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We prove for a nonlinear differential game of evasion that under a certain condition
discussed in [4] the evasion is possible for every initial state of the game. We construct a strat-
egy of evasion and estimate the distance of the trajectory of the game from the terminal subspace.

1. Statement of the problem

In [4] we formulated a condition of evasion and a theorem of evasion for a non-
linear game. As shown there the condition is a generalization of the condition of
evasion for a linear game given in [2]. The proof presented here even when applied
to the linear case much differs from that in [2] especially in the part where certain
integral equation is solved. We are able to construct there a strategy of evasion
while in [2] only the existence of a relaxed strategy is shown, when the evader chooses

r
at each moment a collection (ty, ..., hy, V5, ...s 9., D, u=1, ;20,9 € V, i=1,...,r,

i=1
instead of one point v from his control set.
The game is given by the equation
z=Py(2)+ f(z,u,v); zeR", ueUcR?, velV<RI, (1.1)

two compact control sets: U for the pursuer and ¥ for the evader, and a linear
subspace M of R" such\that docim M >2. The right-hand side P (z, u, v)=P, (2) +
f(z,u,v) is continuous in R"X UX V, Lipschitzian in z in every compact subset
of R" uniformly with respect to u, v and form some constants A, B satisfies the
growth condition: |z-P (z, u, )| <4 |z|>+B for all ze R*, ue U,ve V. We assume
moreover that P, (z) is continuously differentiable as many time as it is differentiated
in the condition of evasion. Both players use measurable u (1)e U and 2 (t) eV,
respectively, as their control functions. The aim of the evader is to avoid the sub-
space M, that is to ensure that the trajectory of the game satisfies z (¢) ¢ M for
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te [0, +00) whenever the initial state z (¢)=z, does not belong to M, while the
aim of the pursuer is opposite. We seek for a strategy for the evader o (z,; ¢) de-
fined for all z, M such that any corresponding trajectory does not intersect M,
where a mapping v* (z,; ¢) is called strategy if for a fixed initial state z, it assigns
to each pursuer’s control function u () an evader’s control function v (¢)=v" (z,; 1)
in such a way that for any T e [0, +o0) and any control functions u* (¢), u? (¢) the
condition u! (£)=u? (¢) a.e. in [0, T] implies that 9" (z,, £)=v"* (2o, t) a.e. in [0, T1.
Let us recall the condition of evasion.

Denote C, (z)=I1, C, (z)=DP, (z) where DP, (z) is the derivative of the mapp-
ing P, (z) at point z

Ci(@=D (Ci-1(2) Py(2)) for k=2,..,p-1
and

p—1
E,_ itz u,9)= Z C.(2) 1z, u, o)tk
i=0
Let z, € M. Take a two-dimensional subspace L ortogonal to M and a linear
mapping 7, of the form n,=A4P, where P, s the orthogonal projection onto L,
A is an isometric mapping of R" which maps L onto R?={xX R"|x;=0, i=3, ..., n}.
Consider for z in a neighbourhood U, of z, and 7 in some interval [0, 7, | the
following representations of the mappings =z, F,_y (7, z, u, v):

p—1
n F,_1(t, 2, u, 7’)=H(t)2 wi(z, u,v) t'+
i=0

i = 12)
+._ZO: o (2, u,v)t"—i-._zoj B, t'+ R (t7) '

for tel0,T; LueUveV,ze U,

where H (¢) in an analytical in a neighbourhood of zero 2 X 2-matrix-function non-
-singular for ¢ € (0, T, ]. The latter implies (see [1] and [2]) that H (¢) may be written
in the following form:

s
H(@)=A4 (@) o '

2

B(t)

it !

where [, I, are integers 0</, </,, which depend only on the function H (¢) and
are called indices of the function H (¢), the matrix-functions A4 (¢), B (¢) ate analytical
in a neighbourhood of zero and such that der 4 (0)50, det B (0)#0. We consider
representations of the form (1.2) which satisfy the following conditions:

