

By (28) and (31a) one obtains 
(iiv) second player's feedback strategy 

(30) 

(3Ia) 

(31b) 

(32) 

it2 (s, t)= -n22 (s, t)- 1 J P2 (s, ~' t).Y (~, t) d~=(K2 (t).Y ( ·, t)) (s) (34) 
· n 

determining the optimal operator K2 (t). 

Its . ad joint K; (t) can be written as (see (16)) 

(l{;(t) tp(·)) (x)=- f P2 (x ,s, t)nzz(S, t)- 1 tp(s)ds 
r 

for tp E Y (r). Usi~g K2 (t) and K; (t) in (23) yields 

oP1 (x,~,t) * . * 
- ot +(Ax(t)Pt(·, ~, t)) (x)+(A~(t)P1 (x, ·, t))(~)+ 

+ J Pl(x,(,t)n11 ((,t)- 1 P1 ((,~,t)d~+ 
f1 

+ J P1 (x, s, t) n22 (s, t)- 1 P 2 (s, ~' t) ds 
r 
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+ J P 2 (x, s, t) n22 (s, t)-
1 P 1 (s, ~' t) ds-

r 

- J P2 (x, s, t) n22 (s, t)- 1 71 12 (s, t) 71 22 (s, t)- 1 P2 (s, ~' t) ds= 
r . 

=Q 1 (x, ~, t) (35) 

with terminal and boundary conditions given by (24). 
Thus ~e have found that the Nash feedback strategies K1 (t) and K2 (t) are 

linear integral operators with the kernels 

-n11(x,t)- 1 P 1 (x, · , t) and -n22 (s,t) - 1 P2 (s, ·,t), 

respectively; where P 1 and P 2 satisfy the system of Riccati equations (32);- (35j. 

Minimal payoffs are given . by 

· J1 (ul> ilz) = J J Yo (x) P 1(x, ~' 0) Yo (~) dx d~ 
SI Q 

fz (uJ, Uz) = J J Yo (x) Pz (x, ( , 0) Yo (~) dx d!;,. 
(36) 

'Q Q 

Our theory has been developed under the initial restriction that the second 
player applies linear strategies only. Hence in the pair (K1 (t) , K2 (t)) , K2 (t) should 
be interpreted as the best strategy of linear strategies and K1 (t) as the best of all 
strategies (including 'nonlinear ones) for which the game makes sense. The other 
way of derivation is also possible, i.e. assuming a linear K1 (t) we can find K2 (t) 
first and then K1 (t). Now K 2 (t) would be the best of all strategies. The two ap
proaches suggest that the-initial restriction concerning linearity might be withdrawn. 
This hypothesis has been proved in [I] (Theorem 3.1). Thus our pair (K1 (t), K2 (t)) 
constitutes a Nash point for all feedback strategies (Ka (t), K2 (t)) . 

Bensoussan has also shown [I] that Riccati operator equations associated with 
nonzero-sum differential games in Hilbert spaces posses unique solutions in L oo (0, T; 
Sf(H, H)) (here H=L2 (Q)). So our Nash point is unique and the function kernels 
.P 1 (x, !;,, t), P2 (x, !;,, t) are members of £"' (0, T; D' (Q X Q)), where D' (Q X Q) 
denotes the space of distributions on Q x Q [9] . 

We summarize OJJr resj.Ilts in the following statement. 

Conclusion . The pair of optimal feedback strategies (K1 (t) , K2 (t)), being a unique 
Nash point for the nonzero-sum . differential game with the Neumann-type para
bolic system (I) and the quadratic payoff functionals (5), is given by the formulae 
(25) and (34), where P 1 (x, !;,, t), P2 (x, !;,, t) satisfy the system of Riccati equations 
(32), (35). 

5. Final remarks 

Feedback strategies for a two-person nonzero-sum partial differential game 
have been derived using the familiar optimal control approach. The case has been 
considered where the first player exercises his control in the spatial domain and the 

/ 
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other acts with his on the boundary. The strategies have been characterized b)i a sy
stem of Riccati integro-differential equations. 

In [10], Cruz and Chen have developed a perturbation technique for iterative 
computing of the ordinary Nash feedback. strategies introduced by Starr and Ho [6]. 
Their algorithm may be applied in our case after expansion of the Riccati equa
tions with respect to eigenfunctions of the operator A (t). 

APPENDIX A 

It is well known that for positive quadratic forms like (14) the minimum con
dition 

for all u1 EL 2 (Q), is both necessary and sufficient. 
Denote v1.=u1 -u1 , so 11. (v1) 'becomes 

T 

l 1 (v1 )=<P1Ty(T),y(T)) + J ((Q1 (t)+L1 (t))Y(t),y(t)) dt+ 
0 T 

+ J <nu (t) al (t), v1 (t)) dt' (AI) 
0 

where y(t)=y (t; v1) and the subscripts £2 (Q) at <.; ·) have been omitted for 
brevity. Observe that 

y(x, 0; v 1)=y(x, 0; Ut)-y(x, 0; uL)=O. 

We shall show that if (13), (18), and (19) are satisfied then 

/1 (vt)=O 

(A2) 

(A3) 

for all v1. E L 2 (Q). Using the adjoint equation, the second term of 11 (v1) can be 
transformed as follows 

T I'( (Qt (t) +L1 (t)) Y(t), y(t)) dt= 

0 T 

I< 
op1(t) . ) 

= - 3 -t -+(A*(t)-K;(t)) Pt (t) , y(t) dt= 

0 
T . r < oy(t)> = <p 1 (0),y(O) ) - <p 1 (T),y(T)) +. p1 (t),-af dt+ 

0 

IT[ (apl(t) ) + <P1 (t),A(t)y(t) ) - -~-- , y(t) + 
. U1JA• . L2(T) 

0 . 

