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In the paper a one-dimensional, two-phase parabolic free boundary value control problem is
considered. State equations of the process, boundary conditions and conditions given on free
boundary are nonlinear. Equivalent integral representation of the problem is introduced. Local
existence of solution of the problem considered is proved as well as uniqueness of this solution and
its continuous dependence on data.

1. Introduction

In the paper some two-phase parabolic free boundary value control problems
arising in phase change processes [2, 6] are considered. State equations of the proc-
ess we consider are semi-linear. Boundary conditions as well as conditions on
the free boundary are nonlinear. We assume that it is possible to control the proc-
ess by means of the boundary conditions. In general we take square integrable
control functions into account. In Section 3 equivalent integral representations
of the investigated problems are derived. In Section 4 correctness in the Hadamard
sense of the problems is shown and continuity of an important mapping is discussed.

Problems similar to these introduced in the present paper have been studied
only in particular cases. Usually the state equations, boundary conditions and
conditions on free boundary have been assumed linear [1, 2, 4, 14]. Free boundary
problem with all the nonlinearities mentioned above has been considered only
in the one-phase case by Rubinstein [13].

Basic notations:

u;, i=1,2 — state functions of process,
g — function defining free boundary,
n 9

¥
dt



24 M. NIEZGODKA

et u;
" ox

vy (t)fA—*%;i (g, 1)

— auxiliary functions,

Wy (t):A_— u; (0, 1)

wy (1)A—= (L t)

E@, )2 (47zt)"1/2 exp (—x?/4t), x>0, t>0 — fundamental solution of heat equa-
2 0 , x<0,t<0 tion,

Zt'k, i=1,2 —regions defining appropriate phases:

Zt],;={(x’ t)lx € (05 g (t)), te (toa tk)};

Zl={(x,0)]|xe(g (), L), te(t, t)};
=Z:knRX[to’ tk)a .

C(Z) — the space of functions continuous in the set Z,

C,(Z) —the space of functions continuous and bounded in the set Z,

C?% ' (Z) — the space of functions two-times continuously differentiable with re-
spect to x and having first derivative with respect to ¢ continuous in the
set Z where (x,t) e Z,

9 (Z) —the space of infinitely differentiable functions with support con-
tained in Z.

2. Problem Statement

We will consider two-phase parabolic free boundary value problem with non-
linear process equations as well as with nonlinear conditions on the fixed and free
boundaries.

The semi-linear process equations have the form

ou, , 0%y N ( du; dg)
¢ (x’ t)_ai axz (x’ t)+ i|Xs t:ui:a > & dt

foc(nv)e2l. @B

We assume that initial conditions for the process are given:
g (t,)=g, where O<g,<L, .2)
w (x, t,)=m, (x), x€[0,g,), (2.3)

u; (xa to)‘:: T (X), xXe (ga, L] s (24)
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At the fixed parts of the boundaries of Z; — domains the following nonlinear
conditions hold:

du,
—ax— (03 t)=f1 (ta Uy (O’ t), 21 (t))a te (to, tl, (25)
du,
u2 (L: t)—_-fz (LW(I‘: t); ¢2 (t))’ te(toa tk]' (26)
On the free boundary
Uy (g (t): t)=h1 (g (t)5 t)a re (toa tk]s (27)
uy (g (1), t)=h> (g (1), 1), 1€ (1, 1i]- 28)

Dynamics of the free boundary is defined by the ordinary differential equation
dg fou,
E‘(t)=s L, 8 (t), Uy, (g (t): t)’,—é; (g (t)s t)’

ou,
uy (g (1), 1), — (¢ (), t)], te(tnt).  (29)
We take it for granted that:
(A.1) Functions u,, u,, g satisfy the following regularity conditions:

Ju;

s 5 U _
u; € {ui eC*1(Z,)|meC(Z;), rml Cs (Z;k)} ’

ige C (tw tk]} *

|
gelgec[to,tk] s

(A.2) Process equations (2.1), initial conditions (2.2)-(2.4) as well as condi-
tions (2.7)-(2.9) binding at the free boundary are understood in the strong sense
(in case of need after continuous extension of appropriate functions) while boundary
conditions (2.5), (2.6) are understood in the weak sense, i.e. for any function
ne 9 (t, t,) the following relationships hold

tr P '
lim [7”5 & 0—fi (6w G D: s (t))] n@di=0,  (2.10)

>0+
To

1973 8 )
in [ |u @07 (YO (t))] 1@di=0. @11

E-L— by
(A.3) Functions ¢;, ¢, enclosed in boundary conditions (2.5), (2.6) are treated
-as process controls; these functions are elements of the space L, [1,, t;] and they

satisfy the inequalities

oT< ¢, (1)< oM almost everywhere for ¢ € [1,, t]. (2.12)
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(A.4) Functions 7; enclosed in initial conditions (2.3), (2.4) are two-times
continuously differentiable and

d2

T
|7; ()< By, ( —de (%)

<B!.