(r) The indices of H (¢) are at most (p — 1), the functions y; (z, u, v) € R?, i=0, ..., p—1,
are continuous, f§; € R?, i=0, ..., p—1, are constant vectors; R (t*)=R (t, z, u, v) is
such that |R (t?)/t?] is bounded uniformly with respect to all variables, the func-
tions «; (z, u, v), ; (z, u,v) € R?, i=0, ...,p—1, satsfy for some constant D the
following estimation:

|y (z, u, )| <Dp?P~*(z, M) for zeU, , wuelU, wveV. (1.3)
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We say that conditon of evasion (F) is satisfied iff:

(F) For every point z, € M there exist a compact neighbourhood U _of z,,
a two-dimensional subspace L=L (z,.) of R" orthogonal to M, an integer p=p (z,)
and T=T(z,), T>0, such that the mapping 7 F,_, (¢, z, u,v) has a representa-
tion of the form (1.2) which satisfies (r) and such that:

(i) the set () co wo(zy, #,v) contains an interior point with respect to R>.

uey

We prove the following theorem:

TraeoreM 1.1. If for the game (1.1) the condition (F) is satisfied then there exists
closed sets W, W, a strategy of evasion ¢* (z,; t) defined for all z, ¢ M, ¢ e [0, +o0).
and positive functions T (&), £ (0, +00), T(E)<1 and y (&, &), &4, &, €(0, +o0)
such that M< int W, < int W and any trajectory z (t) corresponding to the strategy-
2" (z4; t) sat’sfies:

if zoe W then p (z (¢), M)=y (p (2o, M), |zo| for

t€ [0, T (1zo])] and z (T (1z0]) ¢ W,
if for some ¢, z (¢,) € W then z (¢t) ¢ W, for all t>1¢,,
if z(t,) € W then for some ¢, €[t;, 1, +T (|t)])], z () ¢ W.

" We proceed to prove the theorem. For a detailed discussion of condition (F).
see [4].

2. Proof of the evasion theorem

We split the proof into two parts. In part A we shall construct for each z, e M
a local strategy of evasion o} (zo;?) defined for z, from some neighbourhood V
of z, and ¢ from some interval [0, 7, ]. Then in part B we shall describe a global
strategy of evasion 9" (z,;?) and construct the sets W, W,.

A. Take the trajectory corresponding to control functions u(¢), v (¢) and an
initial condition z (0)=z,, that is

z()=z, +f (Poz (2)) +f(z (@), u (), v (2)) dr.

Integrating this p-times by parts we obtain the following formula:

2(O)=5,t:20)+ [ Y C(E@) (0, 4@ () (’;!T) di+R(@7+Y)  (21)

0 i=0

LS

lIJ

where s, (8, zo)=20+Po(20) t+...+C,_1(20) Po (zo);)—' and the rest is of the form.

; . (t—oy
RE )= (= @) (Po D))+ (z @ (D, (@) — .




42 B. KASKOSZ

The assumptions about the right-hand side of the game equation imply that
on every compact interval of time [0, 7] all trajectories which start from a ball
K (0, r) of radius r around the origin remain in a certain ball X (0, 4,, 1) of radius
h, 7. Thus there exists a constant N, 5 such that for any z, € K (0, r) and any con-
trol functions u (¢), v (¢) the following estimation holds:

!R(tp+1)|<2\rr,7'tp+l’ te [Oa T] (22)

Further we denote by R (¢™) such terms that |R (#™)/#™| is bounded uniformly
with respect to all variables.

