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A concept of observability optimal of degree p is introduced and considered for Holder conti-
nuous functionals and operators in linear and nonlinear infinite dimensional systems. There are
given also results on optimal observability for convex functionals in linear systems.

0. Introduction

A problem of optimal observability was posed by Krasovski [3] for finite di-
mensional linear systems. Rolewicz [10] considered the problem in infinite di-
mensional ones. Both authors restricted themselves to examining linear functionals.

Main notions used in [3] [10] are as follows. Consider a linear system X s Y, where
X and Y are Banach spaces and C is a linear bounded operator. A functional f be-
longing to the class Py= X * is said to be observable if there is a functional p e Py =Y*
such that f(x)=¢ (C x) for all xe X. An observation ¢ for f is called optimal if
sup [@p(y+4y)—p(»]=inf sup [p(y+4y)—p ()] 1)
ldy]| <1 o ||dy||<1

and the infimum is finite, where the infimum is taken over all observations for f.
The purpose of the note is to extend the class Py (and then also Py) of consi-
dered functionals and the class of optimally observable functionals by discussions
about an optimality of degree p. The primary idea of the generalization was seing
that a necessary condition that the left side of (1) be finite for a nonlinear functional
¢ is that ¢ be Lipschitzian and so f be Lipschitzian (see (6) for p=1), and a con-
viction that there is another concept of optimality characterizing the best (in a cer-
tain sense) observations and following us to investigate a larger class of functionals.
The note contains also an extension to the case of the observation for opera-
tors and the case when C is nonlinear, but at this stage the study is far from being
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exhaustive. It will be seen from the note that the optimal observation problem is
intrinsically equivalent to the problem of the extension preserving the norm in the
case of functionals, but the first problem is broader than the second one in the ope-
rator case.

In the second part of the note we examine separately convex functionals because
these functionals are very often met (specially in extremal problems)

1. Optimalit)é of Degree p
1.a. Recession functionals of degree p

Let fe RX, where X is a Banach space and R=RuU {—o0, + o}, and f# + 0.
DErFINITION 1. The recession functional of degree p>0 of fis a functional f0? € R¥
such that its epigraph is

epi (f07)={(x,v) € XX R: epi f+(Lx, AP v)<epi f, YA>0}

This is a direct generalization of the recession functional f0* (see [7], [4] chapter
6,in [4] fO* is called an asymptotic functional and denoted by f.), and we have

FOL=£0".

THEOREM 1. f0? is positively homogeneous of degrez p, i.e. (f0?) (Az)=A7(f07) (z)

for 2>0, and one has .
? Sx+4z)—f(x)
)@= sup @
xedomf b
A0

Moreover, if fis convex, then f0? is convex and from the closeness of f follows
closeness of f07. '
Proof. By definition (z, v) e epi ( f0?) if and only if (x, p) +(Az, A2 v)=(x+ Az, u+A?v)
eepif for every (x, u)eepif and A>0, which means that f(x+Az2)<f(x)+APv.
Hence (z,v,)eepi ( f07) for all v;=v if (z,v)eepi (f0?), i.e. epi(f07) is epigraph
and we obtain formula (2). From this formula it easily follows the positive homo-
geneity of 0.

If fis convex and (zy, v), (25, v,) belong to epi (f07), then we have for 0<a<1,

A>0
i o [epif+ (Azy, A2 v)]+ (1 —a) [epif+ (Az,, AP v,)] <epif

Bl Renes o T ] — ) g, P T D i) T
Thus epi (f0?) is convex. If fis closed, i.e. lower semicontinuous, then

S Gt iz) = f (%) S Gt z0)—f) _

lim ing ( f0?) (z,)=lim inf sup ——>= sup »
Zn=>Zo zZpn—>zo Xxedomf ;I‘ xedom f A
A>0 4<0
=(/07) (zo)

so f0” is closed. Q.E.D.
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THEOREM 2. We have
sup (f0?) (@)=a< +w ‘ 3

lzist
if and only if f satisfies the Holder condition
Fe2)—f ) so [y — x4 “4)

where « is the minimal Ho6lder constant.
If, in addition, f is convex, then either f=const. or p=1.

