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In the Part 1 of the paper, we introduced a convex control problem along with
its Lagrange dual, we discussed the evaluation of the dual functional, and we deve-
loped three finite element approximations to the dual problem. We now obtain
error estimates for these finite element schemes. These estimates are based on the
minimum principles developed in Part I and the convergence rates for piecewise
polynomial restricted range approximation proven below. Section 4 presents a ge-
neral theory for estimating the error in dual approximations; Section 5 bounds
the error in approximating functions with restricted range; and Section 6 applies
the results of the previous sections to estimate the error in dual approximations to
control problems.

4. Abstract Error Estimates

Our error estimates are based on the four lemmas given below. Suppose we have
functions f: R"—»R and g : R"—R"™ and a set E< R™. For (z, ) € R"XE, let us define:

hz,m=f()+n" g(z) and 4.1
h(m=inf {h(z,n):z€ R"}. 4.2)
We assume the following:
() f,ge C? and
(ii) there exists «>0 such that V2 A (z,#)>a«l for all ze R" and y € E.

By Lemma 2.2, there exists a unique z (7)€ R" such that & (z (), n)=h ().
Given 74,7, € E, define the vectors z,=z (y,) for k=1, 2, and the matrices:

I
Ho= [ Vi h(z2s (21 —25),m:) ds, and @3)
o

1

CHi=[(1-9) Vih(oats (1 —22), m0) ds . 4.4)

0
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Lemma 4.1. For all ny, %, € E, we have:

H, (21 —25)=Vg (22)" (n2—n1). 4.5

Proof. Since z; is the unconstrained minimum of % (-, #,), it follows that
Vih(z, n)=0 for k=1,2. (4.6)

Subtracting these equalities and observing that
0=V h (22, 12)=V1 h (22, 1)+ V1 g ()T (12—11), CX))
we get:

Vih(z1,m) =V h (22, 1)=V1 g ()" (12 —11). (4.8)
Hence we have (4.5). =

LemmA 4.2. For all n,,n, € E, we have:
o
h()—=h (1)~ (2)" (10, 1)< =5 12 =2l 4.9

Proof. Replacing () by f(z)+ni g (z), we see that

h () —h ) —g @)" (i —n)=h(z, 1) —h(z,, 71)- (4.10)

Expanding the right side of (4.10) in a Taylor series about z=z, and using the
integral form for the remainder term, we get:

(4.10)=V, h(zz, 1) (21— 22)+ (21— 25)" H (2, —2,). (4.11)
Substituting for V, 4 (z,,#ny) from (4.7) and using identity (4.5), gives us:
(4.10)=(z, —z,) "(H,~ H,) (z,~2,) - (4.12)

Substracting (4.3) from (4.4) and utilizing assumption (ii), we obtain:

1

e o
(4.10)< —a |z, — 2,)? j s ds= =" |z~ 7. (4.13)
0 L 2
Lemma 4.3. For all 5y, n, € E, we have:
h(n)—h (1) —g ()" (11 —=12)= ~ Vg (22)" (1. —12)P [, (4.14)
h(n)—h () —g (22)" (1 —12)= —Ho| |21 — 2,/ (4.15)

Proof. For any positive definite matrix P, observe that —sP> —P for all s € [0, 1].
Combing this relation with (4.12) and (4.3)-(4.5) gives us:

@10)=(zi—2)" [ [ —sVih(za+s(zi—22m) ds| (1 —2)
—(z.—2,)" Hy (2, —23)
=—(.—12)" Vg (22) JH()—1 Vg (2" (1—12) . 4.16)

Since the largest eigenvalue of H; ' is bounded by 1/« (assumption (ii)), these
last two inequalities lead to (4.14)-(4.15). [ ]
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LemMMA 4.4. Suppose that G:ZXM—R', H: M—-R', M"<M, and for some u*,
e M and z¥ € Z, the following ralations hold.: .

G (%, W)—G (2%, u*)<0 for all ue M, 4.17)
H (u")y=sup {H ("):v" e M"}. (4.18)
Defining the functional
D (z, p1, po)=H () — H (1) — G (z, 1)+ G (z, p2) (4.19)
we have:
D (z*, ', p¥)=G (2%, y")—G (¥, p*)+D (2%, ", p*) (4.20)
Jor all y"e M™".

