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We prove for a nonlinear differential game of evasion that under a certain condition 
discussed in [4] the evasion is possible for every initial state of the game. We construct a strat­
egy of evasion and estimate the distance of the trajectory of the game from the terminal subspace. 

1. Statement of the problem 

In [4] we formulated a condition of evasion and a theorem of evasion for a non­
linear game. As shown there the condition is a generalization of the condition of 
evasion for a linear game given in [2]. The proof presented here even when applied 
to the linear case much differs from that i? [2] especially in the part where certain 
integral equation is solved. We are able to construct there a strategy of evasion 
while in [2] only the existence of a relaxed strategy is shown, when the evader chooses 

y 

at each moment a collection (JI.t> ... , Jlr. v1, ... , v,), .2; Jl;= I, /1; ~0, V; E V, i= 1, .. . , r, 
i=l 

instead of one point v from his control set. 
The game is given by the equation 

i=P0 (z)+ f(z, u, v); z ER", u E Uc RP, v E Vc Rq, ( 1.1~ 

two compact control sets: U for the pursuer and V for the evader, and a linear 
subspace M of R" such\that docim M?::-2. The right-hand side P(z, u,v)=P0 (z)+ 
f(z, u, v) is continuous in R" x U x V, Lipschitzian in z in every compact subset 
of R" uniformly with respect to u, v and form some constants A, B satisfies the 
growth condition: lz·P(z,u,v)I~A Jzi 2 +B for all zER",uE U,vE V. We assume 
moreover that P0 (z) is continuously differentiable as many time as it is differentiated 
in the condition of evasion. Both players use measurable u (t) E U and v (t) E V, 
respectively, as their control functions. The aim of the evader is to avoid the sub­
space M, that is to ensure that the trajectory of the game satisfies z (t) rf:. M for 



40 B. KAS.~OSZ 

t E [0, +oo) whenever the initial state z (t)=z0 does not belong to M , while the 
aim of the pursuer is opposite. We seek for a strategy for the evader v" (z0 ; t) de­
fined for all z0 M such that any corresponding trajectory does not intersect M, 
where a mapping v" (z0 ; t) is called strategy if for a fixed initial state z0 it a.ssigns 
to each pursuer's control function u (t) an evader's control function v (t)=v" (z0 ; t) 
in such a way that for any TE [0, +oo) and any control functions u1 (t), u2 (t) the 
condition u1 (t) = u2 (t) a.e. in [0, T] implies that v"' (z0 , t)=v"2 (z0 , t) a.e. in [0, T] . 
Let us recall the condition of evasion. 

Denote C0 (z)=l, C1 (z) = DP0 (z) where DP0 (z) is the derivative of the mapp­
ing P0 (z) at point z 

Ck(z) = D (Ck_ 1 (z)P0 (z)) for k = 2, ... ,p-1 

and 
p-1 

Fp- 1 (t, z, u, v) = .2) C1 (z) j; (z, u, v) t 1 • 

i=O 

Let z* E M. Take a two-dimensional subspace L ortogonal to M and a linear 
mapping nL of the form nL=APL where PL s the orthogonal projection onto L, 
A is an isometric mapping of Rn which maps L onto R 2 ={xxRnlx1= 0, i= 3, ... , n}. 
Consider for z in a neighbourhood Uz. of z* and t in some interval [0, Tz.] the 
following representations of the mappings nL FP_ 1 (t, z, u, v): 

p-1 

nLFp_ 1 (t, z, u, v)=H(t) .2) lfl1(z, u, v) t 1+ 
i=O 

p-1 p-1 

+ .2) u.1(z,u,v)t 1+}; f31 t 1+R(tP) 
(1.2) 

i=O 

for t E [0, rz.l, u E u, V E V, z E uz. 
where H ( t) in an analytical in a neighbourhood of zero 2 x 2-matrix-function non­
-singular for t E (0, Tz.J. The latter implies (see [1] and [2]) that H (t) may be written 
in the following form: 

I 

tl, o I 
H (t)=A (t) ' I B (t) 