Let z, € M. Take a neighbourhood 173* of z, and Tz* such that each trajectory
of (1.1) with an initial condition z, from Vz* remains in U, forre[0, T, ] Let z, €
€ V,g and consider the image #, z () of a trajectory of (1.1). Since (2.1) we have
for p=p (z,):

t p—1 (t——T)i

nz(t)=w,(zo; 1) +f 2 7. Ci(z () £ (z (0), u (v), v (7))

5 RIS H(2.9)
where w, (zo;?) is a curve in R? whose components are polynomials of degrees
at most p and R (17*1) satisfies |R (71 1)| <N, T., t?*1 (see (2.2)) where 4 is such that
V:,< K(0,h). Our aim is to construct a strategy v (zo;?) that ensures certain
estimation from below of p (z (¢), M). Since p (z (), M)>|n; z ()|, it sufficies to
estimate the norm |zz (¢)]. We shall use the following fundamental lemma:

LemMA 2.1. Fix a cube Q in R? and a number p. Then there exists a constant @
such that for each curve w, (f) in R? whose components are polynomials of degrees
not greater than p there exists a point we 2 such that the following holds:

W, (5)+wt?| >0t  for te [0, +00). (2.4)

The Lemma is proved in [1]. Here we only descr’be briefly the idea of the proof.
Assume that @ is a squera whose sides are parallel to the axes. Divide Q by a net
of horizontal and vertical lines into » small squares whose interiors are mutually
disjoint and consider the curve w, (¢)/¢?. Since components of w, (¢) are polynomials
of degrees not greater than p each of the lines is intersected by the curve at most p
times and hence by a simple argument if the division is fine enough, namely if r>
>(2p+1)? then there exists at least one among the small squares whose interior
is disjoint with the curve. The center of this square is taken as w, then (2.4) holds
with @ equal to the half of the length of its side.

Put

nC;(2) f(z, u,v)=fi(z,u,v) for i=0,...,p—1

t p—1

Luo@=[ D f.(z@,u(),2()

Fryi
(—. 2 dr.
il

We shall show that there exists a ball K (0, r) around the origin and a fixed
curve y, (t) whose components are polynomials of degrees not greater than p such
that for each z, from some neighbourhood v, and each we K (0, r) there can be

~
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- constructed a strategy defined on some interval [0, 7, ] ensuring that the difference
(o (D+ I, u, o (1)) —wi?| is sufficiently small. We shall take such a steraegy for w=
=w (z,) which corresponds to the curve (w,(z,;)—x, (¢)) as in Lemma 2.1 and
make use of the estimation (2.4).

We shall need the following.

LemMa 2.2. Let g; (), ¢; (1), i=0,..,p—1, be measurable bounded functions
defined for 7€ [0, 7] taking values in R¥, H(z) an analytical kxk matrix-

-function H(¢) = 2 H;t', te[0, T]. Assume that for every ¢ € [0, 7] the following
holds: =0

p—1 p—3
HE D @t +R)= D a@t 2.5)
i=0 i=0
then for each ze [0, T]
t p—1 ( w ) t p— 1
f 20,(7) & | <N, sup f 2 I i B OO
te[0, T]

s
for Nl—‘y [LH | T, N2=F2' IlH;|| T/, where F is such a constant that |@; (7)|<F
i=0 Jj=0

for 7€[0, T], i=0, ..., p—1.

Proof. Since the assumption (2.5), we have for 7€ [0, T

g@= Y Hypi ;@), i=0,..,p-1
#=20 r

therefore for all 7,7 € [0 T]

/ gl(‘c) 2 l' ZHJ(}QE J(T)"" Z HJ(pl(T) (l+ )' +R(t ) (2 7)

i= 0 i, j=

where |R (#?)|<N, t? for te [0, T]. Recall the following formula that holds for
each measurable, bounded function ¢ (7):

fﬁv(r) s T)k otf...fw(z)dmk o 2.8)