Proof. Using the identity (4.19) and relation (4.17), we get:
H(@")=H (u*)+G (z%, i) -G (2%, u*)+D (2%, p, u*¥)

<H (@*)+D (2%, i, u*). 4.21)
On the other hand, (4.18) implies that for all y* e M*:
H (W= H (")
=H (u*)+G (z*, ") -G *, p*)+D (*, ", u*). (4.22)
Combining (4.21) and (4.22) gives us (4.20). |

5. Restricted Range Approximation

The following approximation results are needed for the error estimates in
Section 6.

LemMma 35.1. Consider the space P of piecewise constant functions dand suppose that
/> ge W with fg=0. Then we have
ST=1e>=0(>). (5.1

Proof. Express the grid intervals of P¥ as J,uJ; where the elements of J,
are all the grid intervals T such that f|;=0. If T € J,, then fT=7=0 on T. Introdu-
cing the notation

(&= S

Tedg
we conclude that:

f'~1, 8:5,=0. (5.2)

If TeJ,, the condition fg=0 implies the existence of ¢ € T such that g (¢)=0.
Since g e W1, a Taylor expansion gives us:

lgle<h |- (5.3)
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On the other hand, f'e W' and by (3.7), we have:

‘ f=Fe<ch | f P}z (5.4)
Combining (5.3) and (5.4), we get:

{fI—f, e>r<ch?meas (T) for all TeJ,, and 5.5

{f1—1, 85, <ch?. (5.6)

Finally (5.2)-and (5.6) imply (5.1). ‘ B

LeeMA 5.2. Consider the space Pt of piecewise constant functions and suppose that
feW?!, ge W?, ¢<0, and f' g=0. Then we have:

[fT—1. g]=0(#?). 5.7
Proof. Express the grid intervals of P! as J,uJ; where the elements of J, are
all grid intervals 7" such that f'|,=0 almost everywhere.

If T=[s, t]eJ,, then fI=f on (s, ) and
[ 2@ d(f"(©)=0. (5.8)

Let G; be the union of all end points of grid intervals in J;. Relation (5.8)
and the identity [ f, g]=0 implies that:

[fT=f8l= D (F1eH)=f1 ) g ®. (5.9)

teGy

Since f” g=0, we conclude that for all 7 € J;, there exists ¢ € T such that g (¢)=0.
Moreover, g’ (6)=0 since g<0 and g e W?. Therefore, by a Taylor expansion
about o, we get:

1
gl <—=meas (T)? [g® |, for all TeJ,. (5.10)
=2
On the other hand, by (3.7) we have:

I = EDILKI D) —fOIFI ST @) —fOI<ch | fP]. (51D
Finally (5.9)-(5.11) gives us (5.7). B
We say that fe W*if there exist /<oco and scalars 0=s,<s,; ...<s;=1 such that
f® is essentially bounded on (s;, s;,,) for all j.
J J

LemMmA 5.3. Consider the piecewise linear space St=C°nP2 and suppose that
f,ge W1, fg=0, and fe W2, Then we have:

SI=Ff,e>=0("3). (5.12)
Proof. Express the gird intervals of S4 as J,u J where J, is the set of grid intervals
T such that Tr {s;: k=0,...,[} @, and let J, and J, be the sets defined in the proof
of Lemma 5.1. Since f=f' on J, and (5.5) holds on J;n J;, we get:

{fT=fr )5, <ch? Y] meas (T)=0 (). (5.13)

Tedy
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On the other hand, for all TeJ. we have f"'|; € L* and for piecewise linear
interpolation, we obtain:

| f=fHr<<ch? | fP ]y for all TeJ N J;. (5.14)

Since fT=f on Jg, (5.14) and (5.3) give us:
=1, 809=0). (5.15)
Combining Relations (5.13) and (5.15), we get (5.12). B

LeMMA 5.4. Consider the pieecewise linear space S%=C°nP% and suppose that feW'n
NW?2, ge W2, g<0, and f' g=0. Then we have:
-1, gl=0 (#°). (5.16)

Proof. Let (Jy, /1) and (J¢, J,) be the sets defined in Lemmas 5.2 and 5.3 respectively.
Since f,f'e W1, we see that:

[f*—1, gl=<(f"—f)", &> and (5.17)
using the identity fI=f on J, leads to:
(Sf1=1), 825,=0. (5.18)
The interpolation estimate (3.7) gives us:
|(fT=f)|r<c for all TeT, nJ,, and (5.19)
{(FT=f) | r<ch for all TeJ, nJc. (5.20)
Combining relations (5.19) and (5.10), we get:
=1, 85, na S ch? 2 meas (7)< ch. (5.21)
Tedy
Similarly, (5.20) and (5.10) imply that:
ST 1Y, 85, nsSCH? Z meas (T)<ch®. (5.22)
Tedc
Relations (5.18), (5.21), and (5.22) complete the proof. B

Let P, be the space of polynomials with degree at most k—1. Given fe C¥, we
say that p € P, interpolates f if the number of zeroes of f—p is at least & (counting
multiplicities). The following lemma appeared in [5], but the proof was never publi-
shed:

LEMMA 5.5. Suppose that f,g:[0, 11-R, f>g, fe C¥, and there exists p € P, such
that [ >p>g. Then [ has an interpolate ' e P, sush that f >f'>g.

REMARK 5.6. If f has an interpolate fTe P, and {7y, ..., t,} are zeroes of f—fT with
associated multiplicities {m;, ..., m,} satisfying

n
g mj-:-k,
J=1
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recall [18, p. 244] that for all ¢ € [0, 1], there exists & (¢) € [0, 1] such that

(k)
o=+ (Q(D H(t 1", (523 H

Proof of Lemma 5.5. Define the set
F={peP,:f=p=>g}. (5.24)

The lemma is an immediate consequence of the following assertion:

If peF, the number of zeroes of f—p (counting multiplicities)
is [—1, and /—1<k, then there exists g € P; such that (p+q)e F
and the number of zeroes of ( f—p—gq) (counting multiplicities)
is at least /. (5.25)

Proof of assertion 5.25. Let {¢y, ..., £,)<[0, 1] be the zeroes of ( f—p) and let
{my, ...,m,} be the associated multiplicities. Since f—p>0 on [0, 1], we find by
a Taylor expansion about #; that:

(i) If t;<1, then m; is even.

(i) For all j, (=1 (f—p)™ (¢;)>0.

Given £¢>0, define the function

n . J
P, (H)=¢ H 1};{*‘—-« tor tel0,1]. (5.26)

i L

Since m; is even for #;<1, we see that p, is a polynomial on [0, 1]; moreover,
we have p, € P, and p,>0. Defining

1
8y == inf {If=p)")l: j=1, .., n}, (5.27)

(i) and (i) imply that there exist open intervals {/,, ..., I,} such that #;e€I; and
(f=p—ps,) (=0 for all te/; and j=1, .., n. (5.28)
Since p, (¢) is monotone in ¢, (5.28) also gives us: for all 0<e<d,,
(f—p—p)(®)=0 for all tel; and j=1, ..., 7. (5.29)
Define the following:
A={te[0,1]:¢ ¢ I, for j=1,2, ..., n},
Sy=inf { f(t)—p (t): te 4}.

Since f and p are continuous, 4 is compact, and 4 excludes all zeroes of
f—p, we have §,>0. Observe that |p,|<e and consequently

(f—p—ps,) (1)=0 for all te 4. (5.31)
Combining (5.29) and (5.31), we get for all O0<e<min {J,, d,},
(f—p—p.) (=0 for all z&0, 1]. (5.32)

(5.30)




Convex control and dual approximations 79

Now define g=p, where

em=sup {e:(f—p—p,) € F}. (3.33)
Since | psl —00 as é— o0, it follows that ¢, <co. Moreover, the number of zeroes

of (f—p—q) is greater than /—1 (or else (f—p—qg—p,) € F for ¢ sufficiently small
and the extremality of ¢, is violated). This completes the proof of asserion (5.25).

COROLLARY 5.7. Consider the space P (k>0) and suppose that f >0 and f® is essen-
tially bounded on the interior of all grid intervals for Si; then there exists p e S"
such that f=2p=0 and for all grid intervals T, we have:

| f=plrscht | fO)r. (5.34)
Proof. Apply Lemma 5.5 and Remark 5.6 to each grid interval. =

COROLLARY 5.8. Consider the space Si=C°NP!(k>1) and suppose that fe W1,
S =0 almost everywhere, and f® is essentially bounded on the interior of all grid
intervals for SE. Then there exists p € St such that p' >0 and for all grid intervals T,
we have

| f=ple<ch® | f®]r. (5.35)
Moreover, p can be chosen so that p'|;=0 whenever f'|;=0.