0, tl2 

where 11> 12 are integers 0~ 11 ~)2 , which depend only on the function H (t) and 
are called indices of the function H (t), the matrix-functions A (t), B (t) ate analytical 
in a neighbourhood of zero and such that der A (0)#0, det B(O)#O. We consider 
representations of the form (1.2) which satisfy the following conditions: 
(r) The indices of H (t) are at most (p-1), the functions lf/1 {z, u, v) E R 2 , i=O, ... , p -1, 
are continuous, j31 ER 2 ,i=O, ... ,p-1, are constant vectors; R(tP)=R(t,z,u,v) is 
such that IR (tP)jtPI is bounded uniformly with respect to all variables, the func­
tions u.1 (z, u, v), u.1 (z, u, v) E R 2

, i=O, ... , p -1, sat sfy for some constant D the 
following estimation: 

ju.1(z, u,v)j~DpP-l(z, M) for ZE Uz'•' UE U, VE V. (1.3) 
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We say that conditon of evasion (F) is satisfied iff: 
(F) For every point z* E M there exist a compact neighbourhood Uz * of z* ,_ 

a two-dimensional subspace L = L (z*) of R" orthogonal to M, an integer p = p (z,:J 
and T=T(z*), T>O, such that the mapping nL Fp-r (t, z, u, v) h~ a representa­
tion of the form (1.2) which satisfies (r) and such that: 

(i) the set n eo lflo(z*, u,v) contains an inte; ior point with respect to R 2
• 

uEU 

We prove the following theorem: 

THEOREM 1.1. If for tbe game (1.1) the condition (F) is satisfied then there exists. 
closed sets W, W 1 , a strategy of evasion v" (z0 ; t) defined for all z0 rf: M, t E [0, +oo) 
and positive functions T(<;), <;E(O, + oo), T(<;)<l and y(<; 1 , <;2),<;1><;2 E(0, +oo)­
such that Me int W1 c int Wand any trajectory z (t) corresponding to the strategy 
v" (z0 ; t) safsfies: 

if z0 E W then p (z (t), M)~ y (p (z0, M), lzo l for 

tE [0, T(lzoi)] and z(T(Iz0 1)) rf: W, 

if for some ! 1 z (t 1) E W then z (t) rf: W1 for all t~t1 , 

if z (t1) E W then for some t2 E [t1, t 1 +T(It1)1)], z (t2) rf: W. 

We proceed to prove the theorem. For a detailed discussion of condition (F). 
see [4]. 

2. Proof of the evasion theorem 

We split the proof into two parts. In part A we shall construct for each z* EM 
a local strategy of evasion v~. (z0 ; t) defined for z0 from some neighbourhood Vz. 
of z* and t from some interval [0, Tz.J· Then in part B we shall describe a global 
strategy of evasion v" (z0 ; t) and construct the sets W, W1 • 

A. Take the trajectory corresponding to control functions u (t), v (t) and an 
initial condition z (0)=z0 , that is 

t 

z (t)=z0 + J IPo z (r)) + f (z (r), u (r), v (r)) dr . 
0 

Integrating this p-times by parts we obtain the following formula : 

t p-1 (t-r)' 
z(t)=sP(t;z0 )+ J}; C;(z(r))f(z (r),u(r)v(r))-.-

1 
-dr + R (tP +1

) (2.1) 
z. 

0 i=O 

f P 

where sP(t, z0 )=z0 +P0 (z0 )t+ .. . +Cp_ 1 (z0 )P0 (z0 )-
1 

and the rest is of the form, 
p. 

t (t-r)P 
R(tP+ 1)= J CP(z(r))(Po(z(r)))+f(z (r), u(r),v(r)) - -

1 
dr. 

0 p. 

-------------------------------------------------------------- - - -
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The assumptions 'about the right-hand side of the game equation imply that 
on every compact interval of time [0, T] all trajectories which start from a ball 
K(O, r) of radius r around the origin remain in a certain ball K(O, h, r) of radius 
hr, r · Thus there exists a constant Nr, T such that for any z 0 E K (0, r) and any con­
trol functions u (t), v (t) the following estimation holds: 

I R(tv+ 1) ! ~N .tv+l tE[O T] 
""'= r, 1 ' ' · (2.2) 

Further we denote by R (t'") such terms that IR (t 111)/ t"'l is bounded uniformly 
with respect to all variables. 

