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In the paper a one-dimensional, two-phase parabolic free boundary value control problem is 
considered. State equations of the process, boundary conditions and conditions given on free 
boundary are nonlinear. Equivalent integral representation of the problem is introduced. Local 
existence of solution of the problem considered is proved as well as uniqueness of this solution and 
its continuous dependence on data. 

1. Introduction 

In the paper some two-phase parabolic free boundary value control problems 
arising in phase change processes [2, 6] are considered. State equations of the proc­
ess we consider are semi-linear. Boundary conditions as well as conditions on 
the free boundary are nonlinear. We assume that it is possible to control the proc­
ess by means of the boundary conditions. In general we take square integrable 
control functions into account. In Section 3 equivalent integral representations 
of the investigated problems are derived. In Section 4 correctness in the Hadamard 
sense of the problems is shown and continuity of an important mapping is discussed. 

Problems similar to these introduced in the present paper have been studied 
only in particular cases. Usually the state equations, boundary conditions and 
conditions on free boundary have been assumed linear [1, 2, 4, 14]. Free boundary 
problem with all the nonlinearities mentioned above has been considered only 
in the one-phase case by Rubinstein [13]. 

Basic notations: 
u;, i = 1, 2- state functions of process, 
g- function defining free boundary, 

/:;. dg 
Y=-

dt 
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() 
6 OUt 

VI t = OX (g(t), t) 
- auxiliary functions, 

w1 (t) 6 u1 (0, t) 

() 6 ou2 
Wz t ~-(L, t) . ox 
E ( )A_{(4nt)- 1

'
2 exp ( -x2 j4t), 

x, t - 0 • 
' 

x>O, t>O- fundamental solutio_n of heat equa­
x~O, t~O tion, 

z:., i= 1, 2- regions defining appropriate phases: 

Zt~ ={(x, t)lx E (0, g (t)), t E (t0 , tk)}, 

zt~ = {(x, t) I X E (g (t), L), t E Cto, tk)}; 

z:. = Z~. n R X [t0 , tk), 

C (Z) - the space of functions continuous in the set Z, 

Co (Z) -the space of functions continuous and bounded in the set Z, 

C2
• 1 (Z) -the space of functions two-times continuously differentiable with re­

spect io x and having first derivative with respect to t continuous in the 
set Z where (x, t) E Z, 

~ (Z) - tlie space of infinitely differentiable functions with support con­
tained in Z. 

2. Problem Statement 

We will consider two-phase parabolic free boundary value problem with non­
linear process equations as well as with nonlinear conditions on the fixed and free 
boundaries. 

The semi-linear process equations have the form 

for (x, t) E z:.. (2.1) 

We assume that initial conditions for the process are given: 

(2.2) 

(2.3) 

(2.4) 
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At the fixed parts of the boundaries of z:k - domains the following nonlinear 
conditions hold: 

ou1 
OX · (0, t) = /1 (t, U1 (0, t); rp 1 (t)), t E (t0 , td, 

( 
ou? ) 

U2 (L, t)=/2 t, 
0
; (L, t); 'P2 (t) ' t E (t0 , td. 

On the free boundary 

u1 (g (t), t)=h 1 (g (t), t), t E (t., tk], 

U2 (g (t), t) = h2 (g (t), t), t E (t0 , td. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Dynamics of the free bound~ry is defined by the ordinary differential equation 

dg [ foul dt (t)=S t, g (t), u1 (g (t), t),
1 
ox (g (t), t), 

ou2 ] 
U2 (g (t), t), ox (g (t), t) ' t E (t0 , tk) . (2.9) 

We take it for granted that: 

(A.l) Functions ut> u2 , g satisfy the following regularity conditions : 

U; E {u; E C2
• 

1 cz:) I U; E c cz:), ~~ E Co(Z:)}, 

r I dg 1 g E lg E C [t0, tk] dt E C (t0, tk] J · 

(A.2) Process equations (2.1), initial conditions (2.2)-(2.4) as well as condi­
tions (2.7)-(2.9) binding at the free boundary are understood in the strong sense 
(in case of need after continuous extension of appropriate functions) while boundary 
conditions (2.5), (2.6) are understood in the weak sense, i.e. for any function 
Yf E ~ (t0 , tk) the following relationships hold 

tk 0 
~~~ J [ 0~ (~, t)-/ 1 (t, ut(~, t); rpt(t))] 'Y/ (t) dt= 0, (2.10) 

to 

tk a 
~~~- J (u2(~,t)-12(t, a~ (~,t); rp2(t))]'Y/(t)dt=O. (2.11) 

to 

(A.3) Functions 'Pt> rp 2 enclosed in boundary conditions (2.5), (2.6) are treated 
· as process controls; these functions are elements of the space L 2 [t0 , td and they 
satisfy the inequalities 

rp~~ rp; (t)~ rp~ almost everywhere for t E [t0 , td. (2.12) 
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(A.4) Functions n 1 enclosed m initial conditions (2.3), (2.4) are two-times 
continuously differentiable and 

I 
d

2 
n. I l n 1 (x) I~Bu, dx2

1 

(x) ~B{. 