Proof. By Corollary 5.7, there exists ge Sf_, such thatf'>¢>0 and for all
grid intervals 7, we have:

L' —ale<ch=t | f®) 7. (5.36)
We construct p € St on the grid interval T=[r, s] as follows. First set
i
p O=10)+ [ q(s)ds; (5.37)
then define
(t—r)
p=p(®)+ G0 (f&)=p (). (5.38)

Since 0<g<f’, we have both p'=¢>0 and f(s)—p (s)=0. Therefore, p'>0
and p'|;=0 whenever f'|;=0. Furthermore, (5.38) implies that p (*)=/(r) and p (s)=
=f(s). Hence p € C°n P!. Subtracting from (5.37) the identity

FO=F0)+ [ f' () ds (5.39)
and utilizing (5.36), we get r
Lf=pla<ch | £9] 1. (5.40)
But by (5.38), we have
[p=plz<| f(8)—p (). (5.41)

Finally (5.40) and (5.41) imply (5.35). ]
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6. Control and State Error

Associated with any solution to the dual approximations (3.11)-(3.13) is a pair
Z"=(x", u") that achieves the minimum in the dual function. This section studies.
the error |z"—z*|| where z*=(x*, u*).

First let us describe more precisely the pair (x*, #*). If 0"=(p", A, w") solves.
(3.11), we define

7 OT=(" O, 2" @F, 2 (O, w* (67 for all 1€ [0, 1] 6.1)

and z" is the function Z given by (2.27) for x=g#". Similarly, if u"=(g", 2", v*)
solves (3.12), we define
7" (O)T=@" @7, ¢" @7, 2 @), V" (1)") for all 1€ ][0, 1] (6.2)

and z" is the function £ given by (2.32) for #=#". Finally, if ¢"=(x", J* V") solves
(3.10), we choose (g", #i=u") satisfying (2.34)-(2.35) for (%, A, v)=(x", 2", v") where
g" (1)=0. ’

The tables below indicate the convergence rates that will be established for the
error |z"—z*|| using various choices for the finite element spaces. The first three
columns give the finite element space associated with each dual variable, and the
last column gives the exponent in the convergence rate for ||z"—z*|. Following the
tables, we state the regularity needed for our convergence proofs.

The entries (k, ), (k,j), and k in the tables below mean P!~ C’, P! CY, and
P! respectively.

Method (3.11)
§4 | A ‘ w |  Error o
I R R
2. (k+1,0) k | % :[ k
Method (3.12)
(Affine State Constraints)
q | A | v | Error
3. 2.,0) i 1 1 g 1.0
4, (3,0) (2,0) 2,0) i 1.5
50| GO | R l @O |k
Method (3.13)
(Affine State Constraints)
x | A ! v ! Error
6. | @0 | 1 @0 | 1.0
7. e | o l o | 15
8. @o | &0 |k
Method (3.13)
(General Convex State Constraints) ‘
X } p | v | Error 1
9. 2,0) 1 @0 | 10|
10. (3,0) 2,0) (2,0) | 1.5
1. | G0 I i t @0 |k
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REMARK 6.1. We show later that the convergence rate in cost (such as £ (6%)—
—C (z*)) is always twice the convergence rate of z".

REMARK 6.2. If the state constraints of (C) are vacuous, then programs (3.11) and
(3.12) are the same; hence, the error in method (3.11) will satisfy the better estimates
given for method (3.12) above.

Assumptions
In all cases, we assume that (1.2)-(1.4) hold; hence, there exist solutions to the
primal and the dual problems. In addition, for each of the 11 cases above, we make
the corresponding regularity assumptions listed below. The terminology “FA holds”
means that there are a finite number of times on [0,1] where a state constraint
alternates from binding to nonbinding (finite alteration).
L. (x*, u*, A%, v*, p¥) e W* and (v, p*)e W2
(v¥, p¥) e W1, (A*.v*, p*) e W*, and FA holds.
(G*, X*, u*, A*,v¥)e Wi,
(G*, %*, u*, A*, v¥)e W' and (A*,v*,4*) e W2
(g%, v¥) e W1, (4*, A*,v¥) e W*, and FA holds.
(%*, A%, v, u*) e W
¥, A%, v¥, u*) e W' and (A*,v¥)e W2
(x*,v¥) e W1, (x*, A*,v¥) e W¥, and FA holds.
(x*, A% v* u¥) e W and K€ C3.
(x*, A%, v¥, u*) e W1, (x*, A*, v¥) e W2, and K, e C3.
(x*, v¥) e W1, (%%, A¥,v¥)e W*, K,e C3, and FA holds.
Proofs are now presented for Results 1, 3, 4, 5, and 9. Using the techniques
introduced in these proofs, the remaining results can be established.