Let z~, EM. Take a neighbourhood V"...! of z,:, and fz. such that each trajectory 
of (1.1) with an initial condition z0 from Vz. remains in Uz. for t E [0, Tz.]. Let z0 E 

E Vz and consider the image nL z (t) of a trajectory of (1.1). Since (2.1) we have . 
for p = p (z,,): 

r v-1 (t-r)i 
nLz(t) = wv(z0 ; t) + J }; nr. C; (z (r))/(z (r), u (v), v (r)) -.,-· + R (tP+ 1

) (2.3) 
l. 

0 i=O 

where wp (z0 ; t) is a curve in R 2 whose components are polynomials of degrees 
at mostp and R(tP+ 1

) satisfies ! R(tv+ 1)!~Nh,r,.tP+ 1 (see (2.2)) where his such that 
Vz. c K (0, h). Our aim is to construct a strategy v~. (z0 ; t) that ensures certain 
estimation from below of p (z (t), M). Since p (z (t), M)-;:::.lnL z (t) l, it sufficies to 
estimate the norm !nz (t)l. We shall use the following fundamental lemma: 

LEMMA 2.1. Fix a cube Q in R 2 and a number p. Then there exists a constant e 
such that for each curve wp (t) in R 2 whose components are polynomials of degrees 
not greater than p there ex-ists a point w E Q such that the following holds: 

(2.4) 

The Lemma is proved in [1]. Here we only descr'be briefly the idea of the proof. 
Assume that Q is a squera whose sides are parallel to the axes. Divide Q by a net 
of horizontal and vertical lines into r small squares whose interiors are mutually 
disjoint and consider the curve wp (t)/tv . Since components of wP (t) are polynomials 
of degrees not greater than p each of the lines is intersected by the curve at most p 
times and hence by a simple argument if the division is fine enough, namely if r> 
>(2p+ 1)2 then there exists at least one among the small squares whose interior 
is disjoint with the curve. The center of this square is taken as w, then (2.4) holds 
with e equal to the half of the length of its side. 

Put 

nCi(z)f(z,u,v)=];(z,u,v) for i=O, ... ,p - 1 

t p-1 (t-r)i 
lz,u,v(t)= J}; J,(z(r),u(r),v(r))-ndr. 

' 0 i=O 

We shall show that there exists a ball K (0, r) around the origin and a fixed 
curve XP (t) whose components are polynomials of degrees not greater than 1? such 
that for each z 0 from some neighbourhood vz and each wE K(O, r) there can be • 

~ 
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• constructed a strategy defined on some interval [0, Tz ] ensuring that the difference 
i(xP(t)+Iz,u,v(t))-wtP I is sufficiently small. We shall.take such a steraegy for w= 
= w (z0 ) which corresponds to the curve (wv(z0 ; t)- Xv (!)) as in Lemma 2.1 and 
make use of the estimation (2.4). 

We shall need the following. 

LEMMA 2.2. Let g1 (r), rp 1 (r),. i=O, ... ,p-1, be measurable bounded functions 
-defined for rE [0, T] taking values in R\ H(t) an analytical k x k matrix-

00 -

--function H (t) = .2.; H 1 t
1
, t E [0, T]. Assume that for every t E [0, T] the following 

holds : t=o 
p- 1 p-1 

H(t)}; rp;(r)t 1+R(tP) = }; g;(r)t 1 (2.5) 
i=O i=O 

then for each t E [0, T] 

I J
' p-1 (t-r)i I I J' P~ , (t-r)i I ~ g1(r) - .-,- dr ~N1 sup ~ rp;(r) - .-

1 
-dr +N2 tP- 1 

L_; l. tE[O, T] L_; l. 
0 i=O 0 i=O 

(2.6) 

p-1 I p-1 

for N 1 =}; IIH1IIT1
, N2 =F}; IIHdi Ti, where F is such a constant that lrp1(r)I<F 

i=O i = O 

for r E [0, T], i=O, ... , p -1. 