Proof. In view of (2) and the positive homogeneity of degree p of f0? we see that
(4) holds if and only if

f(xz)_f(xl)_ J(ea)—1 (1) _
Y= gqp —— =

+ 00 >a= sup

x1¢x2_”-x2_x1||p |¥2=x || =2 AP
2>0
(%2 —x1) _
= sup (f0?)————= sup (f0) ()= sup (f0")(2).
llxzzg(])|=l . llzll=1 Izl <1

If p>1, then (4) implies that f=const. (as the Fréchet differential is equal to
zero everywhere). Now suppose that fis convex, not constant and satisfies (4) for
p<1 and so f07 is convex (positively homogeneous of degree p). We show that this
is impossible. In fact, let x; be a point such that (f07) (x;)>0 (the existence of
such a x; is chacked by (3), (4)), x,>0 and O0<i<1. Then

(f 07) (Axy + (1 =) x5) =27 (f07) (x1) > A(f07) (x,) = A(f07) (x1) + (1 = A) (f0”) (x2)
which contradicts the convexity of f0?. Thus p=1. Q.E.D.

1.b. Optimality of Degree p

Consider a system (not necessarily linear) W-—Y. As a natural generalization
of (1) we introduce the

DEFINITION 2. An observable functional f'e Py is said to be optimally observable
of degree p>0 if there is an observation ¢ € Py such that

P(y+24y)—¢(y) . p(y+24y)— o (»)
Sdlil)p . [T =inf sup T %)
]ldiri < lllm,q;.>0 ¢

and that the infimum is finite, where the infimum is taken over all observations
for f.

The point is, that in the definition Py (and then Py) may not be the same for
various problems. It will be exactly defined separately for each problem.

Denote the left side of (5) by [¢|,. Following Theorems 1 and 2

l¢ll,= sup (¢0?) (4y)=minimal Holder constant,
4] <1
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and we see that ¢ is an observation optimal of degree p only if it is Holder conti-
nuous with exponent p.
If C is linear, then it is easy to verify that

sup (90" (N> sup (f0) () ©
[Ivli<1 ICl ¥ <1
whenever ¢ is an observation for f. Thus we often define in the natural way, for
the general case of nonlinear C, Py as the class of all functionals Hélder conti-
nuous with exponent p: 0<p<1 (Py is similar).

Now let C be nonlinear. Let # be the relation of equivalence: x; Z x, if and
only if Cx;=Cx,. Then we have

THEOREM 3. If there are k>0 and 0<g<1 such that for any y,, y, € CX one can
find x,, x,: Cx; =y, Cx,=y,, satisfying condition

ey — x5 |<Kk ||y —pall% @]

Then each functional f on X such that f is well-defined on X/# and is Holder
continuous with exponent p, is observable optimally of degree pg.

Proof. Put ¢ (Cx)=f(x). ¢ is well-defined on CX since f is well-defined on X/Z.
By (7) we have for any y,, vy, € CX:

(V)= 9(r)=r(x)—f(x)< Xy —x,[P<ak? ||y — y,| /2.

Thus ¢ is Holder continuous with exponent 0<pg<1. Consequently, ¢ can
be extended to ¢ defined on the whole Y preserving this condition ([5], [11], [2]
p. 120), Clearly, ¢ is an observation optimal of degree pgq. Q.E.D.

In what follows, without loss of generality, we shall consider only functionals
f such that f(0)=0.

COROLLARY 1. If C is linear, bounded and CX is closed, then each functional f
satisfying the Holder condition with exponent 0<p<1 and vanishing on Ker C is
observable optimally of degree p.

Proof. We need only verify condition (7) for g=1. Since CX is closed by the Banach
theorem on inverse operators there is k>0 such that for all y € CX there exists
x such that Cx=y and [lx]|<k |[y|. Then for given y;,y, € CX we can choose
Xy, X, such that Cx,;=y,, Cx,=y, and (7) holds for g=1. Q.E.D.

Example 1. Let X=c, and Y be any Banach space containing ¢,, as a closed sub-
space, where ¢,, is the space of all sequences {y,} such that n? y,—0 (0<p<1) with
the norm |[{y,}||=sup |n? y,|. Let C ([x,})=x,/n"}. Let A be a (arbitrary) subset

of X and let f(x)=d, (x, A)Linf |z—x||>. Then f satisfies the Hélder condition
(on the whole X) EEA

S —=f(x) < lxy — x|, : @)
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In fact, one can choose z, € A such that f(x,)>|x, —z,|"—e. Of course f(x;)<
<|lxy —2z,||’. We have therefore

S ) —f )<k —25lP = 1%, — 2z,]P +e< Iy — X, [P+

which implies (8) by the arbitrarness of ¢>0.

