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Existence, uniqueness and continuous dependence on given data of the solutions of two-layer 
parabolic free boundary problems describing dynamics of the underground gas reservoir are con
sidered. It is shown that for . considered boundary value problems maximum principle holds. 

1. Introduction 

Mathematical modelling of many physical processes related to filtration in 
porous media leads to so called one- or m,ulti-layer free boundary problems. In 
particular such models describe dynamics of some underground gas reservoirs. 

Mathematical models of filtration processes in the gas reservoir and properties 
of thes-e models presented in the paper as well as numerical methods which will be 
presented in [13] may be useful in optimal control problems for pipeline networks 
containing underground gas reservoirs. The physical setting of problems related 
to filtration of gas and water in a porous medium and two equivalent mathema
tical models (describing pressure and filtration velocity distributions) are presented 
in [7, 12]. 

In this paper the correctness in the Hadamard sense and the maximum principle 
for parabolic free boundary problems are investigated. 

Existence, uniqueness and stability (continuous dependence with respect to 
initial data, boundary data and coefficients) of classical solutions of multi-phase 
free boundary problems, known also as Stefan problem have been considered in 
many works [2, 3, 5, 15]. The problems we consider belong to the class of multi
-layer free boundary problems known in Russian works as Verygin problems [8, 
9, 15]. They differ in many aspects from Stefan problems [8]. 

Multi-layer free boundary problems have b~en investigated only in ·few works 
[6, 8, 9, 14, 16]. In [16] the analytical solutions for a particular case of constant 
iilitial and boundary data were obtained. In [8] existence (but not uniqueness) of 
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the solution of the two-layer free boundary problem for linear parabolic equations 
in general form and with variable coefficients was proved by the use of Schauder's 
fixed point theorem. In [14, 15] existence and uniqueness for the Verygin problem 
with constant coefficients was obtained by employing Picard's method to the equi
valent integral representation of the problem. 

In [6] existence and uniqueness for the Cauchy free boundary problem was con
sidered. We extend the results given in [6] to the case of free boundary 
value problems. Moreover we prove stability property of the solutions of consi
dered problems .. 

In Section 3 we recall the formulation of Problems (Ak), (Bk), k = 1, 2, introduced 
in [7, 12]. Problems (Ak) are formulated in terms of the pressure distribution and 
(Bk) - in terms of the velocity distribution in the underground gas reservoir. 

In Section 4 we introduce the equivalent integral representation of the Pro
blems (Bk). 

In Section 5 results relating to existence, uniqueness and stability of the solu
tions are presented together with shortening of the proof. This proof proceeds 
in much the same manner as in [6] . 

In_ Section 6 the maximum principle for Problems (Ak), (Bk) is demonstrated. 
In particular, it is shown that the extremal values of the solution cannot be 
attained on the free boundary. 

2. Notations and conventions 

D= {(x, t) I x E (0, l), t E (0, T)}, 
D1 = {(x, t) I x E (0, y (t)), t E (0, T)}, 
D2 = {(x, t) I x E (y (t,) l), t E (0, T)}, 
D~ =D; ""{(x, t) E 15; I t= O}, 
F = {(x, t) I x=y (t), t E (0, T)}, 
F 0 =f"-{(Yo, 0)}, 
zl ={(x, t) I X E (0, Yo), t=O}' 
Z 2 = {(x, t) I x E(y0 , l), t=O}, 
S;={(l,, t) I tE(O, T)}, 11=0, !2=!, 
S? = S,"-{(1, 0)}, 
Z=Z1 u Z2, S=S1 u S2 

• 

where T> 0, l> 0, y (t) E (0, l) for t E [0, T] , y (0) = y0 ; y (t) denotes the location 
of the gas-water interface, p, (x, t) denotes the pressure and u; (x, t) - filtration 
velocity of fluid at the point (x, t) E D,. 

Lower index i= l corresponds everywhere to the gas domain and i=2 to the 
water domain. 

By Q we denote the closure of the set Q. 
According to the terminology of [15], the domains D, we call layers and r

the free boundary_ between layers. 
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C"' (Q) is the class of functions m~times continuously differentiable in the 

set Q; 

(

(4nt)-!exp(-::), t>O, 
E(x, t)= 

0 , t~O, 

XER 

XER 

- fundamental solution of the heat equation L 1 u=O; 

G1 (x, (, t)=E (x-(, IX 1 t)+( -1) 1E (x+(, IX 1 t), 

H 1(x,(,t)=E(x-(,1X 2 t)+ (-l)iE(x+(-2l,rx 2 t), 

G;, i = 1,2- -respectively Green and Neumann functions for the heat equation La, u=O 

in the domain {(x, t) I x>O, t>O}, H;, i=l,2--Green andNeumann functions for 
the equation La

2 
u=O i~ the domain {(x, t) I x<l, t>O}. 

3, Formulation of two-layer free boundary value problems 

We will consider the following problems: 

Problerrz (Ak), k= 1,2. 