(A.5) Functions F 1 , F2 ,f1 , S have continuous first derivatives with respect 
to all arguments in their domains, functions / 2 , hl> h2 have continuous all the second 
derivatives in their domains. 

(A.6) For admissible c<mtrols rp 1 and functions u;, g bounded with derivatives 
in closures of their domains in the following way 

g (t) E (0, L)' IY (t)I~A~' 

mentioned below estimates concerning functions F;, h;, S, /; hold (arguments of 
functions are everywhere ommitted) 

I 
oF; 1· 1 oF; I , I oF; I , I oF; I , I oF; I , I oF; I ~B~, 
ox at ou; opt og ay ' 

(2.13) 

I as I I as I I as I \ as I -,-,-, - ,::_ B4 at ax au; op; "' ' 

where all constants in (2.13) are positive, finite and depend only on rp;", rp~, A~ 1 , 
A; 1, A;. 

(A. 7) The following compatibility conditions are satisfied: 

n1 (go)=hL (g Cto), to), 

n2 (g0 ) = hz (g (t0), to). 
(2.14) 

Solution (ul> u2 , g) of the free boundary value problem (2.1)-(2.9) is understood 
in the classical sense, i.e. assumptions (A.l), (A.2) are fulfilled . 
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.3. Equivalent Integral Representation of the Free Boundary 
Problem (2.1)-(2.9) 

27 

Due to analytical properties of thermal potentials of single and double layer 
:[8, 9], applying the Gevrey's method [5] we obtain the following equivalence 
theorem. 

THEOREM 1. Let us suppose assumptions (A.l)- (A.7) to be satisfied. 
(i) If (ui> u2 , g) is a solution of the free boundary value problem (2.1)-(2.9) 

then (u1 , u2 , w1 , Wz , Pt.Pz, v1 , v2 , g, y) is a solution of the following system of 
non linear integral equations · 

t 

u1 (x, t)= - ai J /1 (r, W 1 (r); q;1 (r)) G~0 (x, 0, t - r) dr+ 
to 

Yo 

+ J nd~)Gzo(X,~,t-t0)d~+ 
0 

t g (t) 

+ J J F1 (~, r; ul,Pt. g, y) Gzo (x, ~. t - r) d~ dr+ 
to 0 

t 

+ J [ai v1 (r)+h1 (g (r), r) y (r)] G20 (x, g (r), t-r) dr-
to 

J
t oGzo 

-ai h1 (g (t), r) ~ (x, g (r), t-r) dr= 
to 

L 

+ J 1!z (~) GlL(x, ~' t - t0 ) d~+ 

t L 

+ J J Fz(~,r;u2 ,p2 ,g, y)GlL(x,~, t-r)d~dr -
to g (t) 

t 

-J [a; v 2 (r)+h2 (g(r), r) y (r)] G1 L (x, g (r), t - r) dr+ 
t o 

J
t oGLL 

+a; h2 (g (r), r) ~ (x, g (r), t-r)dr = 
t o 

!':. U2 (x, t; U 2 , w2 , p 2 , v 2 , g, y), (3.2) 

wl (t) = ul (0, t; Ut, Wt. Pt, vl, g, y) /':, wl (t; ul, wl, Pl, vl, g, y), (3.3) 

W2 (t) =P 2 (L, t; u2 , W2 , p2 , v2 , g, y) !':. W2 (t; u2 , W2 , p2 , V 2 , g, y), (3.4) 
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I
t oGto 

p 1 (x, t)=ai / 1 (r, W1 (r); rp 1 (r)) az- (x, 0, t-r) dr+ 
to 

I
Yo dnl 

+ ~ (f,) G1o (x, f,, t- ! 0 ) df,-
0 

t g(•> aG -I I F1 (f,, r; u1 ,p1 , g, y) 
0

;
0 

(x, f,, t-r) df, dr-
to 0 

to 

I
t oh1 , 

+ ag (g (r), r) y (r) G1.0 (x, g (r), t-r) dr= 
to 

I
t aG2L 

p 2 (x, t)= -a~ / 2 (r, W 2 (r); rp 2 (r)) az- (x, L, t-r) dr+ 
to 

L 

I dn2 + ~ ((,) G2L (x, f,, t- t0 ) df,-
Yo 

t L 

I J
. oGZL 

- Fz (f,, r; U2 , p2 , g, y) ~ (x, (,, t-r) df, dr+ 
to g (<) 

I
t aG2L 

+a~ v2 (r) az- (x, g (r), t-r) dr-
to 

I
t oh

2 - ag (g (r), r) y (r) G2L (x, g (r), t-r) dr= 
t 0 

~::, P2 (x, t; u2 , w2 ,p2 , v2 , g, y), (3.6) 