We shall now verify that the functional ¢ (-)=d, (-, CA) defined on Y is an
observation optimal of degree p for f. The restriction of all observations for f to
CX=c,, is

o ({x/n" P =f({x,})= inf sup n”|x,/n”—z,/n"| =d,(Cx, CA).

{zn}€A n

¢ satisfies (8) on CX and hence ¢ is its extension preserving the Holder condi-
tion (8).

One easily sees that || f]|,= sup (f07) (x) < + o is really a norm and the space of

x||s1

all functionals Holder continu”ogs with exponént p:0<p<l1 (f (0)=0) is a Banach
space with norm || f|,, which is denoted by X®. Let C: XY be linear and bounded.
Let C»: Y@ 5 X® be defined by ¢ (Cx)=(C® ¢) (x), xeX, peY®.Then C®
is linear and bounded (as trivially checked). It is not hard to show that C® is also
a bounded operator of Y with Y-topology into X® with X-topology (compare
e.g. [10], Theorem IV.4.2).

Let us verify an analogof the Alaoglu theorem: The unit ball S={ fe X®):
I/1,<1}is compact in X-topology. According to Tichonoff theorem the product
P=[] [—IIxIP, lx|I"] is compact in X-topology. The fact that f(0)=0 for all feX»

xeX

implies that S P={f: X—»R | f(x)|<|/x||’}. On the other hand, S'is closed in X-topo-
logy. Indeed, if {/,} =S and f,—fin X-topology, then /'€ S since we have the estimate

L f)—F@I<UfC)—fa D+ fu )= fa @+ /2 (2) - f(2)]
< ]f;l (x)—fn (Z)} +28< Hx—-ZHp—}-XE

where ¢ is arbitrarily small. Thus S is compact.
Now employing a method of Rolewicz [8] we easily get the following formula
for the Holder norm of observations optimal of degree p.

THEOREM 4. If fe X 0<p<], is observable, then

inf {[lgll,: 9 € Y@, f=C® p}=sup inf {[p,: p € Y, f(x)=0 (Cx)}. ©®
xXeXx

Proof. Let a be the left side of (9) and b be the right one. Clearly a>b. Let G,=
=C? S,={ge XP:g=CWD ¢, |¢||,<b}. S, is compact in Y-topology and C»
is a bounded linear operator of Y with Y-topology into X with X-topology,
so G, is compact and then closed in X-topology. Arguing by contradiction we sup-
pose a>b. Then f€ G,. Therefore; by the Hahn-Banach theorem there is x € X
such that g (x)<pf—e for all ge G, and f(x)=p. Thus, for all p S, we have
¢ (Cx)=g (x)<f(x)—e¢, which contradicts the definition of 4. Finally we obtain a=b5.
Q.E.D.
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ReMARK 1. In the case of functionals (instead of XP, Y we have X*, ¥*) one
can verify the eguivalence between (9) and the following classical form of the Krein’s
problem of moments: .
mfﬂwt¢€Yﬁf=C*¢F*;
if and only if
inf {[yl: y=Cx, f(x)=1}=p>0.

But the latter is not true in nonlinear cases.

TreoreM 5. Let C be linear, bounded and CX be closed. Then from the conver-
gence of functionals observable optimally of degree p{f,}<X®: | f,—fl,—0 it,
follows that there are observations optimal of degree p ¢, and ¢ (for f, and fresp.)
such that [|@,/l,~[#l and ¢, ()¢ (y) for all yeY.

Proof. Since CX is closed, C® Y is closed (as easily proved) and then it is a Ba-
nach space. Put Y{P=Y®@/Ker C®». Then operator C® induces an operator
CP: YP-C® Y® by the formula CP [p]=C® ¢ for [p]e YP. In virtue of
the Banach theorem on inverse operators || f,— f1,—>0 yields [|[[¢,]— [¢]l|,—0. Clearly
optimal (of degree p) observations for f, are any such ¢, € [g,] that ||, =[e.]l,
(Corollary 1 shows the existence of such ¢,). Since [¢,] converges we have ||p,||< M
for all n. By Y-compactness of balls in Y® we can extract a subsequence ¢y, such
that ¢, (y)—¢(y) for all ye Y. Observing that £, (x)=¢, (Cx)=>¢ (Cx)=/(x)
shows that ¢ € [¢]. Obviously, [|¢],=][¢]ll,- Thus ¢ is an observation optimal of
degree p. Q.E.D.