P
— O 0PN YR W N

[y

Proof of Result 3. Define u=(q, 4,v), z=(x,uw), u*=(q*, A*v¥), HW=L ()
(L given by (2.30)), and
G (z, ))={(8"v—gq, ¥ — Ax—Bup+<{2, K, )y +[v, K, (x)]. (6.3)

By the complementary slackness conditions, G (z*, u*)=0 and consequently
we have:

G (z* w—G (z*, p*)<O0 for all ue M. 6.4)

Let us apply Lemma 4.4 with y"=u'=(q’, 2, V"), an interpolate of (g*, 1*, v*)
satisfying ¢ (1)=0.
Consider the D terms in (4.20): After an integration by parts, we see that

D(z*, ", n*)= f [ " (@), 7" (1), ) =R (2% (), n* (1), 1)
—@"O-n* )" g@* (1), N]dt (6.5
where 2 (-,+, ) and g (-, -) were defined in (2.31),
7" ()=(4" (1), g" (£), 2" (2),V" (2)), and (6.6)
n* ()=(4* @), ¢* @), 2* (1), v* (1)). 6.7)
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By Theorem 1.1 and Lemma 2.7, z* (t) achieves the pointwise minimum of
h(-,n*(@),t) for almost every t€ [0, 1], and by construction z* (¢) achieves the
pointwise minimum of % (-, #" (¢), t) for almost every 7€ [0, 1].

For fixed ¢, define

h (Zﬂ n=h(zmnt), g (Z)=g (z 1)

(6.8)
(le ’71)=(Zh (t): ”h (t)) ’ (225 ’72)=(Z* (t)a ’7* (t)) %
Applying (4.9) and integrating over ¢ € [0, 1], we get:
R L ©9)

Similarly, applying (4.14) with 5] =n' (t)T=(¢" ()T, ¢* ()T, T ()T, V' (1)T), we
have:
D (z*, u', u*)z —c {lg" =¥ 1P +1lg" —q*|>+ AT = A*|2+ W —v*|?}  (6.10)

where 00>¢>0 is a constant depending on parameters such as |V, K¢ (u* (+), )],
IIS|l, and «. Combining (6.9), (6.10), and (4.20), we find:

llz*—z*|P< e {{A* = A1, K, (@*)p+v* =, K, (x*)]
+1g" = g* 1> +llg" — g*I>+ A = A*[2+ IV —v¥?}.  (6.11)

Finally (3.7), Lemma 5.1, Lemma 5.2, and (6.11) give us ||z"—z*||=0 (k).
Proof of Result 4. Since u'=(q’, A*,v) € M, (6.11) again holds. Using the addi-
tional regularity (4*, A*,v¥) € W2, (6.11) and Lemmas 5.3-5.4 give us ||z"—z¥||=
=0 (h3/2). B
Proof of Result 5. Choose Sf< 8" so that a grid point of S lies at each point
of discontinuity in (4%, v*, §*) and at each point where a state constraint changes
from binding to nonbinding. Let ¢ be an interpolate of g* satisfying ¢* (1)=0,
and let (A, v!) be the approximations to (A*, v¥*) given by Corollaries 5.7 and 5.8
respectively. Hence u'=(q’, A',v))e M, and (6.11) holds.

Since A*>AM>0=K. (v*) and {A*, K. (u*))=0, we see that

Q=L K, (u*))=0. 6.12)
Since a grid point is situated wherever a state constraint changes from binding

to nobinding and ;=0 on grid intervals where ¥;=0, we conclude that ¥;=0 whe-
never v;=0 and

[* =1, K, (x*)]=0. (6.13)
Therefore, (6.11), (3.7), (5.34), and (5.35) give us ||z"—z*||=0 (A"). B

Proof of Result 1. Given u=(p, 4, w)e M, let (5(p(1)) denote the value of J
achieving the maximum in (2.10) for y=p (1). Define z=(x, u), u*=(p*, 1*, w*=
=%),

H(w=%,W+<Z: (p 1)—p 0 xo, and (6.14)
G (Za ﬂ)=<Pa x"‘Ax'—Bu>+<;"a Kc (U)>+<W, Ks (X)> _K.s (x (1)3 I)Té (p (1)) (615)