V 1 (t)=2Pl (g (t), t; u1 , W1,p1 , V 1 , g, y) ~::, V1 (t; Ur, W 1 ,p1 , Vt. g, y), (3.7) 

V2 (t) = 2P 2 (g (t), t; u2 , W2, Pz, v2, g, y) ~::, V2 (t; u2 , w2 , Pz, v2, g, y), (3.8) 

t 

g(t)=go+ J y (r) dr ~::, Y (t; y), (3.9) 
to 

(3.10) 

where Gij denote the Green's functions respectively for the first or second boundary 
value problem (i=l, 2) in regions x>O or x<L (j=O,L): 

Gw (x, f,, t)=E(x-f,, ai t)+(-l)i E(x+f,, a; t), 

GiL (x, f,, t)=E (x-f,, a~ t)+( -l)i E (x+f,-2L, a~ t). 
(3.11) 
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(ii) If (u1 , u2 , w1 , w2 , Pu p 2 , vl> v 2 , g, y) is a solution of the system of integral 

equations (3.1)-(3.10) and in addition all the above functions are Holder contin­

uous with respect to t: 

lv (t)-v(r) I<A 1Vt-t0 - V r_:_to i, (3.12) 

then (ul> u2 , g) is a solution of the free boundary value problem (2.1)-(2.9). 

Pro of of this theorem will be passed in two stages. 

Stage 1 of the proof. We postulate now that functions rp 1 , rp 2 enclosed in bound­

ary conditions (2.5), (2.6) are from the space C [t0 , td. These boundary conditions 

are understood now in the strong sense. Now the constraint (2.12) is assumed to 

be satisfied everywhere in the interval [t"' tk]. 

By employing the Gevrey lymma (see Appendix) we will acquire desirable equi­

valence. In order to attain it we replace everywhere the source function E by appro­

priate Green function for the real half-line. 

Let (u1 , u2 , g) be a solution of the free boundary problem (2.1)-(2.9) defined 

in the time interval [t0 , tk] and additionaly assume there exists such a positive con­

stant c: that 

c:~g(t)~L-c:, tE [t"' td . 

For these functions ul> u2 , g the functions F;, h;, /;,Scan be treated as depending 

respectively only on (x, t) or t, so we can use the Gevrey lemma (see Appendix). 

From this lemma it follows part (i) of the Theorem 1. 

To prove part (ii) observe that if (u1 , u2 , w1 , w2 ,p1 ,p2 , vt. v2 , g, y) is a solu­
tion of the system of integral equations (3.1)-(3.10) satisfying Holder continuity 

condition (3.12) then the functions F; are Holder continuous with respect to x and 

t, namely Gevrey lemma again can be applied. 

Stage 2 of the proof. Now we postulate control functions rpl> rp 2 to be elements 

.of the space L 2 [t0 , tk]. The boundary conditions (2.5), (2.6) are understood now 

in the sense of the assumption (A.2). 

The idea of the proof consists in approximation of the problem with L2-controls 

<p; by a sequence of problems with continuous controls (/J;n- To do that we must 

.only show possibility of constructing sequences ( ({J; 11) cC [t0 , tk] convergent in the 

space L 2 [t0 , td to rp; such that .appropriate sequences of solutions (u1m Uzm g11) as 

well as their first derivatives are almost uniformly convergent to solution (u1 ,u2 ,g) 

of the discussed problem and to the respective derivatives. 

Let us construct sequences (rp; 11) cC [t0 , tk] such that ({J; 11 is Steklov mean function 

with radius 1/n [10, 11]: 

t+l/n 

({J;" (t) = J W 11 (lt-rl) ({J; (r) dr (3.13) 
t-1/n 
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where 
t+l/n l l -1 

. [ J exp{ -~;(~ - (t-r) 2 )} dr] x 
t-1~ . 

w"(lt - r l)= xexp{ - ~2 ;(:2 -(t - r)2
)}• 

1 
0, lt-rl?:­

n 

These sequences are admissible i.e. 

and the following convergence takes place [10] 

M. NIEZGODKA 

1 
lt - rl< ­

n 

(3 .14) 

Suppose there exist solutions (u 1 "' u2 "' g 11 ) of the problem (2.1)-(2.9) corres­
ponding to the controls fP;n and denote by (ut. u2 , g) a solution of the same problem 
corresponding to controls ( rp; (if it exists). Our purpose is to show that 

Jlgn-g!b [t
0
,t.J-11 -" 0, 

and 

llu;n - u;!lcz,, (fl;) - ,-, •0 

where Q 1 is any arbitrary nonempty compact subset of Zt. 
By assumption (A. I) the following estimates hold: 

ltt 1 11 (x,t)I~A 11 , (x,t)E2,:,, 

(3.15} 

(3.16} 

(3 .17) 

(3 .18) 

where A 11 , A3 are positive constants dependent only on final time moment tk and 
on bounds of functions n1, rp;. The constants A 11 , A3 are independent of n. 