(A.5) Functions F,, F,, f;, S have continuous first derivatives with respect
to all arguments in their domains, functions f, 4, 4, have continuous all the second
derivatives in their domains.

(A.6) For admissible controls ¢; and functions u;, g bounded with derivatives
in closures of their domains in the following way

lui (x, l‘)|<A; s |pi (xa t)1<A;l >
g®e©,L), |y@)I<4],

mentioned below estimates concerning functions Fj, A;, S, f; hold (arguments of
functions are everywhere ommitted)

|Fil<B2i9 |hi|<B3is
|S|< B4 | fil <Bs;,
oF, I oF; OF; \ OF; l OF, oF; s
K 2 b b < i
dx at du; ap og dy '
oh; l &% h; o
e vr -
il o @.13)
oS ] oS as l oS .
T d 2> > b <
ot ox u; ap; 8%
afi af1 5
5 <
aw, do, | T
ol | )| 2]
ox ow, 09,

where all constants in (2.13) are positive, finite and depend only on P, ¢, A7,
A3, A3,

(A.7) The following compatibility conditions are satisfied:
Ust (go):hl, (g (Zo)s ta) s
Ty (go)th (g (to)a to) 2

Solution (uy, u,, g) of the free boundary value problem (2.1)~(2.9) is understood
in the classical sense, i.e. assumptions (A.1), (A.2) are fulfilled.

2.14)
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3. Equivalent Integral Representation of the Free Boundary
Problem (2.1)-(2.9)

Due to analytical properties of thermal potentials of single and double layer
I8, 91, applying the Gevrey’s method [5] we obtain the following equivalence
theorem.

‘THEOREM 1. Let us suppose assumptions (A.1)-(A.7) to be satisfied.

@) If (uq, us, g) is a solution of the free boundary value problem (2.1)-(2.9)
then (uy, tr, Wi, Wa, D1, P25 V1,02, &, 7) 18 a solution of the following system of
nonlinear integral equations-

u (%, 1)==a; [ fi (5, w1 @); 91 (©) G (x, 0, 1—7) dr +

+f0 Ty (é) G20 (x, é, t-—ta) dé‘l"
0
tg(@

[ [ Fi Gt 80 Gao (5, & 1= dE dit

to O

+ [[a3 0 @+ (8 (7). 1) 7 (@)] Gao (%, g (@), t—7) do—

: 0Go
—a} [ hi(g()7) o (ng@,1-7) dr=

é Ul (x’ t; Uy, Wi, D1, 71, g: y)’ (31)

- 0G.
(5, 1)= = [ £ (5 w2 @3 92 @) —55— O L, 1=7) do+

+ [ 7 () G (%, & 1—1,) dE+

t L

+f f FZ (fﬂ T, Uz, P2, 85 y) GlL (x: é? t—T) df dv—

to g (1)

—f [@3 v (D) +h,(g(D), 7) y(D] Gir (%, g (), t—7) dr+

+a3 fhz (g (@), 7) i%‘(x, g(), t—1)dr=
: ¢
£.U, (X, 5 Uzy W3, P2,92, 85 7) (3.2)
w1 ()=U, (0, t; uy, Wy, p1, 01, 8 7)== Wy (L5 g, Wi, P15 01, 85 0)s (3.3)
wy ()=P; (L, t; Uz, W5, P2, 03, &, ) 2= W (t; Uz, W2, P2, 3, & 7), (€20
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: 3G1o
Py 0=a} [ £i (01 @3 01 @) 55— (0, t=7) it
to

gdo

dr,
f & © o (& t—1) de=

0
t g(z)

—ffo & tsuLpi,8y) Y

to O
t

-—affv (r) (x g (1), t—7) dr+

to

© ohy %
+ f g (£@,7) 7 (@ Gio (x, g (1), t—7) dr=

%, &, t—1) dE do—

AP, (x, £ Uy, Wi, D1,91, 8 7) 5

o[ oG,y
P (e 0)==a3 [ fo (5w @ 02 @) 57 (6 L 1= det

- d
+ [ @ G & =) de-

—f [BEs s P s D o, £, 68} B i

to 10)
t

+a§f02('c) (x g(@), t—1)dr—

' oh,
- f %(g (@), 7) 7 () Gaz. (%, & (@), —7) dr=

L. P, (x, t; Uz, W3, P2, U3, &, 9),

%) (t)=2P2 (g (‘t): Z; Uz, Wa, P25 92, 8, V): V2 (ta Uzy Wy D25 7U2, 8 y),
t
gW)=g,+ [ 7 @) drL Y (13 9),
to

y (f)=S(t: g; vla 'UZ’ hllg, hzlg)