Find functions Pr. p 2 , y satisfying: 
~ system of parabolic equations 

La,P;=O in D 1 , i=1,2; 

~ initial conditions 

y (0)=y0 , where Yo E (0, l), 

p; (x, 0) =P;o (x) in Zi; 

~ boundary conditions of the Dirichlet type in the case of Problem (A 1) 

Pi(li,t)=/;(t), tE(O,T] 

and conditions of the Neumann type in the case of Problem (A2) 

opi 
-ai ox (l;,t)=Fi(t), tE(O,T]; 

-- conditions on the free boundary 

P1 (y (t), t)=p2 (y (t), t), 

apl op2 
a 1 ~(y(t), t)=a2~(y(t), t), 

dy opl 
dt (t)= - /Ja1 ox (y (t), t), t E (0, T]. 

(3.1) 

(3.2) 

(3.3) 

(3.3') 

(3.4) 
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Here 0:;>0, a;>O, i=l,2, P>O, Yo are given constants and p;o, ft, F; are given 
functions. It was shown in [12] that under some additiona-l regularity conditions 
for the data Problems (Ak) can be formulateq in terms of velocities u; which are 
related with pressures p 1 by the linear Darcy law [1] 

opl 
Ur= -a; ox. 

The formulation in terms of velocities has the following form: 

Problem (Bk), k= 1,2 

Find functions ut. u2 , y satisfying: 
- system of equations La, u1=0 in D;, i=l,2 ; 
- initial conditions 

Y (O)=Yo, 

u1 (x, 0)=u10 (x) in Z 1 ; 

- boundary conditions of the Dirichlet type in the case of Problem .(BJ 

U; (/;, t)=F; (t)' t E (0, T] 

and conditions of the Neumann type in the case of Problem (B2) 

OU; 
ox (li,t)=rp 1(t), tE(O,T]; 

- conditions on the free boundary 

UL(Y (t), t)=u2 (y (t), t), 

( 
1 1 ) dy o:l oul Cl.z OUz 

- - - u 1 (y(t), t)- (t)+ - . -(y(t), t)= - -- (y(t) , t), 
a1 a2 dt a 1 ox . a2 ox 

dy 
di (t )= (Ju 1 (y (t) , t) , t E (0, TJ. 

Here 

6. dp;o 6 a1 dfc 
U;o = -a;dx' rp; = - --. 

IX; ·dt 

(3.5) 

(3.6) 

Solutions of all introduced problems we understand in the classical sense [12]. 

We make use of the following conditions: 

(Cl) P1o E Cl [0, Yo ], Pzo E C 1 [y0 , l] ; 

(C2) fl E C1 [0, T] ; 

op. ()2 

(C3) ' 0 - P; o o ox E C (D1), -----;;;z E C (D;) ; 
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(C4) functions Pi (y (t), t) are differentiable with respect to t in the interval (0, T]; 

(C5) functions Pi s;;ttisfy equations (3.1) on F 0
; 

(C6) functions Pi satisfy equations (3.1) on S?. 

Using the above conditions equivalence of Problems (Ak) and (Bk) can be formu
lated in the form of following lemmas: 

LEMMA 3.1 (12]. If 

(1) ui are related with p; by (3.5), 

(2) functions u10 , rpi are defined by (3.6), 

(3) conditions (Cl), (C2) are satisfied 

then 

(I) if {PL, p 2 , y} is the solution of Problem (A 2) satisfying conditions (C3)-(C5) 
then {u1 , u2 , y} is the solution of Problem (B1); 

(Il) if {p 1 , p 2 , y} is the solution of Problem (A 1) such that . conditions (C3)-(C6)' 
are fulfilled then { ui> u2 , y} is the solution of Problem (B2 ). 

LEMMA 3.2 '[12]. If the assumptions (2), (3) of Lemma 3.1 . are fulfilled then 
(I) the solution {u 1 , u2 , y} of Problem (B1) uniquely determines the solution 

. {p 1 , p2 , y} of Problem (A 2 ) satisfying conditions (C3)-(C6) and the assump
tion (1) of Lemma 3.1; 

(Il) the solution {Ut. u2 , y} of Problem (B2) uniquely determines the solution 
{Pt. p 2 , y} of Problem (A 1 ) satisfying conditions (C3)-(C6) and the· assump
tion (1) of Lemma 3.1. 

4. Integral representations of Problems (Bk) 

Assume that boundary and initial data of Problems (Bk) satisfy following re
gularity and compatibility conditions: 

(Hl) FiE C2 [0, T], 

(H2) Fi (0)=u; 0 (/;), 

(H3) U1o E C 2 (0, Yo], Uzo E C2 [Yo, /], 

(H4) U1o (Yo)=Uzo (yo), 

( 
1 1 ) 

2 
· et: 1 du 10 et:2 du20 . 

f3 --- Ulo(Yo) +- --(yo) =- --(yo), 
a 1 a2 a1 dx a2 dx 

(H5) ({J; E C 1 [0, T] , 

r ' 
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We assume -also that 

(H7) y (t) E (0, l) in the considered time interval [0, T]. 