Taking into account the equality g" (t0 )=g0 and the estimate (3.18) we can 
conclude that the set {g" In EN} is compact in the space C [t0 , td. 

Hence it is possible to select some subsequence of (g") convergent uniformly 
in the time interval [t0 , td to a function g satisfying the condition g (t0 )=g0 • We 
denote this subsequence again by (g11). 

By (3.18) the functions g" are Lipschitz continuous with the constant A3 . Then 
the function g is also Lipschitz continuous with the same constant. Furthermore, 
we can assume that after renumeration of the sequence (gn) if necessary, for all nE N 

lg11 (g) - g (t)l < rt., t E [t0, tk] (3.19) 

\_·····---~~------'-----~ 
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where rx is any given positive number. Define the following regions ~ 

Q~, 11 ={(x, t) !rx<x<g (t)-rx, to+f3<t<tk}, 

Q;, 11 ={(x, t) lg (t)+rx<x<L-rx, t0 +/3<t<tk}. 

The parameters rx, f3 must only secure that 

Q!,p#0, i=l,2. 
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(3.20) 

(3.21) 

Making use of the Bernstein method [7, 11] we can estimate values of all the 
ou 

derivatives a:' , n EN in the regions Q!, li by constants dependent only on bounds 

for the data and the a priori- estimates (3.17) for the functions U; 11 • 

Due to this property we are able to select such a sequence Df indices (n1) for 
which 

(3.22) 

Taking into account free choice of rx, f3 we obtain that the above convergence 
is almost uniform in the regions z:k, i= I, 2. Hence the functions U; satisfy the 
appropriate parabolic equations (2.1) in the open regions int z;k. 

OU;, 111 

Furthermore we can conclude that U;, 111 and ---a;- are weakly convergent in 

OU; ou1 11 

L 2 (Zf.) respectively to u; and ox as well as u'1 , 111 (0, · ), ~ (0, · ), u2 , 111 ( L, · ), 

OUz 11 

~ (L, ·) are weakly convergent 111 L 2 [t0 , tk] to some functions /Cl> x1, t(2 , Xz· 

In th~t case 
Xt (t)=/1 (t, K1 (t); rp1 (t)), 

Kz (t) = fz (t, X2 (t); (j}z (t)) 

almost everywhere in [t0 , td . 
By employing arguments similar to those used by Yu. V. Egorov [3] we can 

conclude that in the limit the boundary conditions (2.5), (2.6) are fulfilled. 
Indeed for every functions 'liE coo cz:.> equal to zero respectively outside regions 

Q~ _fL {(x, t) !O~x~rx, l t - t':- 1 ~/3}, 

Q~ .ft _ {(x, t) !L- rx~x~L, it- t':- 1 ~/3} 

where rx>O, /3>0, t':- E [t0 , tk] are some arbitrary constants, the following identi­
ties hold 

t* +li J [u1111 (L;,t)-u;(L;,t)]1J;(L;,t)dt= J J :x [u; 111 (x,t) - u;(x,t)] x 

r*-n n: 

JJ OIJ; , 
x '7; (x, t) dx dt + [u; 111 (x, t)- u; (x, t)] ox (x, t) dx dt (3.23) 

nt ~ 

where L 1 = 0, L 2 = L. 
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OU· 
Since ~ E L 2 (z:) the values u; (L;, t) are well defined. 

uX k 

Furthermore, by the convergence of the right hand side of (3.23) to zero when 
l-HJJ we have 

K; (t) = u; (L;, t) almost everywhere for t E [t0 , tk] . · 
By (3.23) for every finite functions 1J E f0 (t0 , tk) the following convergences 

take place 
~ 0 ~ 

lim J 
0
u

1 
(a;,f)1J(t)dt=J X1 (f)1J(t)dt, 

a-+0+ X 

~. a · r. 

lim f OUz (L-a;,t)1](t)dt=J xz(t)1](t)dt 
CX-+0+ X 

~ ~ 

hence the boundary conditions (2.5), (2.6) are fulfilled in the sense of the assump­
tion (A.2). 