Proof. Since the assumption (2.5), we have for rE [0, T] 
i 

g;(r)=}; Hi rpt-i(r), i= O, ... ,p-1 
i=O 

therefore for all t, rE [0, T] 

p~ ti p-1 ti i p-1 ti+j 

~ g;(r) - .
1 

= ~ - .
1 
~ Hirpt-i(r)= '\1 Hirpt (r) -(. •)! + R (tP) (2.7) ? l. ? l. ? .~ Z+J . 

l=O t=O J=O t, J=O 

where IR (tP) j ~N2 tP for t E [0, T]. Recall the following formula that holds for 
each measurable, bounded function rp ( r): 

t ( )k t 'tt 'tk 

Jrr(r) t:; =J J ... Jq;(r)drdrk ... dr1. (2.8) 
0 0 0 0 

Using (2.7) and (2.8) we obtain: 

I 
t v - 1 (t-r)1 t v-1 (t - r)i+i J 2 g;(r)-i1-dr I~ I J 2 H, q;i(r) (i +j) I dr+N2 tP+ 1 ~ 

0 i=O · 0 i, i=O 

I 

v-1 t v-1 (t-r)i+i I 
~ 2 H 1 J 2 q;i(r) (i +j)! dr +N2 tP+ 1 ~ 

i=O 0 j=O . 

I 
t v - 1 (t-r)t I 

='(N1 sup ( ~ q;;(r)--.
1
-dr +N2 tv+ 1 , 

[0 T] ~ ~ l. 
' 0 i=O 

what completes the proof of Lemma 2.2. 
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Take a vector w E.Rn and consider 

t p-1 ( ) . 1 

( 
1 ) J '\1 t-r ' (t-r)P-

lz,u,v(t)- Pl W tP = LJ J; (z (r), U (c), V (r)) -t!--W (p _
1
) ! dr. 

0 i=O 

(2.9} 

From the condition (F) for all t E [0, T (z,:J ], u E U, v E V, z E Uz we have: 
* 

p-1 p-1 

.I; J;(z, u, v) t'-wtP- 1 =H(t) .I; !f11 (z, u, v)t 1+ 
i=O i=O 

p-1 p-1 

.+}; o:1(z,u,v)t 1+}; fJ1 t 1+wtP- 1 +R(tP). (2.10) 
<=0 i=O 

Take Wo, f such that K(wo, f)c n CO lflo (z*, u, v) where K(wo, r) denotes. 
uEU 

the ball of raclJus f around w0 . Because of (2.10) 

p-1 

.I; J;(z, u, v) t 1-wtP- 1 =H(t)(1j10 (z, u, v)-w0 + 
i=O 

p-1 p-1 p-1 

_+ };1f11(z,u,v)t 1-wtP- 1 + ..I;x1 t 1 + ..I;o:1(z,u,v)t 1+R(tP) (2.11} 
i= 1 i=O i=O 

00 

where x1=fJ1+H1 w0 , the part 2; H 1 w0 has been included into R (tP). Since the-
i=v 

indices of the function H (t) are at most (p -1) the function fP- 1 H- 1 (t) is analytical 
00 

around zero; that is, tP- 1 H - 1 (t)='}; F,t 1
• Assume that wEK(O,f) then 

oo i=O 

2; (F1 (w) ti-P is bounded uniformly with respect to w and we may include 
i=p 00 

H (t) 2; (F1 w) t• into R (tP). Because of (2.11) we have 
i=p 

p-1 p-1 p-1 

}; J;(z,u,v)t 1-wtP- 1 - .I; X;t 1
'-}; rt.1 (z,u,v)t 1= 

i=O i=O 

p-1 p-1 

= H(t)((lf!0 (z,u,v) -w0 )+ ..I;Ifl1 (z,u,v)t 1+ .I; (F1 w)t 1)+R(tP). (2.12) 
i=1 i=O 