Let M be a positive constant such that 

in the appropriate domains. · 

Denote 

}=0, I ; · k=O,l, 2 (4.1) 

(4.2) 

If the conditions (Hl)-(H7) are satisfied and v E C 1 [0, T] then Problems (Bk) 
can be transformed into equivalent integral forms [12]. 

We ·are going to present the integral equations for function v and to show that 
. these equations are respectively equivalent to Problems (Bk). 

If {u1 , u2 , y} is the ·solution of Problem (B1) then function v defined by (4.2) 
satisfies some Volterra integral equation of second kind and on the contrary-having 
the funct~on v which satisfies such an integral equation it is possible to determine 
uniquely the solution {u1 , u2 , y} of Problem (Bk). 

To do that first we calculate function y according to the expression 
t 

y(t)=Yo+f3jv(r)dr, tE[O,T] (4.3) 
0 

and then we solve appropriate boundary value problems in the specified domains 
Di, i= 1,2 (Problems (Ft), i= 1,2 in the case of (Bk)). 

Problem (FD, i=l, 2 

Find function ut defined in the domain D1 satisfying 

(I) equation La, u1=0 in D 1 

and the following conditions: 

(2) u1 (x, O)=u10 (x) in Z 1 , 

(3) u1 (y (t), t)=v (i), t E (0, T] , 

(4) u1 (/;, t)=F1 (t), t E (0, T]. 

Problem (F1
2
), i=l, 2 

Find function Ut defined in the domain D1 satisfying conditions ( 1 )-(3) of Problem 
(F/) and 

OU; 
ox (l1,t)=rp1(t), tE(O,T]. 

Solutions of these problems obtained by the use of thermal potentials are given 
in [12]. 

• 
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Denote by et>; the following mappings: 
I 

et>;: C 1 [0, T] __ ,. C0 (0, T], i= 1,2. , 

OU; 
[et>; (v)](t) 6 lim -;- (x, t), 

X-+J>(t)+(-1) 1·0 VX 

where functions u; are solutions of Problems (F{). If u; are solutions of Problems 
(Fn then similarly defined mappings we denote by 'P; . 

. The above definitions are used in process of ·derivation of the integral repre
sentations for Problems (Bk). According to the method of Fulks and Guenther · 
[6], in [12] it has been shown that in the case of Problem (Bk) function v satisfies the 
following nonlinear integral Volterra equation of the second kind 

2 v ()(1 ()(2 It . 
v(t)=v(O)+ 1 Y JK(t, o-,y(o-),v (o-))do-

Yl l1 7r()(z + Yz 1r()(1 
0 

k =l ,2, tE[O,T] (4.4) 

where y is defined by ( 4.3) and Y; =()(;/a; , i= 1,2. 

The above Volterra operators are defined in Appendix. 
Denote C~ lO, T]={!E Cj [0, T] lf(O)=a}, ./=0,1. 
The right-hand sides of the equations ( 4.4) define transformations 

QK: c; [0, T] --7 C~[O, T], k= 1,2, where a=v (0), 

2V~ It 
[QK(v)](t)=a + ./ ,/ JK(t, 0", Y (a-), V (a)) do-. 

Y1 V 7r()(z+ Yz V Jr()(1 
0 

It can be shown that the following lemma is satisfied: 

LEMMA 4.1 [12]. If V E c; [0, T] then QK (v) E c; (0, T]. 

(4.5) 

It has been proved in [12} that the integral equations (4.4) are the integral re
presentations of Problems (Bk). Here we recall without proof the result obtained 
in [12]. 

THEOREM 4.1. 

(I) 

(1) If {u1 , u2 , y} is the solution of Problem (B1 ) and conditions (Hl)-(H4), (H7) 
are satisfied then function v E c; [0, T] defined by ( 4.2) is the solution of integral 
equation 

v=Q 1 (v). (4.6) 

(2) If v is the solution of equation (4.6), function y is defined by (4.3) and func
tions u; are the appropriate solutions of Problems (F;1) then {u1 , u2 , y} is solu
tion of Problem (B1). 
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(II) 

(1) If {u1 , u2 , y} is the solution of Problem (B2) and conditions (H3)-(H7) are 
satisfied then function V E c; [0, T] defined by" (4.2) satisfies integral equation 

v = Q2 (v). (4.7) 

(2) If v satisfies equation (4.7), function y is defined by (4.3) and functions u; are 
the appropriate solutions of Problems (FZ} then {ui> u2 , y} is solution of Problem 

. \ 
(Bz). 

5. Existence, uniqueness and stability of solutions 

In this section we are going to show that Problems (Ak) and (Bk) are properly 
posed in the sense of Hadamard i.e. for some class of initial and boundary condi
tions these problems have unique solution continuously depending upon the given 
data. 

5.1. Existence and uniqueness 

T HEOREM 5.1. lf 

(1) for Problem (B1) conditions (H1)-(H4), (H7) are satisfied, 

(2) for Problem (B2) conditions (H3)-(H7) are satisfied 

then there exists unique solution { u1 , u2 , y} of Problem (Bk), k= 1,2 in the interval 
[0, T], where yE C2 [0, T] . 