(3.5

(3.6)

(3.7)
(3.8)

(3.9)

(3.10)

where G;; denote the Green’s functions respectively for the first or second boundary

value problem (i=1, 2) in regions x>0 or x<L (j=0, L):

GiO (x9 5: t)=E(x_é’ ai t)+(—1)i E(x+§s af t)’
Gi (x, &, )=E (x—¢, a; )+ (= 1)) E(x+&-2L, a3 1).

(3.11)
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(11) If (uy, up, Wi, Wo, p1, P2, 01, 2, &, 7) is a solution of the system of integral
equations (3.1)~(3.10) and in addition all the above functions are Hélder contin-
uous with respect to 7:

(@O —v @) <4 |Vi-to—Vi—1,, (3.12)

then (uy, u,, g) is a solution of the free boundary value problem (2.1)-(2.9).

Proof of this theorem will be passed in two stages.

Stage 1 of the proof. We postulate now that functions ¢y, ¢, enclosed in bound-
ary conditions (2.5), (2.6) are from the space C [z, #,]. These boundary conditions
are understood now in the strong sense. Now the constraint (2.12) is assumed to
be satisfied everywhere in the interval [z, #.].

By employing the Gevrey lemma (see Appendix) we will acquire desirable equi-
valence. In order to attain it we replace everywhere the source function E by appro-
priate Green function for the real half-line.

Let (uy, u,, g) be a solution of the free boundary problem (2.1)-(2.9) defined
in the time interval [7,, #,] and additionaly assume there exists such a positive con-
stant ¢ that

8<g(t)<L—8, te [tw tk]*

For these functions u,, u,, g the functions Fj, 4;, f;, S can be treated as depending
respectively only on (x, ¢) or ¢, so we can use the Gevrey lemma (see Appendix).
From this lemma it follows part (i) of the Theorem 1.

To prove part (ii) observe that if (uy, up, wy, Wy, Py, P2, 91,72, &, 7) is a solu-
tion of the system of integral equations (3.1)-(3.10) satisfying Holder continuity
condition (3.12) then the functions F; are Holder continuous with respect to x and
7, namely Gevrey lemma again can be applied.

Stage 2 of the proof. Now we postulate control functions ¢,, ¢, to be elements
of the space L, [t,, #y]. The boundary conditions (2.5), (2.6) are understood now
in the sense of the assumption (A.2).

The idea of the proof comnsists in approximation of the problem with L,-controls
¢; by a sequence of problems with continuous controls ¢;,. To do that we must
only show possibility of constructing sequences (¢;,)<C [,, #;] convergent in the
space L, [t,, ] to ¢; such that appropriate sequences of solutions (uy,, tsp, &) as
well as their first derivatives are almost uniformly convergent to solution (u,u,,2)
of the discussed problem and to the respective derivatives.

Let us construct sequences (¢;,) < C [t,, #,] such that g¢,, is Steklov mean function
with radius 1/n [10, 11]:

t+1/n

ou@®= [ ou(t=7) ¢: @) de (3.13)

t—1/n
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where
. t+1/n 1 1 =7
U, |~ [z 0=} ]
1
@ (t=17)= xexp{—;lz—/(;;—(t—r)z)}, |t—‘L’|<%

1
0, |[t—1|=—
n

D (T)éoa T¢ [to: tk]'

These sequences are admissible i.e.

(ﬂrzng Pin (t)< (pi\l’ te [fm tk] (314)

and the following convergence takes place [10]

ll@im— ol Lz[,m 61 " 0.

Suppose there exist solutions (uy,, Uz, g,) Of the problem (2.1)—-(2.9) corres-
ponding to the controls ¢;, and denote by (i, u,, g) a solution of the same problem
corresponding to controls (¢; (if it exists). Our purpose is to show that

Ilgn’"g”cx [t zk]”T"O, (3.15)
and

Jtin—tillca, @) >0 (3.16)

where €, is any arbitrary nonempty compact subset of Zii.
By assumption (A.l) the following estimates hold:

i (6, D<Ay, (0 €2, - (3.17)

ng?
lyn(t)}<A37A te[’oa tk]’ (318)

where A,,;, A; are positive constants dependent only on final time moment #, and
on bounds of functions 7;, ¢,. The constants 4,;, 45 are independent of 7.