Lemma 2.2 gives then that there exists a constant Nz such that for any interval 
* [0, Tz ]c [0, Tz ] and any trajectory of (1.1) with an initial condition in Vz the 

* * * following inequality holds for all t E [0, Tz J 

I 
t p-1 (t-Y)' (t-r)P-1 J -}.; J; (z ('r), u (r), v (r))-i-! - + w (p _ 1)! dr + 

0 i=O 

t p- 1 ( )i t p-i ( )i 

J '\1 t-7: J ~ t-T I + - ~ x1-i-! -dr+ ~ o:i(z(r), u(r),v(r))-i-! -dr :;( 
0 1=0 0 i=O 
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t 

~Nz. sup IJ(If/o(z(r),u(r),v(r))-wo)+ 
tE[O, Tz*] O 

p-l ( )i p-l ( )i 
+ ~ lf/;((z(r), u(r),v(r))~i-- ~ (F;w) t~'T drl +Nz:, t~>+l 0 (2013) .L.J l. L:.J l 0 

i=1 i=O 

Denote 

t p-1 ( )i 
Xv (t)= J -.2 X; ~~!r dr · 

0 i= 1 

We have then from (2.13), (209) and (1.3): 

]iz,u,v (t)+xp(t)-(;! w)tPI:( 

t 

~Nz, sup I J (wo(z(r),u(r),v(r))-w0 )+ 
tE[O, Tz,] ' 0 

t p-1 ( )" 

J '\"'1 t-r' 
+Nz.tv+ 1 +D L:.J p 11

-
1 (z(r),M)-i-! -dro 

0 i= 1 

Fix now Tz., r, Vz. such that r~ r, Tz. ~ tz., Vz, c Vz. 

p-1 p-1 -

(2014) 

2 IIF;II r; . r+ 2 llf!i (z, u, v) l r;. :( : for u E u, V E V, z E uz. (2.15) 
i=O i=1 

and any trajectory of (1.1) with an initial condition z0 E Vz. remains for t E [0, T]z, 
in a neighbourhood ilz · such that 

• 
f 

llf!0 (u,u,v)-lf!0 (z*,u,v)l~4 for ZEVz,, uEU, vEVo (2016) 

We shall show that for every z0 E Vz., every wE K(O, r) and every B > 0 a stra­
tegy v" (t) = vz (z0 , w, e; t) can be constructed such that for each control function 
u (t) the following inequality holds: 

t 

t E [~~¥=.J If (lf!o (z (r), u (r), v" (r))-w0 )+ 

p-1 . p-1 ° 

2 (t-r)' }_; (t-r)' I 
+ lf/;(z(r),u(r),v"(r))-01- + +(F;w)-

0
-

1 
-dr <B 

l. lo 
1=1 i=l 

(2017) 



46 B • .KASKOSZ 

that is 
t 

sup IJ fo(z(r), u('r), v"(r))+kz, u, v, w(r)dr l <e 
tE[O, Tz*] 0 . 

(2.18) 

where 
p-1 t tt tj-1 

kz,u, v, w(r) = -Fo w+}; J J ... J (If/; (z (s), u(s), v"(s))-
i~1 0 0 0 

- F; w ds dr;_ 1 .. . dr, fo (z, u, v) = lf!0 (z, u, v) - w0 • 

~y (2.15) along any trajectory z (s) such that z0 E Vz ., for each T E [0, Tz.] and 
each wE K (0, r) we have: 

f 
lkz,u ,v,w(r) l ~ 4• (2.19) 

Since the definitions off and fo, K(O, r)c n eo i/0 (z*, u, V). This implies that 
u E U 

for any vector s E R2 and each u there exists v" such that 

<fo (z*, u, v"), s) ;::: lsl r. 