To prove this theorem we use the techniques presented in [6]. Because in our 
case the proof is almost identical to that given in [6], we are going to recall here 
only the main steps of it. In the discussed problems on the contrary to those consi
dered in [6] the integral equations have components including boundary condi
tions and furthermore the operators include Green or Neumann functions instead 
of the fundamental solution E. 

We introduce in the space C 1 [0, T] the following family of seminorms 

llvll .. = sup lv (t) i + sup lv ' (t) l , a E [0, T]. 
o :::;; t ~ a 

. As in [6] it can be shown that there exist finite positive constants N = N (M, cx:l> 

CX: z, al> az , fJ) and a0 = a0 (N, M , T, cx 1 , cx 2 , al> a2 , fJ) such that llvii .. :::;N implies 
IIQK (v)II .. ~N, k = 1, 2 for aE [0, a 0 ]. Furthermore it can be shown that if v1 , v2 E 

E c; [0, T] and llv11\ T, llv2 IIT ~N then for a E [0, a0 ] 

IIQ"(vJ-Q"(v2)ii .. ~Ba l\v1 -v2 1\a , 
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Therefore if there is chosen such a 1 > 0 that a 1 ~a 0 and Ba 1 ~ r < 1 then in the 
interval [0, ad mappings Q" have the contraction property. Hence there exists 
unique solution of Problem (Bk) in the int~rval [0, a r}. 

In order to demonstrate exist!!nce of the solution in the whole interval [0, T] 
{when a 1 <T) we transform the origin to the point (0, a 1) and reset the problem. 
Using the same arguments as previously we can conclude existence and uniqueness 
of solution in some interval [au a 2 ]. We must yet show that after finite number 
·Of steps we obtain existence of solution in the whole interval [0, T]. To show this 
we make use of the Theorem 2.D [6] which can be extended to problems considered 
in our paper. From this theorem follows existence of such finite positive constant 
M'=M' (M,N, T, a0 , a 1 , a 2 , at> a2 , /3) that 

i=l , 2. (5.1) 

In view of definitions of N and a0 the constant M' depends in fact only on 
M , T, a 1 , a 2 , a1 , a2 , /3, 'so the inequalities (5.1) are a priori- estimates for 
functions u1 • 

Hence for every reset problem we obtain estimates of appropriate initial condi
tions in the same form as in (4.1). Taking into account definition of a 1. we conclude 
that for all the reset problems the interval [0, a 1 ] in which there exists unique solu
tion is the same. This remark completes the proof of Theorem 5.1. 

In view of the equivalence of Problems (A 1 ) and (B2 ), (A 2 ) and (B1) (see Lem
mas 3.1, 3.2) conditions (H1)-(H6) correspond to following ones expressed in 
terms of functio11s Pi: 

{H8) F 1 E C2 [0, T], 
dpiO . 

{H9) Fi (0)= -ai -d (11), 
X 

(HlO) P1o E C 3 [0, Yo], p 20 E C 3 [yo,!], 

dplO dp20 . . 
(Hll) al - d- (yo)=az - d (yo), P1o (Yo)=P2o (Yo), 

X X 

(H12) fc E C2 [O, T], 

(H13) Pw (!J=fc (0). 

CoROLLARY 5.1. If 

(1) for Problem (A 2 ) conditions (H7)-(Hll) are satisfied, 

(2) for Problem (A 1) conditions (H7), (H10)-(H13) are satisfied then Problem 
(Ak), k= 1,2 has unique solution in the interval [0, TJ and furthemore ·y E C2 [0, T]. 

5.2. Stability. 

Using the integral representation of Problems (Bk) and results of L. I. Kamy
nin [10, 11] we are ready to prove stability property of the solutions of these problems. 
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Assume that {u1 , u2 , y} is the solution of Problem (B1) corresponding to th~ 
given data F;, u;o, y 0 , Ol 1 , a;, [J, i= l,2 while {u;, u;, y*} is the solution correspond
ing to F7, ... , (J*. Similarly for Problem (B2 ) let {u1 , u2 , y} be the solution correspond
ing to the data rp;, u; 0 , y 0 , Ol;, a;, [J, i=l,2 and {u;, u;, y*}- corresponding to
rp;, ... , (J*. 

Assume that the functions F;, (/J;, U;o and F;, rp7, u;o satisfy conditions (Hl)
-(H6) and for these functions estimates (4.1) hold. Denote by A a positive constant 
such that 

We may demonstrate the following 

THEOREM 5.2. Assume that 

(1) for Problem (B1) 

I 
Jk Fi Jk F7 I 

. --;]ik (~) ~dfk (t) < t5' O~t~T, i=l ,2, k = O, 1, 2 , (5.2} 

l

diulo Jiu; 0 I 
Jxi (x)- Jxi (x) <J' 

-. 