< oy(t) .) ] IT * + P1(t),-~- dt- <K2 (t)p 1 (t),y(t) ) dt= 
U1JA L2 (T) 

. 0 
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T 

=- (Pl (T), y(T)) + J [ ( p 1 (t), V1 (t)) -
0 . 

< op1 (t) . ) 
- -----;--+q(t)p1(t),y(1) + 

.U1J A • L2 (T) 

T 

+(pl (t), K2(t)y(t) ) Lz<n] dt -J <K;(t)pl (t), y(t)) dt, (A4) 
0 

where integration by parts with respect to t, identity y (0)=0 given by (A2); Green's 
formula, state equation (13) and its boundary conditions have been applied in the 
sequence. Employing boundary conditions of (19) in (A4) and using the result in 
(Al) yields · 

T 

11 (v 1)=(PIT y(T)-p1 (T), y(T) ) +j ( p 1 (t)+n 11 (t) u1 (t), v 1 (t)) dt. 
0 

Hence (A3) holds by (18) and the terminal condition of (19). 
To prove (20) notice that the only difference between .Jlf (uJ and 11 (11 1) is 

nonzero initial state y 0 (x) in general, instead of the condition (A2). Therefore, 
transforming J11 (u 1 ) in the same way as 11 (v1 ) above one could not omit the term 
( p 1 (0), y 0 ) in (A4). Hence (20) holds. 

APPENDIX B 

We use the formula (21) in the adjoint equation. Its elements become 

(I) 
- op1 (x, t) = - f oP1 (x, .;, t) -

ot • at y(.;, t) d(-
.. 

a J oY((, t) 
- pl (x, .;, t) ot d(' 

!l 

where 

f oy((,t) J 
- P1 (x, (, t) ot d(= P1!x, (, t) (Ae(t)y(·, t)) (()d(+ 

!l !l 

+ J J P1 (x, (, t) n11 ((, t) - 1 P 1 ((, (, t) Y((, t) d( d(, 

J P 1 (x, (, t) (A~(t) Y(·, t)) (() d(= J (A; (t) P 1 (x, ·, t)) (() Y((, t) d(+ 
n n . 

f 
oP1 (x, s, t) f oy (s, t) 

+ 
0 

Y(s,t)ds- P 1 (x,s,t) ·o ds, 
1JA• 1JA r r 

f oY(s, t) J 
- P1 (re, s, t) 01JA ds= P1 (x, s, t) q(s, t) Y(s, t) ds-

r r - J P 1 (x,s,t)(K2(t)y(·,t))(s)ds; 

r 
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(2) (A':'(t)p 1 (·, t)) (x)= J (A:(t)P1 (·, ~' t)) (x)Y(~,' t) d~; 
Q 

(3) -(K; (t)p 1 (·, t)) (x)=- J (K; (t)P 1 (·, ~, t)) (x).Y(~, t) d~. 
Q 

Collecting transformed and remammg terms m (19) yields the equation (23) 
and the first boundary condition of (24). The other holds by .spatial symmetry. 
The terminal condition in (24) follows that or (19). 
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Pozycyjne strategic Nasha dla dwuosobowej czl!stkowej gry 
rozniczkowej z ukladem parabolicznym typu Neumanna 

Stosujqc metod~ optymalnego sterowania wyznaczono punkt r6wnowagi Nasha pewnej dwu
osobowej pozycyjnej Iiniowo-kwadratowej gry r6:i:niczkowej z niezerowq sum<'! dla uk!adu para
bolicznego majqcego warunki brzegowe typu Neumanna. Za!ozono, :i:e pierwszy gracz korzysta 
ze sterowania w domenie przestrzennej, natomiast drugi dysponuje swoim sterowaniem na granicy. 
Optymalne strategie pozycyjne scharakteryzowano za pomocq r6:i:niczkowo-ca!kowych r6wnan 
Riccatiego. 



Nash feedback straJtegies 

llo31i~HOHHLie cTpaTernu H3wa )J;JHI pacnpe)J;eJieHHOii )];UcllcJle
pe~uaJILHoii nrpLI ABYX JIIIQ c IIapa6oJiuqecKoii cncTeMoii 
'THna HeiiMaHa 
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YrroTpe6mm MeTO,LI OIITHMaJThHOrO yrrpaBrremm Ha:il:,LieHa TO'I.Ka paBHOBeClll! HJma HeKOTOpo:il: 

II03ll.l.(llOHHOH JI'IrHeitHo-KBa,LipaTH'!HOll ,LIHqHpepeHI(llaJThHO:il: Hrpbi ,LIByx JIHII C HeHyJieBOll CYMMOll 

.n;rrH rrapa6orrnqecKoll: cncTeMbr HMerorrre:i! KpaeBbre ycrroBnH Tnna He.liMaHa. IIpe,Linorro)KeHo, '!TO 

nepBnll HrpOK HCIIOJTh3yeT CBOe yrrpaBJieHHe BO BCe:il: 06JiaCTH, a BTOpOH YIIOTpe6JIJieT CBOe Ha rpa

HIIIIbi. 0IITHMaJThHbie II03HIIHOI!Hble CTpaTerHH xapaKTepH30BaHHbiX C IIOMOIIIbiO HHTerpO,LIH<jl<jle

peHIIHaJThHbiX ypaBHeHnli PHKKa'f:a. 
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