Take a constant R such that 

- f 
ll/!0 (z,u,v) !+4<R for zEUz• ' uEU, vEV. (2.20) 

Fix z0 E vz .• e>O, wEK(O, r). Divide the interval [0, Tz.] into n intervals 11 , . . . , I,, 
of the length J=Tz j n, ! 1 u ... u 1,= [0, Tz.] such that 

Tz 
Jl : R< e . (2.21) 

We shall construct a strategy v" (t) step-by-step on each of the intervals h, .. . ,I,,. 
Fix an element v E V and put 

v"(t )=v for t E Il . 

In order to define v" (t) on Ii take: 

(j -1) 6 

S j-1 = J (fo(z(r), u(r),v"(r))+kz,u, v,w(T))dr 
0 

and choose a measurable v" (t) such that 

(2.22) 

Namely, for each t we choose from all v" (t) satisfying (2.22) the lexicographical 
maximum with respect to a certain fixed basis in Rq; that is, from all vectors v" (t) 
satisfying (2.22) we ch~ose the ones whose first coordinate is maximal, from those 
the ones whose second coordinate is maximal and so forth. In this way for each 
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· measurable function u (t) the function v" (t) is uniquely defined and measurable. 
Since (2.16), (2.19) and (2.22) we have that 

- ( 1 <l/lo z (r), u (r), v" (r))+k (r), -sj_ 1 ) ;;::21sj-ll f;;::O, rE Ij, j=1 , ... , n. (2.23) 

(2.19), (2.20) and (2.23) imply that for t E Ih j= 1, ... , n, the following holds: 
t 

j J (1//o(z (r), u (r), v" (r))+k (r)) dr I=:', I sj-l + 
0 

t 

+ J (1//o (z (r), u (r), v"(r))+k (r)) dr j ~ V lsj_ 1 1

2 +R2 b2
• 

(j-1)6 

Thus an introduction argument gives the following inequality: 
t 

jJ(t.b 0 (z(r),u(r),v"(r)) + k(r))dr j ~RoVJ for tElj, j=1, ... ,n. (2.24) 
0 

(2.24) together with (2.21) imply (2.18) and (2.17). 

Thus we have proved that for every z0 c Vz. , every e>O and every wE K (0, r*),. 
I 

r* = -
1 

r, there exists a strategy v"(t)=v"(z0 , e, w; t) defined for lE [0, TzJ that 
p. 

ensures the following inequality for t E (0, Tz J: 
r p-1 (t-r)i 

IXv(t)+lz ,u,v(t)-wtPI ~e+Nz. t~>+l +DJ }; pP -
1 (z (r), M)-~ dr. (2.25} 

0 i;O 

Take a constant Cz. such that 

cz 
IP(z, u, v) l < l for ZE Uz., UE U, v E V. (2.26} 

Assume moreover that p (z0 , M)~Cz. for all z0 E Vz. what will be convenient 
later. Each trajectory of (1.2) with z0 E Vz. satisfies 

therefore 

p (z0 , M) [ p (z0 , M) ] 
p(z(t),M);;:::-. -

2
- fortE 0, cz. . (2.27} 

[
p (zo, M) ] 1 · ( ) b · d · 1 ...- 11 FortE C , Tz . the ast term m 2.25 can e estimate 111 t1e 10 ow-

z. 

ing way: 

t (t-r)i t( ' c_ )p-1 J pP- 1 (z(r),M)--. 1 - dr~ti J p(z0 ,M)+r f dr~ 
0 /. 0 \ 

~ ti + 1 (p(z0,M)+t ; • )p-i~tP + 1 (cz. + ;• r- 1

, i=O, ... ,p-1. (2.28) 
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Apply Lemma 2.1 now that is, take a cube Qz, c K(O, r*) and for z 0 E Vz, 
choose w= w (z0 ) corresponding as in Lemma 2.1 to the curve wp (t) = wv (t; z0 )­

Xv (t). Then since (2.3), (2.5), (2.25) and (2.28) the strategy v" (z0 , w (z0 ), 8; t) 

ensures 

(2.29) 

where Fz. =Nz• +N1,, 'Tz, +Dp ( ~ Cz . r' ez, is a constant corresponding as in Lem­

ma. 2.1 to the cube Qz,. We can assume making eventually Tz, smaller that Tz, ~ 
e 

o!( ~z-• and then 
""" 2F z, 

for all t E [0, Tz.] . (2.30) 

e cv 
Take a positive constant K. such that Kz < 

4
z•, Kz < -

2
z• . Choose now 

• • * 

fJz , (p(zo,M))P . 
for each z 0 E Vz,, 8 (z0) =4 -C-- . Then smce (2.29), (2.27), (2.30) the 

strategy v~. (z0 ; t) = v" ( z 0 , w (z0 ), e (z0): t) defined for all z0 E Vz. and t E [0, Tz.] 