Convex conirol and dual approximations 83

Since ¢* (17)=0, we see that
Vi K (x* (1), 1)Tv* (17)—p* (1)=0. 6.16)
From the complementary slackness condition [v¥, K (x*)]=0 and the normali-
zation v* (1)=0, we obtain
K, (x* (1), DTv* (17)=0. 6.17)
Since the components of K (-, 1) are convex and K (x* (1), 1)<0, (6.16) and
(6.17) imply that

d(p* (1))=v*(17) and (6.18)
Zy (p* ())=p* (YT x* (1). (6.19)

Therefore, using (6.17), we have G (z*, u*)=0 and
G (z*, ))—G (z*%, u*)<O0 for all e IN. (6.20)

Let us apply Lemma 4.4 with y"=u'=(p’, 2T, w'), an interpolate of x* satisfying
p* (1)=p* (1). Define the variable #" by (6.1) and the variables #* and Q" by

n* (OT=(p* @O, p* @O, 2* (O, v* (1)), and (6.21)
Q=2 (p" W)= (p* O)—{x* O (p" D)—p* ()
+K, (x* (1), )T [ (0" (D)= (p* ()]} (6.22)

After integrating by parts, we obtain:

D (% 1t 0= [ [h(2" 0 1" (@), £) =k (z* () n* (@), 1)
—[(" O—n* @) g (z* (O, )] de+2"  (623)

where A (-, -, <) and g (-, ) were given by (2.5). Combining (6.17)~(6.19), we
observe that

Q=2 (p"(1))—x* (DT p" +K; (x* (1), )T (p" (1))<0 (6.24)
since
L, (P W)=2. (p" D), (p" (D))
=minimum {x” p" (1)- K (x, DT (p"(1)):xe R"}. (6.25)

By Theorem 1.1, (x*, #*) achieves the minimum in (1.5) for (p, 4, v)=(p*, 1¥,v¥).
Hence by Corollary 2.8, we have:

h (z* (t), n* (¢), t)=minimum {& (z, n* (¢), ):z € R"+™} (6.26)

for almost every 7€ [0, 1].
As in the proof of Result 3, we apply Lemma 4.2 to the integrand in (6.23) and
combine with (6.24) to get:

D %, ', 1)< — 5 I 242 6.27)
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Similarly applying (4.14) with #{ =#" (1) =(p" )7, p" ()", A* (), ¥ (£)7) leads to:
D (z*, 1, %)= —c {|p" = p* P+ lp" —p* P +IAT = A¥+ W' —w*?}. (6.28)

By our regularity assumption and (3.7), we see that p!—p*=0 (h)=A'—i* and
pT—p*=0 (M)=w'—w* except for a fixed set of grid intervals where p’ —p*=0 (1)=
=wl—w*. Hence (6.28) gives us:

D (z*, 1", n*)=0 (h). (6.29)
Combining (4.20), (6.27), and (6.29), we get:
Izt —z¥2< e (¥ =21, K. )y +c {w*—wh, K (x*)>+0 (7). (6.30)

By Lemma 5.1, {1*—21, K, (u*))=0 (h?); similarly, {w*—wi, K (x*)>=0 (h)
since wI—w*=0 (h) except for a fixed set of grid intervals where w*—w'=0 (1).
Therefore, (6.30) implies that ||z"—z*||=0 (A*/?). B

Proof of Result 9. Define u=(x, 4,v), z=(x, u), p*=(x*, A*,v¥), and H (u)=
=/ (1) where / is given by (2.43). For given u=(&, 4,v) € F, the feasible set (3.3),
let (g (1), u (1)) denote the (g, #) pair satisfying (2.34)-(2.35) and the initial condi-
tion g (1)=0; we set

P () ()=V, K, (x (-), )T v ()—q () (-) and 631)
G (2%, W)=<p (i), % — Ax— B+l K. ()
+v, K, ()]—K, (x (1), DTv (A7), (6.32)
Using (6.17) we find:
G (z*%, W)—G (z*%, u*)<O0 for all ueF. (6.33)

. Let us apply (4.20) with y"=u'=(xT, A1, "), an interpolate of (x*, A*, v*) such
that xT (0)=x,, xT ()=x* (1), and v! (1)=v* (17). Define u'=u (4", u'=u (ub),
P'=p ("), #" by (6.1) with w" replaced by %, and * by (6.21). By our choice of
finite element spaces, observe that p" e A; integrating by parts, we get:

D(z* ", n*)= fl [h (@ (@), 7" (@), 1) =k (2* (), n* (©), 1)
° O O-n* O) g (O] A2 (6349
where 4 (-, ¢, -) and g (-, ) were given in (2.5) and
Qr=p" ()T x" ()= K, (x" (1), DTy* A7) —p* (DT x* () +K, (x* (1), 1)Tv* (17)
—{x* T (7" O —p* D)= K, (x* (1), DT (" A)—v* (7))} (6.35)

Since (X, #)=(x", u") satisfy (2.34)-(2.35) for (g, 4, v)=(gq (&), A", V"), we know
that (x", u") achieves the minimum in the dual function (1.5) for (p, 4, v)=(p", A, v").
Hence Corollary 2.8 is applicable and (2.39) gives us

P )T X" (D)= K (x* (1), DTy (17)=2; (p" (1),v" (17)). (6.36)
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Combing (6.17) and (6.36), we obtain 2"<0. Moreover, Corollary 2.8 implies
that z" (¢) and z* (¢) minimize & (-,%" (¢), t) and & (-, 5% (¢), £) respectively for almost
every t €0, 1].

As in the proof of Result 3, the application of Lemma 4.2 to the integrand in
(6.34) leads to:

&
D (%, o, n*)< =7 [l =2 (6.37)

Similarly, (4.15), (2.47), and (3.7) give us:
D (z*, 1", n*)="= ¢ {Jloc" — x| + || —u*|?}
= —c{lu' = p*P+XT=x*?}=0 (#*).  (6.38)
Moreover, by Lemmas 5.1 and 5.2, we have:
G (z*, )= G (2%, p*)= =2%, K. @D+ D' —v*, K, (x*)]=0 (#*). (6.39)
Combining (4.20) and (6.37)-(6.39), we get |z"—z*||=0 (k). B
Proof of Remark 6.1. Suppose that u" satisfies (4.18) and u* € M satisfies
H (p*)=maximum {H (@): pe M}. (6.40)
Observe that
H(u*zH N> HWH)=H (u*)+G (%, i) —G (z*, p*)+D (%, ', u¥). (6.41)

In the proofs above, we worked with the estimate

p/ 2 :
2"~ 2P G % WD=G G H+—ID (% i ). (64D)

Hence (6.41) implies that the error bound for H (u*)—H (") would be the
square of the bound for |lz%—z*]|.
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Wypukle problemy sterowania i aproksymacje dualne

Korzystajac z dualnego sformulowania wypukiych problemoéw sterowania [2] otrzymano
oszacowanie bledu dla aproksymacji elementami skonczonymi. Wczesniejsze rezultaty [4] dotyczace
metody Ritza-Trefftza dla zadan z kwadratowym wskaznikiem jakosci przy afinicznych ogranicze-
niach nieréwnoséciowych stanu i sterowania zostaly rozszerzone na ogodlny przypadek wypukly.
Rowniez wprowadzono i zbadano dwie nowe wersje metody Ritza-Trefftza.

Briykiibie 3a/5a49H YOPaBICHUS H JIyaJbHbIe AMIPOKCHMANHH

Vicnons3yst nyaibHyro (GOPMYJIMPOBKY BBIIYKJIBIX 3a1a4 ynpasjieHws: [2] IosyseHa OICHKA
OMMOKA aNNpPOKCUMALME KOHEYHBIME JJeMeHTaMu. boliee paHHHme pe3ynbTarhi [4], kacaroiimecs
metona Puna-Tpedua mmst 3ama¥ ¢ KBaOpaTHBIM ITOKa3aTeeM KayecTBa, npu adGUHHBIX OrpaHH-
YeHMSX THIA HEPABEHCTBA Ha COCTOSIHEE W yIpaBieHue, ObUTH PACIIMpPEHB! Uit OOLIeH BBITYKIIOHN
3a7aui. BbUIM BBEIEHBI M MCCIEAOBAHBI TAKXKE BE HOBble Bepcuu Merona Puua-Tpedua.

Erratum to Part I

Page Instead of should be

142 [11-14], [7-8], [17], [18] [12-15], [8-9], [19], [20]
11, [5] [6]

12, [16, Theorem 2.17] [17, Theorem 2.17]
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