I 
Jiuzo Ji u;0 I 
Jxi (x) - Jxi (x) < t5' max {y0 , y~}~x~l, j=O, 1, 2, (5.3) 

. I Yo-Y~ i <t5, Jo:;-Ol7 1<t5, la;-a7 i<J, lfJ-fJ* i<J; (5.4) 

(2) for Problem (B2 ) (5.3), (5.4) and the following estimates hold 

O~t~T, i=1, 2 , k = O, 1. (5.5) 

Then Problem (Bk) has property of the local stability i.e. for each s > 0 there 
exists such o>O that in some interval [0, T1 ], where T 1 is independent of s, the esti
mates (5.2)-(5.5) imply the following inequalities 

where 

iu,(x, t)-u7(x,t) i<B for (x, t)ESi(y,y*;T1), 

ly(t)-y':'(t)i<s for tE [0, Td, 

S 1 (y,y'";T1) 1'1 {(x,t) I O~x~min{y(t),y'"(t)}, O~t~T1 }. 

S 2 (y,y*;T1 ) 1'1 {(x,t) j max{y(t),y*(t)}~x~/, O~t~T1 }. 

(5.6) 

Proof. We are going to demonstrate this theorem for Problem (B1 ) . For Problem 
(B2 ) the proof is analogous. 

Let v be the solution of the integral equation ( 4.4), k= 1. This equation is equi
valent to Problem (B 1). According to considerations given in the proof of Theorem 5.1 
there exists such interval [0, a 1 ] that mapping Q1 : c; [0, at]--,.c; [0, a 1 ] has the con
traction property. 
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Denote v* (t)=u~ (y':' (t), t)=u; (y* (t), t), t E [0, T]. If functions F;, u70 , i= 1,2 
satisfy conditions (H1)-(H4) then there exists interval [0, a;] such that integral 
·equation v*=Q:(v*) has unique solution of the class C~. [0, a;], where a*= 
= v* (0). The mapping Q~ is defined by the expression (4.5) in which F;, ... , fJ are 
replaced by F;, ... , fJ':' and mappings cP; - by c[J~. 

Let 
T1 =min { a1, a~}. (5.7) 

Observe that the following estimates hold 

jjv -v*IIT, =JIQ1 (v) -Q~ (v':')IIT
1

:::::; I!Qt (v) -Ql (v':')IIT
1 
+ JIQ1 (v*) -Q: (v':')IIT

1
:::::; 

:::::; r Jlv- v*IIT
1 
+IIQ 1 (v'i<)_-Q~ (v*)IIT,, O<r< 1. 

Hence 

(5.8) 

Assume that Jlv*IIT ::::;N. In order to estimate the integral operator (4.5), k= 1 
we make use of the estimates obtained in [15] . It can be shown that there exists 
.a positive constant C1.=C1 (M, N, T1 , A) such that inequalities (5.2)-(5.4) imply 

IIQl(v*)-Q~(v':')IIT,:::::;cl o (5.9) 

and Cc""O+ when T1.--7 0+. From (5.8) and (5.9) it follows that 
• 

(5.10) 

Now we will demonstrate (5.6). Assume that functions v and v* are known 
in the interval [0, Td. Then according to (4.3) we can define in [0, T1 ] functions y 

and y*. 
Denote 

D 1 (T1 ; y) 6 {(x, t) I x E (0, y (t)), t E (0, T1)}, 

D 2 (T1 ;y) 6 {(x,t)jxE(y(t),l), tE(O,T1)}. 

Let u,, i=1,2 be the solution of Problem (F{) in D;(T1 ;y)-domain cor~ 
responding to boundary functions v, F;, uw and parameter IX;. Let u; be the solu
tion of Problem (F/) in D; (T1 ; y*)-domain corresponding to boundary functions 
v*, Ft, u~0 and parameter IX;. By ii; we denote solution of Problem (Fi) in domain 
D; (Tt; y), corresponding to boundary functions v*, F;, u70 and parameter IX;. 

Observe that 

ju; (x, t)-u; (x, t)j :::::; ju; (x, t) -ii; (x, t)j + jii; (x, t) -u; (x, t)j 

for (x, t) E Si (y, y*; T1) • (5.11) 

Solutions of boundary value problems for linear parabolic equation are conti
nuously dependent on boundary data and parameters [11]. Therefore from ine
qualities (5.2)-(5.4) and (5.10) follows 

ju; (x, t)-ii;(x, t) l :::;C3 o for (x, t) ED;(T1 ; y), (5.12) 

where c3 >0 does not depend on 0. 
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In order to estimate the second term on the right-hand side of (5.II) we make 
use of results of L. I. Kamynin given in [10]. The continl!ous dependence of the 
solution of linear parabolic equation on the boundary of domain has been inve
stigated in that work. 

On the basis of the main theorem proved in [IO] we can conc'lude that 

for (x, t) E Si (y, y*; T1), (5.13} 

where C4 >0 is independent of y and y'~. 
Taking into account definition of functions y, y* and inequality (5.IO) we obtain 

I 
dy dy':' I 
dt(t)-dt(t) ~C2 J 

/y(t)-y*(t)/~C2 ot+o, tE[O,TI]. 