1.c. Observability Optimal of Degree p for Operators

Consider a system (not necessarily linear) X By Similarly to the functional
case, we say that an operator F, belonging to a class Ry of operators of X into a Ba-
nach space Z, is observable if there is @ € Py (Py is defined correspondently to Py)
such that the following diagram is commutative

xS-v
FN /&
4

On the analogy of (5) we say that & is an observation optimal of degree p if

H@(J’z)‘“@(yx)‘] . 2 (y2)—@ (¥l
su = R

10 A
Vi#YV2 Hyz_yal @ V1#EV2 Hyz—yal

(10)

and the infimum is finite.
Denoting the left side of (10) by [|®||, we can easily verify that it is a norm and the
space (Y, Z)® of all operators @: Y-Z such that ||®|,< +oo is a Banach space.
To get an analog of Theorem 3 we need a notion of hyperconvex spaces ([1],
[6]). In [6] Nachbin said such spaces to have the binary intersection propeety).
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A norm space Z is called hyperconvex (or a P;-space) if every collection of its closed
balls, any two members of which intersect, has a nonvoid intersection. Aronszajn
and Panitchpakdi have proved the

THEOREM ([1]). Let Z be a normed space. In order that any operator @ of any nor-
med space Y, into Z with some subadditive modulus of continuity & (¢) possess,
for any normed space Y containing Y, as a subspace, an extension to the whole
of Y with the same modulus ¢ (¢), it is necessary and sufficient that Z be hyperconvex.

Paying attention that for operators @ satisfying the Hélder condition with
exponent 0<p<1 the minimal modulus of continuity J (¢)=|®||,¢” is subaddi-
tive we obtain

THEOREM 3’. Let Z be hyperconvex. Let C satisfy the condition in Theorem 3.
Then each operator F: X—Z such that F is well-defined on X/# and satisfies the
Holder condition with exponent p is observable optimally of degree pq.

Optimal (of degree p) observation & obtained by Theorem 3’ has the property
that ||®|,=|®|cxl, i.e. @ is “absolutely optimal”. However, the hyperconvexity
is a very strong condition. For instance, if Z is finite dimensional, then Z is hyper-
convex if and only if Z has a norm of type “sup”. An optimality ‘“nonabsolute”,
ie. |®|,>]/®|cxll, can be obtained in much more cases, e.g. by Theorem 6 below.

" Using a method similar to [9] (baséd on an extension of the Alaoglu theorem) we
trivially get.

THEOREM 6. Let C be nonlinear. Let Py=(X, Z)” and Py=(Y, Z)@, If there
is a separating topology t in Z such that the unit ball is t-compact, then each obser-
vable operator F e Py is observable optimally of degree g.

Clearly any reflexive space Z or any space Z conjugate to a Banach space sa-
tisfies the condition in Theorem 6.

This theorem shows that the optimal observation problem is broader than the
problem of the extension without increasing the norm. In the case of functionals
they are equivalent to each other.

2. Optimal Observability for Convex Functionals

In this section we shall restrict ourselves to discussions about a linear system
X5>Y. The class Py (Py) contains all closed proper convex functionals defined on
X (on Y). By Theorem 2, convex functionals are never observable optimally of
degree p<1 (unless they are constants) so we may examine only the ordinary opti-
mality (of degree 1). A glance at (6) shows that being Lipschitzian is a necessary
condition for optimal observability.

ProrosITION 1. A closed proper convex functional f on X (fe€ Py) is observable
if and only if there exists a collection of observable affine continuous functionals
{h.:7teT} such that f(x)=sup A, (x) for all xeX.

4
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Proof. Necessary: Let ¢ be an observation for f. Since ¢ is closed and convex,
there is a collection of affine continuous functionals g, such that p=sup g,. Let
h. be defined on X by 4, (x)=g. (Cx). Then f=sup . We have &, (x)=g, (Cx)=
=g%(Cx)+ o, L 10 (x) + o, where g° and then A° are linear. A, are continuous, inas-
much as |A2(x)|=|g? (Cx)|<|ig?ll |IC|| |Ix|l. Finally, %, are observable (as g. are
observations).

Sufficiency: If g, are observations for 4., then p=sup g, is an observation for f.

Q.E.D.

THEOREM 7. If CX is closed, than:

(a) fe Py is observable if and it vanishes on Ker C.