Taking into account the equality g, (to);go and the estimate (3.18) we can
conclude that the set {g,|n €N} is compact in the space C [1,, £].

Hence it is possible to select some subsequence of (g,) convergent uniformly
in the time interval [7,, #,] to a function g satisfying the condition g (¢,)=g,. We
denote this subsequence again by (g,).

By (3.18) the functions g, are Lipschitz continuous with the constant 4;. Then
the function g is also Lipschitz continuous with the same constant. Furthermore,
we can assume that after renumeration of the sequence (g,) if necessary, for alln e N

|gn (g)_g (t)| <o, te [tm tk] (3]9)

b,
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where o is any given positive number. Define the following regions

Q, ,={(x, 1) la<x<g(®)—a, t,+f<t<t}, 20}
Q% ,={(x, 1) lg (D +oa<x<L—a, t,+p<t<t}. '

The parameters o, f must only secure that
Q. #£8, i=1,2. (3.21)

Making use of the Bernstein method [7, 11] we can estimate values of all the
Ju;

dx
for the data and the a priori — estimates (3.17) for the functions u,.
Due to this property we are able to select such a sequence of indices (n,) for
which

derivatives , n € N in the regions Q; s by constants dependent only on bounds

Hui, nl_uiHCZ, 1 (?)é, B)—’O’ i= 15 2~ (322)

n

Taking into account free choice of «, f we obtain that the above convergence
is almost uniform in the regions ka, i=1, 2. Hence the functions u; satisfy the

appropriate parabolic equations (2.1) in the open regions int Z:k.

du;
Furthermore we can conclude that u; , and 8::[ are weakly convergent in
) ) Ju; duy, p,
L, (Z;) respectively to u; andgas well as uy ,, (0, +), o ©, +), uz,n (L, ),

Oy, n,
ox
In that case

(L, -) are weakly convergent in L, [7,, #;] to some functions xy, xy, K2, (-

20 (D=1 (f, 11 (2); @ (1),
165 (=F (1, 22 (1); 92 (1)
almost everywhere in [?,, #].
By employing arguments similar to those used by Yu. V. Egorov [3] we can
conclude that in the limit the boundary conditions (2.5), (2.6) are fulfilled.
Indeed for every functions #, € C* (Ztik) equal to zero respectively outside regions
Q7 A {(x, DI0< x<a, |t—t¥|< B},
QL {(x, )| L—a<x<L, [t—t¥|< B}
where >0, >0, t* €[t,, #,] are some arbitrary constants, the following identi=
ties hold

t*+8

d
f [t4in, (L, ©) — v (L, )] i (L 1) dt:ff g[uin, (x, £) —u; (x, )]
oF

t*—8

- o,
e nydedit [ [ T, e 0=t (e 01 - (o) dede (323)
.Q*

whete L,=0, L,=L,
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a

Ju
Since P eL2 (z! ) the values u; (L;, ) are well defined.

Furthermore, by the convergence of the right hand side of (3.23) to zero when
-0 we have

x; (t)=u; (L;, t) almost everywhere for ¢ € [t,, #;].

By (3.23) for every finite functions # € 2 (¢,, t,) the following convergences
take place

a— 0+

T a ; tr
i f T (o 1) () di= [ monwa,

157 ' U
ou
lim Ecz—(L~U" )7 (t) dt=f x2 ()7 (2) dt

a—0+
to

hence the boundary conditions (2.5), (2.6) are fulfilled in the sense of the assump-
tion (A.2).

[10] and the Holder

du,
[8, 14] it follows that similar properties have functions E

From the a priori — estimates for the functions

Ui,
ox
Hence we can conclude that

continuity of ——

. du, Juy
lim —é—x_(x: t)__—g (g (t)s t): re (to: tk]

x—>g(t)—

lim  —— (x =5 (g(t),t) f&(ty Bl

x—g(t)+

In this connection functions —— e Co(Z} B

3
Making use of the barrier function method [7] we immediately come to the

conclusion that

lim u, (x, t)=m; (x), x€[0, g,)
-0+

lim U (X, t)= Ty (X), X € (go, L]

t—0+

From the convergence of the sequence (g,), by the estimate (3.18) we obtain

equal to y and satisfying the condition (2.9) in

g
® existence of the derivative — g

the classical sense.
By the uniform convergence

and
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Uiy

..
the sequences (i) and( cxl) are almost umniformly convergent respectively

du; .
to u; and Ox in Z, .