Hence 
1/y- y*l/y

1 
~(I+ Cz + Cz T1) o. (5.I4} 

From (5.11)-(5.I4) it follows that 

/ui (x, t)-u7 (x, t) j ~ [C3 + C4 (I+ Cz + Cz T1)] o. 

This completes the proof of the Theorem 5.2. 
We have proved that solutions of Problems (Bk) have the stability property 

only in an interval [0, Td which is in geneni.lless than the giv~n interval [0, T]. It 
can be easily shown that Theorem 5.2 is also valid in the whole interval [0, T]. To 
this end observe that T1 defined by (5.7) is independent of e and J. The considera
tions included in the proof of Theorem 5.I imply that T1 is also independent of 
the moment t0 (0 ~ t0 < T) which is assumed to be initial. Thus for every e > 0 there 
exists such <5>0 that in all intervals [t0 , t0 + T 1 ] inequalities (5.2)-(5.5) imply (5.6). 
Taking in turn t0 =kT1 , k= I, ... , n, after a finite number of steps we may demon
strate validity of Theorem 5.2 in the interval [0, T].' 

In view of the equivalence of Problems (Ak) and (Bk) we can conclude that also 
solutions of Problems (Ak) have the stability property in the interval [0, T]. 

6. Maximum principle 

In this section we demonstrate the maximum principle for Problems (Ak) and 
(Bk). The results are based on the maximum principles in weak and strong formula
tions for parabolic equations [5] and Vyborny-Friedman Theorem [4, 17]. We 
recall here this theorem. We shall use the following notations: 

.Qtc{(x, r) E f?.n+ 1
J O~r~t}-some domain with sufficiently regular boundary, 

.Q.={(x, r) E .Qt I r=s}, 

.E.-boundary' of the domain .Q. in Rn, 

.Et= u .E., zt=.Etu.Qo. 
O <s~t 
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THEOREM 6.1 (Vyborny-Friedman [4, 17]).' Assume that: 
' 

(1) u is a function continuous in the closure of the domain Qt and 

ou . 
- - a2 Au>-0 (,eO) in int Qt ,· · at ;?' """ 

(2) ·at some point P 0 =(x0 , r 0 ) E sr function u attains its minimal (respectively 
maximal) value M in (Jt; 

(3) there exists a ball Kc Rn+l (with center PK) such that: 

(a) J(t = {(x, r) E K I r:i:;t}c (Jt and the point Po E oK, 

(b) vector P K P 0 is not parallel to Ot-axis, 

(c) u(x,r)>M(<M) for all (x,r)EKr; 

ou 
(4) there exists the derivative Jv (x0 , r 0 ) where v denotes v~ctor with the beginn-

ing at P0 , internal with respect to K. 

Under such assumptions 

ou 
(respectively-a; (x0 , r 0 ) < 0) . 

REMARK. This theorem holds for general linear parabolic equation [4]. 

Now we are going to prove the following properties of solutions of Problems; 
(Bk) . 

I 

THEOREM 6.2. Let {ul> u2 , y} be the solution of Problem (Bk). 

(I) If 

G(t) t,_ p(-1 
- -

1 )u;(y(t),t)~O, tE(O,T] 
a1 Gz 

tb,en 

max u (x, t) = max u (x, t) 
(x, t)ED 

where u (x, t) 6 u; (x, t) for (x;t) E 15;; 

(2) if G (t)~O for t E (0, T] then 

(3) if 

min u (x, t) 
(x, t)ED 

(X, t)EZ US 

mm u(x, t); 
(x, t)EZUS 

(6.1) 

(6.2} 

(6.3) 

OU· 
fJui(y(t) , t)<rx; 

0
; (y (t) , t), i=l , 2, tE(O, T] (6.4) 

then both (6.2) and (6.3) are satisfied. 
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Proof. Denote by M and m respectively the maximal and the minimal value 

of the solution u on the boundary Z uS i.e. 

iVI= max u (x , t) , m= mm u (x, t). (6.5) 
(x,t)EZUS (x,t) E ZUZ 

If we apply the weak maximum principle for parabolic equations [5] in D;
-domains, i~ 1,2, we obtain 

max u (x ,,t)= max u (x, t) 
1 -.;. t) ED; (x,t) ES;UZ;UT 

and 

min u(x, t)= min 
(x, t)eD; 

If we show that 

then we obtain equalities 

(X, t) ES;U Z ;UT 

max u (x, t)~M 
(x, oer 

u(x,t). 

max u(x,t)= max u(x,t), i=l,2. 
(x, t)ED; (x, t)ES;uZ; 

Hence in view of the following obvious equality 

· max u (x, t) =max { max u (x, t); i= 1, 2} 
(x, t)ED 

we obtain (6.2). Similarly if 

(X, t)ED; 

min u (x, t)?=m 
(x , t) er 

then we conclude that the condition (6.3) is satisfied. 

(6.6) 

(6.7) 

(1) Assume that G (t)?=O for t E (0, T]. We are going to show that in this case 
the estimate (6.6) is satisfied. Let function v defined by (4.2) attain at t1 E (0, T) 
its maximal value M'> M in the interval (0, T) i.e. 

max v(t)=v(t 1 )= M'>M. 
t E(O, T) 

Hence according to the weak maximum· principle 

max u1 (x, t)=v (t1). 