Using (2.7) and (2.8) we obtain:

t p—1 t
(t— T)‘ (t—7)t+J
IZ&(T) Z H, 00 ) dr+N, tPTig
(t__ l+J
O 1) dr| + N, tPt1ig
< N; sup {Z%(T) dr + N, 2+,
[0, 7]

what completes the proof of Lemma 2.2.
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Take a vector we R" and consider

t p—1

(__ i Sy p—1
By (—w)rﬂ— f Zﬁ(z(r) iy et w2k 09

From the condition (F) for all 1€ [0, T(z,)], ue U, veV, z¢ U,, we have:

p-1 p—1
Zf,.(z, u, ) xf-wzv—1=H(t)Z v, (z, u, ) ti+
i=0 10

p—1 p—1 -
+ 2 o, (z, u, 0) ti+ Z Biti+wtP 1+ R (7). (2.10)
1=0 i=0

Take wo, 7 such that K (woy, F)< () co W, (zy, 4,v) where K (wo,r) denotes
uevyu
the ball of radius 7 around w,. Because of (2.10)

rp—1
D) £ u0) ti—wr T =H () Wo (7, u, ) —wo +
Lo p—1 p—-1 p—1
+ Dl t—wr it Dyttt Ve uo) R @11)
i=1 i=0 i=0

where y;=pf;+H; wo, the part D' H; wo has been included into R (#?). Since the
i=p

indices of the function H (z) are at most (p— 1) the function 7~ H~1 (¢) is analytical

around zero; that is, #*~' H~!(f)=> F;t'. Assume that we K(0,F) then
i= O
2 (F; (w) ti=? is bounded uniformly with respect to w and we may include

H (t)Z (F;w) ¢ into R (t?). Because of (2.11) we have
i=p

p—1 p—1
Zfi(z, u,w)ti——wtp‘l—z xiti— 2 «; (z, u, ) t'=
i=0 i=0 i=0
p—1 p—1
=H@) (o (z u,)=wo)+ D iz u,0) £+ Y (Fw)t)+R (7).  (212)
i=1 i=0

Lemma 2.2 gives then that there exists a constant N, such that for any interval
[0, 7, ]= [0, 7. ] and any trajectory of (1.1) with an lmtlal condition in V, the
followmg mequahty holds for all 7€ [0, T} ]

T {— p—1
(2 (@), u(2), v(T)} A ) ((p ?1)! dr+

t

t p—1

+f le (’Tidf+f2 (6] e )
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4

<, s | [ (oG @ u@ v@)-wo+

tefo, Tz*]

+2wl((z(r> w0 @) 2 Em)

Denote

df LN, 4L 5]

Xo ()= f Z X (t ..T)

‘We have then from (2.13), (2.9) and (1.3):

=

)+ 1, () — (1 )ﬂ’
zuv Ap P

t

<N,, sup ‘ f(wo(z(r) u (1), v () —wo) +

te[O T ] 0

p—1 W % - i
+ X w0, u(r)w(r))————)—Z(F L

t p—1 7
) (t—1)t
b o Zp"‘l(z(r), M)——dr. (214)
0 i=1 =
Fix now T , r, V.  such that r<F7, T, <T v, Vz*
pj P
2. WEN T, r+ Z iz, u,0)| TL, <7 foruel, weV, zelp (215

i=0

and any trajectory of (1 1) with an initial condition z, € V; remains for t€ [0, 71,
in a neighbourhood 7)z " such that

#
lwo (u, u, v)—wo(z*,u,w)iST for zew,, uel, vel. (2.16)

We shall show that for every z, € V., every we K (0, r) and every ¢>0 a stra-
tegy o" (t)=v, (zo, W, €; t) can be constructed such that for each control function
u (¢) the following inequality holds:

T

sup f (wo(z (@), u (1), v (7)) —wo)+

te[0,T: 1] ¢

+ 3 @@ @) +Z B | e G

=1
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that is

sup | [ Fo(z (@), 4@, @)+ kenow@de|<e  (218)

1€[0, T; ]

where

t Ty Tpes

k,,u,l,,w(f)z—FoerZ—‘ [ f (pi(z(s), us), o) -

0

—Fywdsdr_q ... dr, ¥o (2, u, 9)=w, (2, 4, v) — W, .