OU;n 
From the a priori- estimates for the functions~ · [10] and the Holder 

OU;n OU· 
continuity of --a;- [8, 14] it follows that similar properties have functions ox: . 
Hence we can conclude that 

oul . oul 
lim ~(x,t) =-~-(g(t),t), tE{t0 ,tk] 

x-+g(t)- uX uX 

ou2 ou2 
. lim ~ (x, t) =~ (g (t), t), t E (t0 , td. 
X-+g(t)+ UX UX 

In this connection functions ~~ E C0 (z:.). 
Making use of the barrier function method [7] we immediately come to the 

conclusion that 
lim u1 (x, t) = n1 (x), x E [0, go) 

t-+0+ 

lim u2 (x, t) = n2 (x), x E (g0 , L]. 
t-+0+ 

From the convergence of the sequence (gn), by the estimate (3.18) we obtain 
dg 

' existence of the derivative dt, equal to y and satisfying the condition (2.9) in 

the classical sense. 
By the uniform convergence 

and 
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( 
ouin ) 

the sequences (u;n) and -a: are almost uniformly conv~rgent respectively 

OU · 
to ui and ~ in z; . ux k 

In this way we have shown that it is possible to approximate solution of the 
free boundary problem (2.1)-(2.9) with controls being elements of the space L 2 [t0 , t1J 
by sequence of solutions of problems (2.1)-(2.9) with some continuous control 
functions. 

Making use of known properties of thermal potentials of single and double 
layer [8, 9] we can easily observe that operators transforming ((J; E L 2 [t0 , tk] into 

. Ui E C (z:k) and into g E C (t0, td, constructed on the basis of appropriate integrals 
(3.1)-(3.10) are continuous. 

So we have shown the equivalence of the introduced differential and integral 
representations of the two-phase free boundary problem. Q.E.D. 

From the above proof it follows immediately 

CoROLLARY 1. If the free boundary problems (2.1)-(2.9) with continuous controls 
rpin have solutions (u1m u2 m g11 ) then the problem (2.1)-(2.9) with controls ((J; E L 2 [t0 , tk] 
has a solution (u1 , u2 , g). 

4. Correctness in the Hadamard Sense of the Two-phase 
Free Boundary Problem (2.1)-(2.9) 

In view of Corollary 1 we can restrict ourselves to the free bo-undary problem 
with continuous control functions ((J;. In this connection we will assume everywhere 
further that ~oi E C [t0 , td . 

4.1. Existence and Uniqueness of the Solution 

By Theorem 1 it is enough to prove existence and uniqueness of the solution 
to the system of Volterra integral equations (3.1)-(3.10). For the problem consid­
ered we are able t~"' show only local existence theorem. Proof of the theorem will 
be based on employing Piccard's method od successive approximations. For time 
interval short enough the constructed sequence of approximate solutions will be con­
vergent to the exact solution. 

THEOREM 2. Let 
- rpiEC[tootk], i=l , 2 ; 
- rp'in:::;; rpi (t ):::;; rp7 , t E [10 , tk]; 
- the assumptions (A.l), (A.4)-(A.7) are fu!Iilled. 
Then in some non trivial time interval [t0 , t f] the system of integral equations 

(3.1)-(3 .10) has unique solution (u1 , u2, w 1 , Wz,p 1, p2, v1 , vz, g, y) with all thG func-

3 
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tions uniformly bounded in their domains and satisfying Holder continuity con­
dition with respect to t : 

Outline of the proof. To construct the sequence of successive approximations 
let us select first functions u;o, W;o, p;o, v;0 (i = 1, 2) and g0 , y0 such that: 

- For the first derivatives of these functions the following inequalities hold 

I 
dg0 I .;- I OU;o I ;-dt (t) <Co/ vt-to, ot (x,t) <Cu/lt-t0 , 

where C0 , C1 i • ... , C5 i are arbitrarily chosen positive constants. 
- The following relationships are satisfied 

dgo 
dt (t)= Yo (t), 

U 10 (0, t)=W10 (t), 

W1o(to)=n1(0), 

uio (x, t0 ) = ni (x), 

· dni 
- d (x)=p;o (x, to), 

X 

U2o (L, t) = W2o (t), 

W2o (to)= n2 (L), 

Pw (go (t), t) =Vw (t), 

ynl 
dx (O)=JL (to, W1o (to); IP1 (to)), 

n2 (L)=/2 (to, W2o (to); IP2 Cto)) 
in the appropriate closed intervals. 

The Piccard's process of iterations has then the form 

wi,n+ 1 (t) = wi (t; U;m Wim Ptm vim g"' Yn)' 

ui ,n+ 1 (x, t)= ui (x, t; uitu wi, n+ 1> Pim V in g"' Yn), 

vi, n+! (t)= Vi (t; ui,n+!• wi, n+l•Ptn• vim g"' y"), 

Pi,n+l (x, t)=Pi (x, t; ui, 11 +1> wi, n+l,Pim vi,n+l• g,., Yn), 

Y11+ 1 (t) =S (t; g"' v!, 11+ 1' v 2 , n+,, htl9", h2i9 ) , 

gn+l (t)= Y(t; Yn+1) • 

(4.1) 

(4.2) 

(4.3) 

The proof of the convergence of this process will be derived in a way similar 
to that carried out by Rubinstein [13] for one-phase free boundary problem. 
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The method used by Rubinstein avails analytical properties of thermal poten­
tials of single and double layer [8, 9]. Following this method we can prove equi­
boundedness and equi-continuity of the sequences 

Making use of the Ascoli-Arzela theorem and of compactness of the opera­
tors U;, W;, P;, V;, S we obtain existence of the solution of the system of integral 
equations (3.1)~(3.10) in some nontrivial time interval [t0 , t1 ]. 