In this way we have shown that it is possible to approximate solution of the
free boundary problem (2.1)—~(2.9) with controls being elements of the space L, [z,, %]
by sequence of solutions of problems (2.1)-(2.9) with some continuous control
functions.

Making use of known properties of thermal potentials of single and double
layer [8,9] we can easily observe that operators transforming ¢; € L, [¢,, ;] into
‘u;eC (Ztik) and into g e C [¢,, ], constructed on the basis of appropriate integrals
(3.1)-(3.10) are continuous.

So we have shown the equivalence of the introduced differential and integral
representations of the two-phase free boundary problem. Q.E.D.

From the above proof it follows immediately

CoroLLARY 1. If the free boundary problems (2.1)-(2.9) with continuous controls
@, have solutions (uy,, U2, g,) then the problem (2.1)-(2.9) with controls ¢; € L, [t,, #;]
has a solution (uy, u,, g).

4. Correctness in the Hadamard Sense of the Two-phase
Free Boundary Problem (2.1)-(2.9)

In view of Corollary 1 we can restrict ourselves to the free boundary problem
with continuous control functions ¢;. In this connection we will assume everywhere
further that ¢, € C[t,, f,].

4.1. Existence and Uniqueness of the Solution

By Theorem 1 it is enough to prove existence and uniqueness of the solution
to the system of Volterra integral equations (3.1)~(3.10). For the problem consid-
ered we are able t~ show only local existence theorem. Proof of the theorem will
be based on employing Piccard’s method od successive approximations. For time
interval short enough the constructed sequence of approximate solutions will be con-
vergent to the exact solution.

THEOREM 2. Let

— ;e Clty, 1], i=1,2;

— 0i<p (O< 9}, telt, 4]

— the assumptions (A.1), (A.4)-(A.7) are fulfilled.

Then in some nontrivial time interval [¢,, #;] the system of integral equations
(3.1)-(3.10) has unique solution (uy, u,, Wy, W, P1, P2, V1, V2, &, ¥) With all the func-

3
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tions uniformly bounded in their domains and satisfying Hoélder continuity con-
dition with respect to :

v (@) —v @ <AV t—1,—V1—1,.

Outline of the proof. To construct the sequence of successive approximations

let us select first functions u;4, W;g, Pio» 210 (=1, 2) and gy, y, such that:
— For the first derivatives of these functions the following inequalities hold

ng e 3ui0 /.—

\7(1) & EplV 11, —at—(x, | <CylVit—t,,

Pio —— | 9Pio e
\W@, D<CulVi=t,, | =5~ (1| < Csill 1—1,, @1

dw;o e dv;o ‘s

1 dt (Z) <C4i/l/t—toa T(t) <C5i/l/t_to

where Cy, Cy4, ..., Cs; are arbitrarily chosen positive constants.
— The following relationships are satisfied

dgo

7(1‘)=7’0 ), 8o (t)=8&,,

uso (0, £)=wyo (1), Uso (L, t)=wy (1),
Wio ()=m (0), Wao (t)=m2 (L),

Uso (X, 1) =m; (%), Pio (8o (1), )=70 (1),
dn; dnm;
g (*¥)=pio (x, 7,) s oy (80> T0)=Di0 (&os 1) »
Y7y

dx (0) =fL (to: Wio (to); P1 (to)) 5

7y (L)=1, (tm Wao (%0); @2 (ta)) 4.2)
in the appropriate closed intervals.
The Piccard’s process of iterations has then the form
Wi,n—l- L (t)= Wi (ta Uins Wins Dins Cins &n» yn) b

ui,n+1 (X, t)= Ui (X, 15 Uins Wi n+1s Pin> Vin &ns yn):
vi,n+1 (t): Vi (t: ui,n+1s wi,n+ 15 Pin> Vins 8ns yn) ’ (43)

DPin+1 (xz t)=Pi (x: t; Ui n+15 Wi n+15 Pins Vi n+1> Ens yn) ’
yn+1 (t)=S(t;gn: 7)l,n+1’ ”2,n+1, hllg,.’ hzlgn),
8n+1 @)=Y (£; Vns1)-

The proof of the convergence of this process will be derived in a way similar
to that carried out by Rubinstein [13] for one-phase free boundary problem.
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The method used by Rubinstein avails analytical properties of thermal poten-
tials of single and double layer [8, 9]. Following this method we can prove equi-
boundedness and equi-continuity of the sequences

Win)s Win)s (Pinds @1a)s (s (2 =1, 2.

Making use of the Ascoli-Arzela theorem and of compactness of the opera-
tors U,;, W,, P;, V;, S we obtain existence of the solution of the system. of integral
equations (3.1)=(3.10) in some nontrivial time interval [7,, #s].