By (2.15) along any trajectory z(s) such that zoe V', , for each z€ [0, T; ] and
each we K (0, r) we have:

F
|kz,u,v,w(r)] < 7 (219)

Since the definitions of 7 and Y, K (0, r)= () co Wo (24, u, V). This implies that
ueEU
for any vector se€ R* and each u there exists o* such that

<lp0 (Z=k> U, Wu): S> > ]S[ r.

Take a constant R such that

3 F
llpo(z,u,v)f+ﬂ4~<R for zeU,, uelU, wveV. (2.20)

*

Fix zo e v, , e>0, we K (0, r). Divide the interval [0, 7, ] into n intervals I, ..., I,
of the length 0=T; /n, I, U ...V [,=[0, T, ] such that

= R ' @.21)
Vn

We shall construct a strategy v* (r) step-by-step on each of the intervals 7, ..., .
Fix an element e V and put

?(t)=o for tel,.

In order to define v (¢) on I; take:

(J-1)6

sioi= [ (Folz (@), u (@), 0" (@) + ks, 0,0 (D)) o7
(0]
and choose a measurable ¢ (¢) such that

<l;0 (Z* > U (t), 7" (t))s _Sj—1> = !Sj—lx (8 (222)

Namely, for each ¢ we choose from all v* (¢) satisfying (2.22) the lexicographical
maximum with respect to a certain fixed basis in R?; that is, from all vectors v*(#)
satisfying (2.22) we choose the ones whose first coordinate is maximal, from those
the ones whose second coordinate is maximal and so forth. In this way for each
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" measurable function u (¢) the function ¢"(¢) is uniquely defined and measurable.
Since (2.16), (2.19) and (2.22) we have that

<1l~/0(z (©, u (@), (D) +k (1), —s;-1 2—;— s F20, sl j=1,.,n0. (2.23)

(2.19), (2.20) and (2.23) imply that for tel;, j=1, ..., n, the follovﬁng holds:
12

| [ (o (2 @, w @), o @) +k () | =

0

Sj—1+

(s

+ [ oz (@, u @, v @)+k @) de | < Vs, F+R 6%

(G—-1)s

Thus an introduction argument gives the following inequality:
T
l f (1,50 (z (@, u (@), 2" (1) +k (r)) de . < RO ]/j for tel;, j=I1,..,n: (2.24%
0

(2.24) together with (2.21) imply (2.18) and (2.17).
Thus we have proved that for every z,<= ¥V, , every ¢>0 and every we K (0, r*),

1
r* =—r, there exists a strategy o (£)=v"(2o, &, w; t) defined for re€[0, T, ] that
p: x

ensures the following inequality for 7€ [0, Tz*]:

ERp=L (t—1)
lXp(t)'*_Iz,u,v(t)_WZpl<6+Nz* tp+l+Df Z p””l(z (T), M) __i' dr. (225)
0 i=0 5
Take a constant C, such that
|P(z, u, )| < 22* for e h 2 e L ve (2.26)

Assume moreover that p (zo, M)< C, for all zo e V, what will be convenient
later. Each trajectory of (1.2) with z, € V;  satisfies

Zx

e
p(z (), M)2p(z0, M)——*1t for 1e[0,T. ]

therefore

p(z@), M)= _p(Zoz,K) for te[O,

i (Z‘”%)«]. (2.27)

39

p (ZO, M) " g »
For te B i T, | the last term in (2.25) can be estimated in the follow-