(b) fe Py is optimally observable if and only if it vanishes on Ker C and is
Lipschitzian.

Proof.

(a) The “only if” is clear. To show the “if”” note that for every expression
f=sup h, we have hlgerc< flkerc=0, 1.€. filxerc 1S bounded above (on Ker C),
and hence it is equal to a constant, say f,. Therefore 4, has the form h,=h?+ .,
where A is linear and then vanishes on Ker C. By the closeness of CX, h° is obser-
vable, which means that /4, is observable.

(b) We prove the “if””. Let ¢ be the (unique) restriction to CX of all observa-
tions for f. Similarly to Corollary 1 we see that ¢ is Lipschitzian. Let ¢p=sup g, °
where g, are affine continuous functionals. Then @0 =sup g, 0% and hence

llolly=sup (p0*) (¥)=sup sup (g. 0*) (»)=sup [Igl.

fIvl <1 T fyll<1 v

Using Hahn-Banach theorem we extend g, to g, defined on the whole Y pre-
serving the norms. Clearly, ¢ =sup &, is an optimal observation for f. Q.E.D.

The above theorem shows an extension with conservation of the Lipschitzian
convex functional norm and convexity. Indeed, let f be a Lipschitzian convex func-
tional on a linear subspace X; (not necessarily closed) of a Banach space X. To
extend f preserving the mentioned conditions, first extend f preserving the (uniform)
continuity to Banach space X, and next optimally observe f in linear system

X, -5 X, where i is the identity into.

Example 2. Let X, Y, C, fand A be as in Example 1 with p=1. Suppose further-
more, that 4 is a convex subset. Then it is easy to see that /' (x)=d, (x, A) is convex.
We obtain finally an optimal observation ¢ (-)=d, (-, CA) defined on Y.
Theorems 4 and 5 are still in force (the argument with the convexity of functio-
nals is simple). Formula (9) now has the form
inf {lpll,: € ¥°, f=C® gp}=supinf {llpl,: p € Y, f(x)=0(Cx)} (9

xeX

-

where Y°< Y is the set of all Lipschitzian convex functionals on Y.

PROPOSITION 2. If £ is observable, then there is an observation ¢ such that /™ is
. w » 55 C* ar, .
an observation for ¢* in the conjugate system X*<— Y*. However, the optimal
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observability of f implies that for each observation ¢, ¢* is not optimally obser-
vable and that /™ is not optimally observable in any linear system.

Proof. One can take an observation ¢ for f such that

o ()= sup {0, ¥D—0o)}= sup {(o, *>— (o)}

yoedome yoeCXndom e

(for example, ¢ (+)=cl [@ (-')+5(-, CX)], where @ is any observation for f and &
is the indicator functional). Hence, the first asserticn is proved via the equality

7% ()= sup {Cx, C¥, y*y—f()}=/* (C* ).

xedomf

We have (f*0%) (x*)= sup <x, x*> ([7], Theorem 13.3), and so

© xedomf
sup (f*0%) (x*)= sup <x, x%.
llx*|I<1 lx* || <1

xedom f

By the Banach-Steinhaus theorem the right side is finite, and then f* is Lipschit-
zian, if and only if dom fis bounded. If /'is optimally observable, then it is Lips-
chitzian and dom f=X. Hence f* is not Lipschitzian. At the same time, for each
observation ¢ we have dom ¢ > CX. Thus ¢* is also not Lipschitzian. Q.E.D.

THEOREM 8. Let either X or Y be finite dimensional. Let a sequence of observable
Lipschitzian differentiable (Fréchet) convex functionals f, satisfy the following
conditions )

(a) f, (x)>f(x) for all xe X and f is differentiable (Fréchet).
1

(1) lim 7

n— o
A—00

(¢) From x e Ker C and x#0 it follows (f,0%) (x)>0.

Then there are optimal observations @, and ¢ (for f, and f resp.) such that
@n )l ~0ll, and @, (1)@ () for all ye Y.

The proof begins with the following lemma:

Jfn (Ax) exists and is finite for all x € X.

LemMA 1. If f, (x) are Lipschitzian convex functionals (not necessarily differen-
tiable) satisfying conditions (a) and (b), then f(x) is also Lipschitzian and convex.

Proof. We have

1 1
L% lim —A—f" (Ax)= lim lim 7]3, (Ax)=lim (f;, 0F) (x).
n—+-ow n—w A=+ n—>oo
A—>00

On the other hand

L=lim lim % £,0x)=(f0%) (x).