To prove uniqueness of the solution we may again follow the Rubinstein's 
method [13]. 

From estimates derived by means of the Rubinstein's method it follows 

REMARK 1. Value of the difference t1 - t0 depends only on 

- bounds for the data, 

-a priori-estimates for the solution, 

-estimates of the functions F;, hi,/;, S and their derivatives (see assump-
tion (A.6)), 

-value of e 6 min { inf g (t), inf [L- g (t)]}. 
t E t 0, tf) tE(t0,tf) 

If e~O and maximal value of the bounds for n;, Fi, hi,/;, S tends to infinity 
then t1 ~t0 • 

We should note that we were not able to show existence of the solution in any 
given time interval [t0 , tk]. To prove global existence of the solution it is necessary 
to assume something more about the problem (2.1)-(2.9) [1, 4, 10, 12, 14]. In partic­
ular one of the possible sufficient conditions for global existence is nonnegative­
ness of the function S in the condition (2.9) [14]. 

4.2. Continuous Dependence on Data 

Let us call the value go and functions n;, rpi the input data for the free boundary 
problem (2.1)-(2.9). Our purpose is to show continuous dependence of the solu­
tion of the problem (2.1)-(2.9) on the input data. 

We denote by (u 1 , u2 , g) the solution corresponding to the input data (g0 , ni, rp;), 
existing for t E [t0 , t1 ]. The sign "' will correspond everywhere to the perturbed 
input data (g0 , iti, (/1;). We will also use the following notations: 
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Further we define: 
-the neighbourhood of the solution (u 1 , u2 , g): 

1/b(ul, Uz,g) 6 {(uu Uz , g) Ji ui-u;[lq:z;J<J, 

lip;-Pillc rz;J <<5, llvi - i\ llc [t0 ,t~J <<5 , 

JJ wi- W;Jiqr0 , t~] <O, JJg-gJJc [t
0

, t~] <J' 

JJ y- ?lie [t
0

, t~] < J} · 

-the neighbourhood of the input data (g0 , ni, rpJ: 

"/f/1/(go, ni, rpi) 6 {(gO> fti, <PJ llgo-go l <ry; 

11 
ddi :i - ddi ~i 11 - <ry, j=O, 1, 2; 

X X C(Q;) 
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(4.4) 

(4.5) 

We assume in addition that the free boundary problem (2.1)- (2.9) has the 
following property: 

(A.8) If for (x, t) E z; or respectively for t E [to, t; l 
lu; (x, t) l <A, liii (x, t) l <A, 

lPi (x, t) l <A, lfii (x, t) l <A, 

J7!i (t)l <A, Jv i (t) l <A, 
(4.6) 

Jwi (t)l <A, Jwi (t)l <A, 

Jy(t)l<A, I? (t)i <A, 

O<g (t)<L, O<g (t)<L, 

where A denotes a positive constant dependent only on the bounds for the input 
data then 

IFi-fd <B, 

l.t; - ./:1 <B, 

lhi-hd <B, 

IS-SI <B, 
(4 .7) 

where B is a positive constant dependent only on A and relationship I v- vI <B 
denotes the system of inequalities 

fulfilled for all the arguments satisfying ( 4.6). 

Under the above assumption solution of the problem (2.1)-(2.9) is continuously 
dependent on the input data. 
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THEOREM 3. Let 

-the solution (u1 , u2 , g) of the free boundary problem (2.1)-(2.9) correspond-
ing to the input data (g0 , n;, rp;) exist for t E [t"' t 1 ], 

-the solution (u1 , u2 , g) corresponding to (g0 , ft;, rp;) exist for t E [t0 , f1 ], 

- assumption (A.8) be satisfied. 

Then for every o > 0 there is such a number 1J > 0 that 

Proof of this theorem can be derived by employing a modification of Rubin­
stein's method [13] proposed for one-phase problem. 
0 ut 1 in e of the proof. Let us introduce the notations 

Aui= max lu;(x,t)-ui(x,t)l, 
(x, t) EZ; 

Ap;= max lP; (x, t)-fti (x, t) l , 
cx.thz; 

Av; = max I vi (t) -il; (t )I , 
t E ft 0 , t~] 

Aw;= max lwi(t)-lv;(t)l, i=1,2 
t E ft 0 , t~] 

Ag= max lg (t)- g (t)l, 
t E ft 0 , I~] 

Ay= max ly (t)-Y(t)l. 
t E ft 0 , I~] 

First we restrict ourselves to the case 

(4.8) 

(4.9) 

Let .us consider functions r:P (x, t; a 1 , ... , ak), fP (x, t; a 1 , ... , ak) continuously 
differentiable with respect to all arguments contained in the set 