*
ing way:
Tty

0 s (t——’[)i : Cz* p—-1
ofp (z(r), M)_i-!——drgt J(p(zo,M}H 5 ) dr <

: . C, e
<zf+1(p(zo,M)+z 2‘*)v-f<ﬂ’+1(cz*+ 2*) , i=0,..,p—1. (2.28)
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Apply Lemma 2.1 now that is, take a cube Q, < K(0,r,) and for z, € K
choose w=w (z,) corresponding as in Lemma 2.1 to the curve w, (£)=w, (¢; zo) —
%p (#). Then since (2.3), (2.5), (2.25) and (2.28) the strategy o“(zo, W (zo), €;£)
ensures

(ZOa M) ; Tz*]

p
(maili)l =8, 17~F, **t—g . for I.‘E[ C (2.29)
z*

2
ma 2.1 to the cube Q. . We can assume making eventually 7, smaller that T, <

3 )4 ’
where F, =N,.+Ny, 3, +Dp (— Cz*) , O, is a constant corresponding as in Lem-

2y

oF, and then

N

*

e,
O, 1t~ T —2—*11’ for all 1[0, T; 1. (2.30)

r

Z%

2

Zs

Take a positive constant K, such that K, <-—=, K, <

4 s
9;:* P (ZO, M)
for each zoeV, ¢ (Zo):T <_~—Cz*
strategy v} (zo;1)=1" (20, W (20), €(20); 1) defined for all z, e V,, and tel0, I ]

€nsures:

Choose now

p
) . Then since (2.29), (2.27), (2.30) the

p (ZO)_Ai)_
C.,

p(z4) .
p () (), M2K,, 2@ p (z ), M) > K, ( ) for te |0, T: 1. @31)

B. We proceed to construct a strategy of evasion v*(zy; ). Take a sequence
O=ro<ry<..<ri<rip1<..,i=L12, ..., such that for every i=1,2, ... if z, € K (0, r;)
then for any tarjectory z (¢) of (1.1) z(¢) eint K (0, r;,,) for te[—1,1] where as
befor K (0, r;) denotes the closed. ball around the origin of radius r;.

Denote M;=MNK(0,r)(V.): m, is an open covering of the compact
set. M;. Choose then a finite covéring Voo, ..., Vomot and define

Ki=min {K.1.1, .., Kmo1},  K=min{K; ,, K;1.1, ..., Kzr:i,i} for =23 5
Put Ty=1, pp=1, €;==1 and define for i=1,2, ...
Ti=min {T;_,, Tty ey Tz':i,i} !
Pi=MaAX{P;y—1, P12 1, oy Polis ]
Ci=max {C;_y, C;1.1, ..., Cyms1}.
Therefore each of strategies v'z‘ivi(zlg D)=L, EnsHres

: . p(zo, M)™ >
p(z(), M)=K 17, p(z(.M)=K, (—C-——— for te[0,T;]. (2.32)

Take for every i=1,2,.. a cylinder W (p;, M)={ze R"|p(z, M)<p;} such
that:
W(p;, M)NK (O, r)< VitV U Vpmss =1, P (2.33)
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and a sequence of positive numbers oy, 0y, ..., 0y, ... such that

oco=0y, O0;<p;, 0;<Ki TV o<o;.y for i=1,2,3, ... (234)
Define
K1 Uffil i—1.2
’7i= p+ > 1= 5l al e
267~

and

W=\ ) W(s;,, M)nK(©O,r), W=\ W@, M)NK(QO,r,).
=1 i=1

We can describe now a strategy of evasion 2" (z,; ¢). Fix an element ve V. Let
at first z, ¢ W, then no matter what the pursuer’s control function is put 2* (z,; t)=v
as long as the corresponding trajectory satisfies z (t) ¢ W. Let ¢; be the first moment
such that z (¢,) € W. Denote z (¢;)=z, and let |z,| € (r;_, 1;]. Then z, € K(0, r;) N
N W (o;, M). Denote by j, the smallest of all integers j for which z; € V,;»+ and
define ©"(z,; Z)=7)Ei°’i (zy; t—1t,) for te[ty, t;+T;], where @ (t—1t,)=u ().