·ensures : 
• ( p (zo , M) )p(z ,) 

p (z) (t) , M?:-K •• tp(z -l, p (z (t) , M)~ Kz, -z-
z, 

for t E [0, Tz.]. (2.31) 

B. We proceed to construct a strategy of evasion vu (z 0 ; t) . Take a sequence 
0=r0 <r1 < ... < r,<r; + 1 < ... , i= 1,2, ... , such that for every i= 1,2, ... if z 0 E K (0, rJ 

then for any tarjectory z(t) of (1.1) z(t)EintK(O,r;+1 ) for tE[-1,1] where as 
befor K (0, r;) denotes the closed, ball around the origin of radius r;. 

Denote M,=MnK(O, r 1)(V •• L ,e M, is an open covering of the compact 
set M;. Choose then a finite covering Vz~, ', ... , Vz';•·' and define 

K 1 = min {Kz', 1, ... , ](.m,, 1}, K, = rnin .fK, _1, Kz', ', ... , Kz"''''} for i=2, 3, .. , . 
* - * \. "' "* 

Put T 0 = 1, p 0 = 1, C0 = 1 and de fine for i= 1, 2, ... 

T; =rrun {Ti-l, T,1, 1 , ... , Tz"''' •}, . . 
Pi = max {p,-1 ,pz~' ', ... ,pz:'•· •} · 

Therefore each of strategies v"J· •(z1 ; t) , J'= l, ... , m;, ensures z. 

( 
p (z0 , M)"') 

p(z(t),M)?:-K;tv' , p(z(t),M)?:-K; C, for t E [0, Td . (2.32) 

· Take for every i= 1,2, .. . a cylinder W(p;,M)= {zER" I p(z,M)~p;} such 
that: 

W(p,,M)nK(O,r;)c Vz'·'u ... uVz"'''' i= 1,2,... (2.33) • • 



A sufficien t condition for evasion 49 

and a sequence of positive numbers (J0 , (Jl> .. . , (J1, •• • such that 

Define 

1'/i = i= l , 2, .. . 

and 
Cl) CO 

W= U W((J;, M) nK(O, r1) , W1 = U W (1'/1 , M) n K (0, r;) . 
1=1 1=1 

We can describe now a strategy of evasion v" (z0 ; t). Fix an element v E V. Let 
at first z0 rj; W, then no matter what the pursuer's control function is put v" (z0 ; t)= v 
as long as the corresponding trajectory satisfies z (t) rj; W. Let t 1 be the first moment 
such that z (t1) E W. Denote z (t1)=z1 and let lz1 1 E (r1_ 1 , rJ Then z1 E K(O, r1) n 
n w ( ai , M). Denote by io the smallest of all integers j for which z 1 E vz!' i and 

define v" (z0 ; t) =v~~o · 1 (z1 ; t- t1 ) for t E [t to t 1 + T 1] , where' il (t- t 1) =u (t). 