A=>0 n—>o0
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Consequently for all xe X'we have (f, 0%) (x)—(f0%) (x) and hence sup (f, 07) (x)

<oy, < +00. Paying attention to the argument just before Theorem 4 we see that
the proof will be complete if the following analogue of the Banach-Steinhaus theorem
holds: If f;, i€, are Lipschitzian convex functionals such that sup (f; 0%) (x)<

<o < +00, then sup || filli < f< +o0. But this can be verified by the same argument

as in the classical proof of the mentioned theorem employing the Baire category
theorem. Q.E.D.

Proof of Theorem 8. We see via the lemma that f is optimally observable. As-
sumption (c) implies that the restrictions ¢, and ¢ of all observations for f, and
S resp. to CX are (Lipschitzian, convex) differentiable on CX ([7], p. 255). Then
for each y, € CX the gradient V¢, (y,) is the unique subgradient of ¢, at y,. Put-
ting gy ()=<V@, (Vo) y=Yo> + ¢, (yo) we obtain the affine functionals g} (»)
such that ¢,(»)= sup g; (»). Since CX is finite dimensional, Vg,(y0)=Ve (yo)

¥o€CX

for all y, € CX ([7], Theorem 25.7) and then g} (»)—g,, (3)=<Ve (o), y—yoy+
+ ¢ (yo) for all ye CX. Hence |g} [->]lg, |l We extend g} and g, to g, and

g}, defined on Y without increasing the norms. Putting ¢, (y)=sup g} (») and
Yo€CX

¢ (»)=sup &5, (») we have [¢,/l;=sup [g7 [Pl =sup [|g, || By Y-compactness

Yo €CX yo€CX yo€CX
of balls in ¥ we can select a converging subsequence ¢, ()@ (y) for all ye Y.

Since $=¢ on CX and [|@|; =||¢ll;, ¢ is an optimal observation for f. Thus @, =
=@,, and @ are required optimal observations. Q.E.D.

ReEMARK 2 We have studied cases when Y is a Banach space In practice these
cases happen when the accuracy of the measurement of the output y guaranties
the restriction ||4y||<d, where Ay is the error of the measurement and ||| is the
norm in Y. In other words, we have 4y € U, where U is a ballin Y. If U is not a
ball but it is closed, convex, symmetrical and containing 0 in-the interior, then the
Minkowski functional of U:m(p)=inf {r>0:y/re U} gives a norm and we meet
the same situation. Furthermore, if U is inbounded but closed, convex, symmetri-
cal and containing 0 in the interior, then the Minkowski functional yields a pseudo-
norm. In this case by method similar to that presented here, we can obtain nearly
all results in this note. Unfortunately, the optimal observation problem becomes .
much more complicated when U is unbounded and nonsymmetrical (and convex,
closed, containing 0 in the interior), because m () is only a pseudoghalfnorm, which
does not define a linear topology on Y.
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Pojecie optymalnosci stopnia p w teorii obserwacji i obserwacja
optymalna dla funkcjonaléw wypuklych

Wprowadzono pojecie obserwowalno$ci optymalnej stopnia p i rozpatrzono je dla funkcjo-
naléw i operatorow ciagtych w sensie Holdera w liniowych i nieliniowych uktadach nieskoniczenie
wymiarowych. Podano takze pewne wyniki dotyczace obserwowalnosci optymalnej dla funkcjo-
natow wypukitych w uktadach liniowych.

TlonsiTne oNTUMAJIGHOCTH CTEHEHW p B TeOpHH HAaGJIFOXeHHIl
H ONTHMAJbHOE HA0JIOJeHHe I/ BBIYK/IbIX ()yHKIHOHAIOB

BBOOMTCS NOHSATHE ONTUMAJIBHON HAOIIOIaEMOCTH CTENEHN p, KOTOPOEe PACCMATPHBAETCS IS
(dyHKIHOHAIOB W ONEPATOPOB, HENPEPBIBHBIX B CMbIChe ['enbluepa, B NHHEHHLIX W HEIMHEHHBIX
6EeCKOHEYHOMEPHBIX CHCTEMAX.

JIaroTCsl TakKe HEKOTOPbIE Pe3ylbTaTsl, KaCalolWecs ONTHMAbHOM HaOIIOMaeMOCTH IS
BBITYKIIBIX (YHKIMOHAIOB B JIMHEHHBIX CHCTEMAX.