(x,t)ED; 

Now we are going to show that the assumptions of the Vyborny-Friedman 
Theorem are fulfilled in both domains D;. Actually, functions u; satisfy condition 
(1) of the theorem and at the point P0 =(y (t1), t1) Er functions u1 attain their 
maximal values in D1• To show that conditions (3) are also satisfied observe first 
that since yE C2 [0, T] then there exist balls 4;c D; (with centers Pk) such that the 

point P0 EoK;,i=l,2, and the vectors PiP0 ,i=1,2, are not parallel toOt-axis. 
In order to show that condition (3) (c) holds we make use of the strong maximum 
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principle [5]. Assume the opposite, namely let function ui attain the value M' at 
some point P' = (x', t') E int K;. 

Then it follows from the strong maximum principle that u; =M' in D; n {(x, 0 I 
I t:(t'} what contradicts (6.5). Condition (4) is obviously satisfied for vector v 
parallel to the Ox-axis. 

Thus we have verified that all the assumptions of the Theorem 6.1 hold. From 
this theorem we get 

I . OUl 
ox (y(t 1), t1 )>0, 

Taking into account that on the free boundary the following condition is sa
tisfied 

IXt oul IXz OUz 
G(t) +- -- (y(t), t)=- --(y(t), t) 

a 1 ox a2 ox 
for t E (0, T] (6.8) 

we arrive at contradiction. Therefore 

v (t)::::;M for t E [0, T]. - (6.9) 

If the function v attains its maximal value at the point t 1 = T then we can take 
the final value of time interval at some point T+e (e>O). Using the same arguments 
we conclude that in this case (6.9) is also satisfied. So we have proved that the 
estimate (6.6) actually holds. 

(2) If we assume G(t)::::;O for tE(O, T] then by similar considerations to those 
of the previous case we conclude that tlie estimate (6.7) holds. 

(3) Assume that inequalities (6.4) are fulfilled. We are going to show that 
'V (t) E [m, M] for t E [0, T], so that both conditions (6.6) and (6.7) are satisfied. 
Let us rewrite the equality (6.8) in the following form 

IXt oul fJ 2 - IXz OUz fJ 2 
- -"'- (y (t), t) +- u1 (y (t), t) - - - "'- (y (t), t) +- u2 (y(t), t) , t E(O, T]. 
a 1 ux a 1 . . a2 ux . a2 

It is easy to observe that if we assume existence of time moments t E (0, T] at 
which v (t)>M or v (t)<m, in view of the Theorem 6.1 and the assumption 
(6.4) we arrive at contradiction. This completes the proof of Theorem 6.2. 

From Theorem 6.2 immediately follows 

CoROLLARY 6.2. Let {ut> u2 , y} be solution of Problem (B1 ). 

(1) If a2 )=a1 then 

u(x, t):(B , (x ,t)ED, 

dy 
dt(t)::::;[JB, y(t):(y0 +fJBt, tE[O, T ], 

where 

B=max {max uw(x), max F; (t); i=l, 2}; 

3 

(6.10) 
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(2) if a2 ~ a1 then 

u(x,t)~b, (x,t)ED, 

(6.11) 

where b=min {min u;o (x), min F; (t); i=l,2}; 

(3) if estimates (6.4) are satisfied then conditions (6.10) and (6.11) hold. 
Using inequalities (6.10), (6.11) we can a priori estimate on the basis of given 

initial and boundary data the fluids velocity distribution and location of the gas
-liquid interface. 

To apply the result of Theorem 6.2 to Problems (Ak) observe that in this case 
G (t}=O. Therefore we have immediately the following. 

CoROLLARY 4.3. If {p 1 ,Pz, y} is the solution of Problem (Ak) then conditions (6.2) 
and (6.3) are satisfied for function p (x, t)=p; (x, t), (x, t) E D;. 

7. Remarks 

The results obtained in this paper will be used in [13] where finite-difference 
approximations of multi-layer free boundary problems and proof of their conver
gence will be presented as well as results of numerical experiments will be discussed. 
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Appendix 

The integral operators in ( 4.4) are defined in the following way: 

( 
1 1 ) d 11 (t, a, y (a), v (a))=- fJ - ...:... - (t- a) 112 -d [v2(a)] + 
al Gz a 

Yo 

-2{Jy1 (t-a) 1
'

2 v (u) J G1 (y(a),~, u)u:~(()d~+ 
. 0 

oG 
+2ocl Y1 U~o (Yo) (t- a)112 ox

1 
(y (a), Yo, a)-

Yo oG 
-2ocl yl (t-a)112 J oxl (y(a),(,a)u~'o(()d~+ 

0 

+2fJy2 u~0 (yo) (t- a)112 v (a) Ht(Y (a), Yo, a)-

l 

-2{Jy2 (t-a)l ' 2 v(a) J H1 (y(a),(,a)u;~(()d(+ 
Yo 

oH 
+2oc2 Yz u;0(Yo) (t-a) 112 ox 

1 
(y(a), Yo, a)-

z 

J oH1 ) , 
-2oc2 y2(t-a)112 ~(y(a),(, a U20 (()d(+ ' 