We have z 1 E o W and hence p(zu M)?3(J1+ 1 thus (2.32) gives that 

a!'i 
p (z (t), M)~ K1 . ~;: 

' 
Therefore p(z(t1 +T;), M) ?3 K 1T{''> (J1_ 1 ?3(J,?3(J1+ 1 and by definition of the 

sequence r0 , •.. , r;, .. . lz (t1 +T;) IE(r1 _ 2 , r1+ 1) if i?32 and lz(t 1 +T;) IE(O,r2 ) if 
i= 1 thus z (t 1 + T;) rj; W. Put again v" (z0 ; t)= v till the next moment t2 such that 

z(t2)EW, when as before one of the strategies v~~ , i(z2 ,t-t2) is swiched on . If 

z0 E Wand lzo l ~ (r1_ 1 , r,] we switch on at once the strategy v>o•i (z0 ; t), that is 

we put v" (z0 ; t) =v~io,' (z0 ; t) for t E [0, T;] where j 0 is the smallest of all integers 
• 

j for which Zo E vz~' l . Since (2,. 32), we have 

p (z0 , M)P' 
p(z(t),M)?3K1 tv' , p(z(t), M)?3Kt cv

1 
· for t E [0, T;] . (2.36) 

Thus z (T;) rj; W and we proceed as befor. 

Let T1 (j), j= 1, 2, ... , i(j) E {1, 2, ... } denotes the duration of the j-th local ma­
noeuvre of evasion, sh }=1, 2, ... , the time between the (j-1)-th and the j-th ma­
noeuvre. 

00 

The game goes the way described above over the interval (0, }.; si+ T 1 u>]. 
00 j=1 

Suppose that .2,; si+Ti(j)< +oo. Then the trajectory remains over the interval 
i=1 00 

in a certain ball, hence i (j) E {1, 2, ... , n0 } for some n0 • But this imphs that ~ T1 Ul = 
00 ., i=l 

= + oo. Therefore, .2; T 1 (i) +si= + oo, and the procedure defines the strategy 
j = 1 

v" (z0 , t) for all t E [0, +oo) and z0 rj; M . 
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Define 

T(!;)+T1 

K . 

for (E(r1 _ 1 ,r1], 

') CC:1, C:2) = c;, C:f1 for ( 1 E (0, +oo), 
I 

B. KASKOSZ 

i=l, 2, .. . 

i= l, 2, .... 

The functions T ( !;), y (!; 1 , !; 2) have the properties required in. Theorem 1.1. 
So does the set W1 defined above. Indeed, assume that z (t 1) $ W and take 
t>t1 • Let lz(t)IE(r;-t>r;]. If p(z(t),M);?!=0";+ 1 then z(t) $ W1 as 0"1+1 >rt1 

If p (z (t), M)< 0'1 + 1 then z (t) E int Wand the trajectory is on the course of action 
of a local manoeuvre of evading which began at some earlier moment at a point 

O'f~il 
z2 Ea W, lz21 E (r;- 2> r; +1). Then (2.35) gives that p ( z (t), M);:::: K; + 1 CPI + 1 > 1'/i 

i +l 

thus z (t) $ W1 • This completes the proof of the evasion theorem. 
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Warunek wystarczaj!!CY dla '\ICieczki w grze nieliniowej. Cz~sc n 

Dla nieliniowej gry r6zniczkowej ucieczki dowiedziono, :le przy pewnym warunku om6wio­
nym w pracy [4] ucieczka jest mozliwa dla kazdego stanu pocz"!tkowego gry. Skonstruowano 
strategice ucieczki i oceniono odleglosc trajektorii gry od podprzestrzeni koncowej. 

,lJ;oCTaTO'IHOe ycJIOBHe y«JIOHeuiiH B HeKOTOpOU HeJIHHeUHOU 

itrpe. qaCTL fi 

,I:(Jil! Hemmeillioll: AR<J.><J.>epeimHaJThHOit Hfpbi YKJIOHeiD!l! .1(0Ka.:3hiBaeTCl!, '!.TO npH HeKOTOpOM 
yCJIOBHH, npe.!(CTaBJieHHOM B (4] JKJIOHeHHl! l!BJil!eTC.l! B03MOlKHbiM .!(Jll! mo6oro Ha'l.aJThHOIO COCTO­
.l!HHl! Hrphi. Pa.Jpa6aTJ>IBaercl! crparerll.l! YKJIOHeHHl! H ou:eHHBaeTC_H paccrol!HHe rpaeKTOPHH Hrp~>r 
OT KOHe'I.HOro' ITO.!(IIpocrpaHCTBa. 