• {(x, t; a I> .. . , ak)l (x, t) E .z;; I ai l <A, j= 1, .. . , k} 

and uniformly bounded there. For such functions the following inequality hold~ 

where A 1 is a positive constant independent of 

l!l(r:P, fP) 6 max lr:P (x, t ; a 1, ... , ak)-fP (x, t; a1, ... , ak)l. 
(x, t; o: 1 , •.• ,a") 

Taking into account the possibility of estimating variations of individual terms 
in (3.1)-(3.10) by functions of the form A +A/t where A, A are uniformly defined 
constants [8, 9, 14], by (4.10) we get 



38 

AU1:(A2Vt-to (Au1+Ap1+Aw1+Av1+Ay)+A3\.lld, 

AP1:(A2Vt-to (Au1+Ap1+Ay)+A4 (Aw1+Av1)+A3 md, 

A'W1:(A2Vt-to (Au1+Ap1+Aw1+Av1+Ay)+A3 md, 

AV1 :(A2Vt-t0 (Au 1+Ap1+Aw1+Av1+Ay)+A3 md, 
;--

AS:(A2}' t-to Ay+A4 (Av1 +Av2)+A3md 

where md /:, max {m (F;, F;), m (n;, ft;), m (h;, fz;)' mu;,];); i= 1, 2} 

and A 2 , A3 , A4 are positive constants independent of md. 
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(4.11) 

Both solutions (u1 , u2 , g) and (ill> u2 , g) of the problem (2.1)'-:-(2.9) are defined 
for t E (t0 , t~]. It follows from (4.11) that in a nontrivial subinterval [t0 , t~'] 

(4.12) 

where A (t) is a positive increasing function of variable t, independent of varia­
tions AF~o An1, Ah1, A/;. 

Since the value t~' depends in fact only on the bounds of the input data [12, 13], 
the estimates (4.12) can be extended to the whole time interval (t0 , t~]. In this way 
we have shown that under assumption (4.9) Theorem 3 holds. 

Now suppose that the assumption (4.9) is not satisfied. 

Let us introduce new coordinates 

• go 
x*=-x 

io ' 
and auxiliary functions 

u7(x*,t*)=u1 (x,t), P7(x*,t*)=go p1 (x,t), l 

* ( •) go ~ ( ) go ~~ * ( , ) io A ( ) v1 t'•' =-v1 t , 
go 

w~ (t*)=wl (t), W2 t* =-w2 t , 
go 

g* (t*)= ~0 g (t)' 
, go . 

, , ) io A ( ) J y'•' (t* =- y t 
go 

-2 

F * ( * * . * *) = ~ F~ ( t . ' A) 
1 X , t , U1 , ... , y 2 i X, , U1, ... , y , 

go 

n; (x'-') = ft 1 (x), h* (x* t*)=fz. (x t) 
i ' l ' ' 

* ... * io , ~ 
f1 (t~, W1; rp1)= - jl (t, wt; rpl), 

go 

f 2* (t'\ w;; rp2) = J2 (t, 1Vz; rpz), 

S* ( ··· ··· h* l ) io s~ ( - f I ) ·· t·'; g···, ... , 2 g* =- t; g, ... , n2 ~ • 
go 

(4.13) 

(4.14) 

(4.15) 
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Then the system of integral equations (3.1)-(3.10) is satisfied by the functions 
****<>~~;k u1 ,pi> wi>vi>g···, y-- . 

In addition the variations Llu;, .. . ,Ay can be represented in the form 

Llu-=max lu· (x t)-u* (x* t~')l 
~ l. ' i ' ' 

(x, t) 

• I ( ) - go * ( * t*)l L1p1=max p 1 x, t -~-Pt x , , 
(x, t) go 

Llw2 =max I w2 (t)- ~o w; (t *)I' 
t go 

Llv1= maxI v 1 (t)- ~o v~ (t*) I' 
t go 

· I go I Llg= max g (t) - - g* (t*) ' 
• t go 

ily= max I y (t)- !o y* (t*) I· 
t bO 

The solutions (u1, ... , y) and (u~, .... , y*) are associated with the same value 
of initial position of the free boundary. In this connection for the variations 

Ll':' u1=max lu1 (x, t)-u7 (x, t) l, 
(x, t) 

Ll* y=max I y (t)- y':' (t) l 

the estimates (4.12) also hold. 

If Jg0 -g0 j -,+O then x*-,+x and t*-,+t. Hence, since the functions u1, ... ,y and 
u1, ... , y are continuous with respect to (x, t), we get 

lim IL1u1 -L1*u11=0, 
lgo - ;ol - o 

lim IL1y ...,...LJ* y!=O . 
lgo-;ol-0 

That is why taking into account Theorem 1 and known properties of thermal 
potentials [8, 9] also in the case g0 #go we get continuous dependence of solution 
ofproblem (2.1)-(2.9) on the input data. 