We have z, e dW and hence p (z;, M)=0,,, thus (2.32) gives that
O-Pi :

p (0. M)>Kt—1)",  p(2(0), M)> K- C for 16 [ty to T 085

Therefore p (z (¢, +T)), M)>Ki TPi>g,_;>0,20;,, and by definition of the
Sequence rg, ..., ¥y, ... |2 (& +T) € (#i-s, riq) if i22 and |z (¢, +T)| €O, r,) if
i=1 thus z (¢, +7;) ¢ W. Put again v" (zo; t)=o till the next moment #, such that
z (t,)eW, when as before one of the strategies vZ;,J(zz, t—t,) is swiched on. If

zo€ W and |zo| € (r;—y, r,] we switch on at once the strategy fv:Jo,f(zo; t), that is
we put 2" (zo; t)=vzj;9,i(zo; t) for te [0, T;] where j, is the smallest of all integers
j for which z, € V,»+. Since (2.32), we have

p (2o, M)

= for te[0,T}]. (2.36)

p(z(®), M)=K; 17, p(z(t), M) =K,

Thus z(T;) ¢ W and we proceed as befor.

Let 7;(j), j=1, 2, ..., i(j)e{l, 2, ...} denotes the duration of the j-th local ma-
noeuvre of evasion, s;, j=1, 2, ..., the time between the (j-1)-th and the j-th ma-
noeuvre. )

The game goes the way described above over the interval [0, > si+Tip)-

=

o0
Suppose that »' 5,4 7;;,<+co. Then the trajectory remains over the interval
J=1 0
in a certain ball, hence i (j) € {1, 2, ..., ny} for some n,. But this impl‘es that E Tih=
o) i=1
= +oo. Therefore, > T, +s;=+oco, and the procedure defines the strategy
j=1

2 (20, ) for all te [0—, +00) and z, ¢ M.
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Define

: TG AT foricelet il =121
K;
G

Ml Ca) &t for £, €(0, +00), Sl hly  1=1,2 00

The functions T (&), y(&q, &,) have the properties required in. Theorem 1.1.
So does the set Wy defined above. Indeed, assume that z(#;)¢W and take
t>t. Let z@®)le(@ioy, ] If p(z(), M)=0,.; then z(D¢ W, as oi41>7
If p (z(¢), M)< 0,4, then z () e int W and the trajectory is on the course of action

of a local manoeuvre of evading which began at some earlier moment at a point
pi+1
2, €W, |25]€(ry_s, 115 1). Then (2.35) gives that p(z(2), M)>Ki,, C;—Til>m

i+1
thus z (¢) ¢ W;. This completes the proof of the evasion theorem.
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Warunek wystarczajacy dla ucieczki w grze nieliniowej. Czesé 1L

Dla nieliniowej gry rézniczkowej ucieczki dowiedziono, ze przy pewnym warunku omoéwio-
nym w pracy [4] ucieczka jest mozliwa dla kazdego stanu poczatkowego gry. Skonstruowano
strategi¢ ucieczki i oceniono odlegtos¢ trajektorii gry od podprzestrzeni koncowej.

Jlocrarounoe yciioBiie yK/OHEHiAsI B HEKOTOPOil HEJHHEHHOH
mrpe. Yacrs II

Jins wenmueiHoU mubddepeHIaibHOR UIPEl YKJIOHEHUS JOKA3bIBAETCS, YTO NPH HEKOTOPOM
YCIIOBHHM, NPEICTABICHHOM B [4] YKIIOHEHUS SIBIISIETCA BO3MOXHBIM IS JIFOOOTO HAYAJILHOTO COCTO-
sHAS Urpsl. Pa3zpabaThiBaeTcsi CTpaTernst yKIOHEHMSI M OLIEHABAETCS PACCTOSHAE TPAEKTOPHU MTPBI
OT KOHEYHOTO' IOAIPOCTPAHCTBA.