To prove uniqueness of the solution we may again follow the Rubinstein’s
method [13].

From estimates derived by means of the Rubinstein’s method it follows

REMARK 1. Value of the difference #,—7, depends only on

— bounds for the data,

— a priori-estimates for the solution,

— estimates of the functions Fj, &;, f;, S and their derivatives (see assump-
tion (A.6)),

—value of e-2-min{ inf g(¢), inf [L—g ()]}

teto, 1) te(to,ty)

If ¢=»0 and maximal value of the bounds for =z;, Fi, &;, f;, S tends to infinity
then #,—1,.

We should note that we were not able to show existence of the solution in any
given time interval [7,, 7,]. To prove global existence of the solution it is necessary
to assume something more about the problem (2.1)—(2.9) [1, 4, 10, 12, 14]. In partic-
ular one of the possible sufficient conditions for global existence is nonnegative-
ness of the function S in the condition (2.9) [14].

4.2. Continuous Dependence on Data

Let us call the value g, and functions 7;, ¢; the input data for the free boundary
problem (2.1)-(2.9). Our purpose is to show continuous dependence of the solu-
tion of the problem (2.1)—~(2.9) on the input data.

We denote by (u;, u,, g) the solution corresponding to the input data (g,, 7;, ¢,),
existing for t€[t,,t,]. The sign © will correspond everywhere to the perturbed
input data (g,, #;, ;). We will also use the following notations:

ty=min {t;, s},
g;=min {go: go}a g;l =max {goa go} s

Ql =(09 g(:)a QZ =(g;” L) 5

! __7i i
Z,=2Z, NZ;,.
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Further we define:
— the neighbourhood of the solution (uy, u,, g):
Us (g, s, g) 2= {(@y, 12, &)lu;— 1l (2;)<5 s
lpi—=pPillc z,y <6, [lo;—3;llc [to,t}]<5z
Wi —Wille [ru,t}]<§, llg—2&lic [ta,t}]<5 >
ly—9lle [t,,,t'f]<5} . 4.4
— the neighbourhood of the input data (g,, 7;, @;):
'ﬂ/n (gor Ty, (”L)é {(ém ﬁi: (f)l)l !go_gul <’7,
d'n, d'#;
dx’ dx’

_ <7, j=0,1,2;
€ (Qi)

llpi—Pille [t,,,t}]<7’l}- (4.5)

We assume in addition that the free boundary problem (2.1)-(2.9) has the
following property:

(A.8) If for (x,7)eZ, or respectively for te€ [z, t}]
[u; (x, )l <4, i (x, )| <4,
Ipi (xn t)|<Aa Iﬁl (x9 I)I<A7

{‘vi (t)|<A5 [;ﬁl (t)|<A’ (4 6)
I, ()| < 4, W, ()] < 4, '
ly ()| < A4, 19 (1)i<A4,

0<g ()<L, O0<g(t)<L,

where 4 denotes a positive constant dependent only on the bounds for the input
data then

|Fl_ﬁlI<B’ Ihl—fll|<B9 (47)
| fi-fil<B, |S—S|<B, '

where B is a positive constant dependent only on A4 and relationship |[v—9| <B
denotes the system of inequalities

IV (/‘7“17 ey ak)_ﬁ (“17 Lot ) o{'k)] <B>

| ov a9y

. o ak)—-“az(al, ey )| € B, j=1, ..., k

fulfilled for all the arguments satisfying (4.6).

Under the above assumption solution of the problem (2.1)-(2.9) is continuously
dependent on the input data.




On some properties of two-phase parabolic 37

THEOREM 3. Let

—- the solution (u,, u,, g) of the free boundary problem (2.1)-(2.9) correspond-
ing to the input data (g,, 7;, ;) exist for ¢e [z, #/],

— the solution (i, @,, §) corresponding to (§,, #;, ¢;) exist for € [¢,, /],
— assumption (A.8) be satisfied.
Then for every 6>0 there is such a number #>0 that

(goa ﬁiv (f)i) EW" (gor Tis ¢i)3(121> 722: g) € %6 (ula Uy, g)

Proof of this theorem can be derived by employing a modification of Rubin-
stein’s method [13] proposed for one-phase problem.
Outline of the proof. Let us introduce the notations