The continuous dependence takes place in the whole time interval [t0 , t;] due 
to the same arguments as previously. Q.E.D. 
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It is worth to note that for the one-phase free boundary problem one can also 
show the continuous dependence of the solution on the coefficients of parabolic 
differential operator [13]. 

5. Concluding Remarks 

(i) The proved properties of two-phase parabolic free boundary problems can 
be extended to multi-phase problems. 

(ii) The integral representations of free boundary problems will be applied in 
the next paper to solving some control problems. 

(iii) The results of the paper can be extended to free boundary problems with 
coefficients dependent on (x, t). 

APPENDIX 

Suppose that functions Xt. x 2 are continuously differentiable for t > t"' functions 

Vt-t0 dxJdt are continuous for t~to and there exists such e>O that for every t ~to 

Let us denote 

.Q={(x, t)l x 1 (t)<x<x 2 (t), 

ri = {(x; (t), t)l 't~to}, i=l, 2 

Fo={(x, to)l X1 Cto):(x:(Xz Cto)}. 

In the paper [5] it has been derived the following lemma concerning the integral 
representation of solution to parabolic equation : 

LEMMA (Gevrey [5]). Let 

- u be function bounded in .Q c R 2
, 

- u <;:; cz, 1 (.Q), 

au 
- u, a;; be continuous in Q (at most except the points (x1 (t0 ), t0 ), (x2 (t0 ), t0 ), 

- F is function satisfying in the region .Q the Holder condition with respect 
both to x and to t. 

Then 

- function u satisfying in .Q the parabolic equation 

au az u 
- -a2 --+ F(x t)=O at ax2 

' 
(a.l) 
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has the following integral representation 

u(x,t)= J [a 2 ~~ (~,r)E(x - ~,a2 (t-r))-
rl u r z 

oE J J -u(~,T) 0~ (x - ~,a 2 (t-r)) dr+ u(~,t0)E(x- ~,a2 (t - t0))d~+ 
To 

+ J J F(~,r)E(x-~,a2 (t-r))d~dr, (a.2) 
Q 

where E is fundamental solution of the heat equation in R X (t0 , + oo); 
- function u having the integral representation (a.2) satisfies in Q the para­

bolic equation (a.l). 
Observe that the function E can be replaced in (a.2) by the Green's functions 

of parabolic boundary value problems. 
Taking into account possibility of differentiating under the integrals in (a.2) 

and the relationships 

oG10 oG20 oG1L oG2L 
-------- --- -----

ox 0~ 0~ ox 

ou 
we get integral representations of a; . On the basis of these representations by the 

discontinuity of thermal potential of double layer [4, 8] we obtain integral repre­
ou 

sentations of functions u(xi(·), ·),ox (xi(·),·); i=l,2. 
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Pewne wlasnosci sterowanych dwufazowych parabolicznych 
zagadnien brzegowych ze swobodnl! granicl! 

W artykule rozwazana jest pewna klasa sterowanych jednowymiarowych dwufazowych para­
bolicznych zagadnien brzegowych ze swobodni! granic<'!. Przyjmuje si~, ze nieliniowe Si! r6wnania 
stanu procesu, warunki brzegowe oraz warunki obowi<lZUj<lce na swobodnej granicy i okresla­
j<lce jej dynamik~. W pracy wprowadza si~ reprezentacj~ calkow'l zagadnienia. Podany jest dow6d 
lokalnego istnienia rozwi<lzania rozwazanego zagadnienia, jednoznacznosci tego rozwi<lzania 
i jego ci<lglej zaleznosci od danych. 

0 HeKOTOphiX CBOHCTBaX ynpaBJUieMLIX )l,ByxcJla3HhiX 
napa6onnqecKHX Kpaeshlx 3a)l,aq eo cso6o)l,Hoii rpann~eii 

B pa6oTe paccMoTpeHa HeKoTopaH yrrpaBTIHeMaH o.n;HoMepRaH ,!IByx$a3HaH napa6oJIIIqecKaH 
KpaeBaH 3a,!laqa CO CB060,!IHOM rparmn:ei\. flpHHHTO, qTo HeJIJIHeii.Hbi ypaBHeRHH COCT051Hll51 IlpO­
l(ecca, KpaeBbie yCJIOBHH ll yCJIOBHH 3a,!la!IHh!e Ha CB060,!IHOH rpaHlll(e. B pa6oTe BBe,!leHa 3KBH­
BaJieHTHaH HHTerpaJihHafl perrpe3eHTal(IIfl rrpo6JieMbi. .iJ:oKa3aHbl: JIOKaJibHOe Cyll(eCTBOBaHHe 
pemeHIIH paCCMaTpllBaHHOll rrpo6neMbl, e,!IHHCTBeHHOCTb 3TOIO pemeHHH ll ero HerrpepbiBHaH 
3aBHCHMOCTb OT ,!laHHbiX. 