Yo 

+ 2y1 F~ (0) (t- a)112 G2 (y (a),O, a)+ 
(T 

+2y1(t-a)1' 2 J G2 (y(a),O,a-r)F~'(r)dr+ 
0 
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· "oH · 
+ 2{Jy2 (t- a)112 v (a) J ox

2 
(y (a), l, a-r) F~ (r) dr + 

0 

+2y2 F~ (0) (t- a)1/2 H2 (y (a),!, a)+ 

(f 

+2y1(t -a)112 J H 2 (y(a),l,a-r)F;'(r)dr-
o 

"oG1 
-et.1 y1 (t - a)- 112 J Tx (y (a), y (r), a - r)[ct>1 (v)] (r) dr-

o 

. J" oH1 -et.2 y2 (t--a)- 112 &(y(a), y(r), a-r) [ct>2(v)](r)dr+ 
0 

(f 

+(t-a)-1/2 f (a-r)-lf2[yl(4net.J)-1/2+y2(4net.z)-lf2_ 

0 

- yda-r)1 12 G2 (y (a), y (r), a-r)-

- y2 (a- r) 112 H 2 (y (a), y (r), a-r)] v' (r) dr. 

( 
1 1 ) d J2 (t,a,y(a),v(a))=-{J --- (t-a)11 2 -d [v 2 (a)]+ 
al az a 

Yo 

' -2{Jy1 (t-a) 112 v(a) J G2(y(a),c;, a)u~~(c;)dc;+ 
0 

Yo (JG 

-2et.1 y1 (t- a)112 J i3x
2 

(y (a), c;, a) u~'o (c;) d~ + 
0 

+2{Jrzu~0 (yo) (t- a)112 v (a) Hz (y (a), y0 , a)-

I 

-2{Jy2 (t- a)1' 2 v (a) J H 2 (y (a), c;, a) u;'o (c;) de;+ 

Yo 
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a 

+2[Jy1 (t- CJ) 112 v (CJ) J G2 (y (CJ), 0, CJ-r) <p~ (r) dr + 
0 

:: oG2 
+2o::1 y1 (t- CJ) 112 j --ax- (y (CJ), 0, CJ - r) <p~ (r) dr + 

0 

a 

+2[Jy2 (t- CJ) 112 v (CJ) J H 2 (y (CJ), I, CJ - r) <p; (r) dr + 
0 

f
a oH2 I 

+2o::2 y2 (t- CJ) 112 ox. (y(CJ), I, CJ-r) <p2 (r) dr -
o 

a oGz 
- o::1 y1 (t-CJ) - 112 J Bx(y(CJ),y(r), CJ-r) ['¥1(v)](r)dr-

o 

l oHz · · 
- cx2 y2 (t - CJ)- 112 j ox (y(CJ), y(r),CJ-r)[P2(v)J(r)dr+ 

0 

a 

+ (t- CJ)-1/2 J (CJ- r)-1/2 [Yl ( 4na:l)-1/2 + Y2 (4ncxz) - 1f2-

0 

-y1 (CJ-r) 112 G1 (y(CJ),y(r), CJ-r)-

- Y2 (CJ-r) 112 H1 (y (CJ), y (r), CJ-r)] v' (r) dr . 

0 pewnych wlasnosciach dwuwarstwowych parabolicz
nych zagadnien brzegowych ze swobodnl;! granicl! 
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W artykule badano problemy istnienia, jednoznacznosci i ci<tglej zaleznosci od danych wej
sciowych rozwiqzan dwuwarstwowych parabolicznych zagadnien brzegowych ze swobodn<t gra
nicq, opisuj'!cych dynamik~ podziemnego zbiornika gazu. Udowodniono, :le dla badanych zagad
nien brzegowych obowiqzuje zasada maksimum. 

0 HCKOTOpbiX CBOHCTBaX JJ:BYXCJl:OHIIhiX llapaOOJIH'ICCI~HX 

KpaeBI.IX 3a,u:aq eo cBo6o,u:noii: rpamu~eii: 

B cTaThe paccMorpeHhr sorrpochr cyw;ecrnosaHHll, e,!\HHCTBennocnr H HerrpephmHo.l:i: JaBHCH
MOCTH OT BXO,!\HhiX ,[\aHHhiX pemerulli )I;ByxCJIO.l:i:HhiX napa60JIH'leCKJ.IX KpaeBbiX 3a,!\a'l CO CB060)J;H0ll 
rparrn::u:eil: ormchmaiOJ.IUIX ,1:\HHaMHKY II0,!\3eMHoro ra3oxpaHHJIHw;a. ,Ll;oKa3aHo, '!TO ,1:\Jlll paccMaTpH
BaeMhiX KPi!eBbiX 3a,[\a'i ,1:\eHCTBYeT IIPl!HIIHII MaKCHMYMa. 