Aui: max |ui (xst)_ﬁi (X, t)l)
(X,t)ez

Ap;= max |p; (x.t)—p; (x, t)],

x,Dezi

do;= max |o; (1)—7; (2)],

telr,, 7] 4.8)
Aw;= max |w; (£)—w; (¢)|, i=1,2
relty, trl
Ag= max |g({)—§ (1),
telr,, ty]
dy= max |y(#)—9 (@)l.
telty 17l
First we restrict ourselves to the case
go =8 - (49)

Let us consider functions @ (x,; oy, ..., %), D (X, 1] &y, ..., ) continuously
differentiable with respect to all arguments contained in the set

G 1 0y e )| (1) € 255 |yl <A, j=1, ..., k}
and uniformly bounded there. For such functions the following inequality holds
| (X, 85 4y, Wiy Pis 210 8 9)— B (%, 15 4y Wiy Py B, &, DI
SW(D, B)-+ Ay (Auy+ Ap;+ A v+ Aw,+ Ag+4y)  (4.40)
‘where A4, is a positive constant independent of

WD, D)L max | D (x, 1504, oy ) — B (X, 25 001, ooy )] -
(X, 15 o1y oo g)
Taking into account the possibility of estimating variations of individual terms
in (3.1)—(3.10) by functions of the form 4 +Zl/ t where 4, A are uniformly defined
constants [8, 9, 14], by (4.10) we get
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AU AV t—1t, (duy+ Ap,+ Aw, + Av,+ Ay) + 4;%, ,
AP, <AV 1—1, (Auy+ Ap,+ A7)+ Ay (Adw,+ Av) + A3 Uy,
AWK AV t—1t, (duy+ Ap,+ Aw,+ Ao+ Ay) + A3 Uy, (4.11)
AV, <AV 1—1t, (du;+ Apy+ Aw,+ dv,+ Ap)+ A3 Uy,
ASS AV t—t, Ap+ A, (o, + Av,) + A5 Uy
where ;-2 max {U (F,, F), A (ny, £, A (ks h), A (S5, f); i=1,2}
and A4,, A;, A, are positive constants independent of U,.
Both solutions (uy, u,, g) and (i, 45, ¢) of the problem (2.1)-(2.9) are defined
for t e [t, t,]. It follows from (4.11) that in a nontrivial subinterval [t,, 7,'] .
Auy, Apy, Awy, Avy, Ag, A< A () Uy, i=1,2 (4.12)
where A (¢) is a positive increasing function of variable ¢, independent of varia-
tions AF,, Arn;, Ah;, Af;.
Since the value t}' depends in fact only on the bounds of the input data [12, 13],

the estimates (4.12) can be extended to the whole time interval [z, t}]. In this way
we have shown that under assumption (4.9) Theorem 3 holds.

Now suppose that the assumption (4.9) is not satisfied.
Let us introduce new coordinates

g
FH=—3%, P = A;’ t 4.13)
0 gO
and auxiliary functions
8,
u: (X*:t*)=ﬁi (X, t): p:‘(xka t*)= ﬁi (xa t)’
8o
7);? (t*): g 73i (t)a
¥ . 4.14)

WE =iy (0),  Wh(t¥) =§"— 5 (),

o

. g | N
gEIN=—"§(t), y*E)N=""9()
8o 8o

22
. 8o A . R
B R P00 e e PP = B U, Bl o )

mx) =/ (%), B t)=h (x, 1),
8 .
fr@* wi0)= ;fl (t, W13 91), 4.15)

fz* @*, W:Q ?3) =f2 (t, W5 02),

0 o * éo P A~ a
SH(1*;5 8%, ey h3lge) =g—S(f;g, s B2l).
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Then the system of integral equations (3.1)—(3.10) is satisfied by the functions
ok kK g g
uiapiawiswiag 5y'

In addition the variations Au,, ..., Ay can be represented in the form

Auy=max |u; (x, 1) —u; (x*, 4],

e
8 oy o
Ap;=max | p;(x, 1) ——p; (x*, %)),
(x, ) 8o ,

Aw;=max |w, (t)—w; (%),

8o
Aw,=max | w, () —— w, (%) |>
¢ &o .
&
Av;=max |v; () — go v; (%) >
t 0

A

&
Ag=max|g (t)——g—g* (t*)

t

3

&o
8

dy=max |y (1) =~ 7* (%)

L2 0

The solutions (u;, ..., ) and (4}, ..., y*) are associated with the same value
of initial position of the free boundary. In this connection for the variations

4* u;=max |ui (X, t)_uzk (X, t)! 5
(x,1)

the estimates (4.12) also hold.
If |g,—&,/=0 then x*—x and ¢*—t¢. Hence, since the functions u,;, ..., y and
4, ..., 9 are continuous with respect to (x, #), we get

lim  |du,— A% u,|=0,
Igo";o] -0

lim |dy—A4%* y|=0.
lgo’“aﬂ”’o
That is why taking into account Theorem 1 and known properties of thermal
potentials [8, 9] also in the case &,#g, we get continuous dependence of solution
of problem (2.1)~(2.9) on the input data.
The continuous dependence takes place in the whole time interval [z, t}] due
to the same arguments as previously. Q.E.D.
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It is worth to note that for the one-phase free boundary problem one can also
show the continuous dependence of the solution on the coefficients of parabolic
differential operator [13].

5. Concluding Remarks

(i) The proved properties of two-phase parabolic free boundary problems can
be extended to multi-phase problems.

(ii) The integral representations of free boundary problems will be applied in
the next paper to solving some control problems.

(iii) The results of the paper can be extended to free boundary problems with
coefficients dependent on (x, ).

APPENDIX

Suppose that functions x,, x, are continuously differentiable for #>1¢,, functions

l/t—to dx;/dt are continuous for >1, and there exists such ¢>0 that for every ¢ =1,
X, ()—x; (H)=e.

Let us denote
Q={(x, ) x; ()<x<x, (1), 1>1,}.

Fzrourl Urz,
Fi:{(xi (t)a t)!<t>lo}, l=15 2

ro—_‘{(xa ta)l xl (t0)<x<x2 (ta)} *

In the paper [5] it has been derived the following lemma concerning the integral
representation of solution to parabolic equation.’

Lemma (Gevrey [5]). Let
— u be function bounded in Q< R?,
—us P (Q),
ou _
— U be continuous in @ (at most except the points (x; (2,), 7,), (x2 (%), 1,),

— F is function satisfying in the region Q the Hélder condition with respect
both to x and to ¢

Then

— function u satisfying in Q the parabolic equation

du 0% dj

+F(x, £)=0 @a.1)
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has the following integral representation

du ‘
u(x, t)= f [a2 P (D E(x—¢& a*(t—v)—

ryur:

n

oE o
—(x—¢& o (f—f))]df+ [ B¢ @) dc+

+ffF(é, DE(x—& a (t-0) déde,  (a2)

2

where £ is fundamental solution of the heat equation in RX(%,, +);

— function u having the integral representation (a.2) satisfies in Q the para-
bolic equation (a.l).

Observe that the function E can be replaced in (a.2) by the Green’s functions
of parabolic boundary value problems.

Taking into account possibility of differentiating under the integrals in (a.2)
and the relationships

3G dGyo  0Gy, Gy

ox & oL ox

ou
we get integral representations of FNE On the basis of these representations by the

discontinuity of thermal potential of double layer [4, 8] we obtain integral repre-

du
sentations of functions w (x; (+), ),a () )s i=1,2
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Pewne wlasno$ci sterowanych dwufazowych parabolicznych
zagadnien brzegowych ze swobodna granica

W artykule rozwazana jest pewna klasa sterowanych jednowymiarowych dwufazowych para-
bolicznych zagadnieni brzegowych ze swobodna granica. Przyjmuje sig, ze nieliniowe sa réwnania
stanu procesu, warunki brzegowe oraz warunki obowiazujace na swobodnej granicy i okresla-
jace jej dynamike. W pracy wprowadza si¢ reprezentacje calkowa zagadnienia. Podany jest dowod
lokalnego istnienia rozwigzania rozwazanego zagadnienia, jednoznacznos$ci tego rozwigzania
i jego ciaglej zaleznosci od danych.

O HekOTOPBIX CBOHCTBAX  YHPaBJSEeMBIX JBYX(A3HBIX
napaGomyeckuX KpaeBbIX 3aJad co CBOOOJHON rpanmmeii

B pabote paccMOTpeHa HEKOTOpas ympapiisieMas OJHOMEpHas NByX(dasHas mapaboimyeckas
KpaeBas 3ajava co cBOOOmHOM rpamuueil. IIpuHATO, YTO HEIMHEHHLI YPABHEHUSA COCTOSHUA IIPO-
mecca, Kpaesble YCIIOBHS W YCIIOBHS 3alJaHHBIE Ha cobomHou rpamumie. B paboTe BBeneHa DKBHU-
BaJICHTHASI WHTETpalibHAsE penpeseHTanus npobiiemMbl. JloKasaHbI: JOKAJIBHOE CyIIECTBOBAHUE
pelneHusl pacCMAaTPUBAHHONW TPOOIIEMbI, €OWHCTBEHHOCTh 3TOrO DELIEHUS M €0 HEnpephIBHAS
3aBHCHMOCTD OT JaHHBIX.



