
Control 
and Cybernetics 
VOL. 8 (1979) No. 2 

Convex Control and Dual Approximations. Part 11 

by 

WILLIAM W. HAGER 

Department of Mathematics of Carnegie~Mellon 
University, Pittsburgh, Pensylvania 

In the Part I of the paper, we introduced a convex control problem along with 
its Lagrange dual, we discussed the evaluation of the dual functional, and we deve
loped three finite element approximations to the dual problem. We now obtain 
em)i: estimates for these finite element schemes. These estimates are based on the 
minimum principles developed in Part I and the convergence rates for piecewise 
polynomial restricted range approximation proven below. Section 4 presents a ge
neral theory for estimating the error in dual approximations; Section 5 bounds 
the error in approximating functions with restricted range; and Section 6 applies 
the results of the previous sections to estimate the error in dual approximations to 
control problems. 

4. Abstract Error Estimates 

Our error estimates are based on the four lemmas given below. Suppose we have 
functions/: R"-+R and g: R"-+R"' and a setEcR"'. For (z, rt) ER" x E, let us define: 

h (z, rt)=f(z)+rtT g (z) and 

h (17)=.inf {h (z, 17): z ER"}. 

We assume the following: 
(i) f, g E C2 and 
(ii) there exists a>O such that Vih(z,rt)>al for all zER" and 17EE. 

(4.1) 

(4.2) 

By Lemma 2.2, there exists a unique z (rt) ERn such that h (z (17), rt)=h (rt). 
Given 17 1 ,172 E E, define the vectors z1,=z (rtk) for k= 1, 2, and the matrices: 

1 

Ho = J Vi h (zz+s (z1 - z2), 1'/1 ) ds, and 
0 

1 

H1 = J (1-s) Vi h (zz+s (z1 -z2 ), 171) d~. 
0 

(4.3) 

(4.4) 
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LEMMA 4.1. For all 171,172 EE, we have: 

Ho (z1 -Zz)=Vg (zz)T (11z-111). 

Proof. Since zk is the unconstrained minimum of h ( ·, 11k), it follows that 

V 1 h (zk, 11k)=0 for k= I, 2. 

Subtracting these equalities · and .. observing that 

O=V\ h (zz, 11z)=V1 h (zz, 111)+V1 g (zzY (11z-1'!1), 

we get: 

V 1 h (zl, 111)- V 1 h (zz, 1!t)= V 1 g (zz)T (11z -171). 

Hence we have (4.5). 

LEMMA 4.2. For all 171 ,172 EE, we have: 
oc 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

• 
h (171)- h (11z)- g (zz)T (171, I'Jz)~ -21z1-z2l 2

• (4.9) 

Proof. Replacingh (I'Jk) by f(zk)+I'J[ g (zk), we see that 

h (I'Jl)-h (I'Jz)-g (zz)T (171 -11z)=h (zl> 111)-h (z2 , I'Jt). (4.10) 

Expanding the right side of (4.10) in a Taylor series about z=z2 and using the 
integral form for the remainder term, we get: 

(4.10)= vl h(zz, 111) (zl -z2)+(z1-Zz)T Hl (zl -Zz). (4.11) 

Substituting for V 1 h (z2 , 17 1) from (4.7) and using identity (4.5), gives us: 

(4.10)=(zl -zz) T(H1 -H0 ) (z1 -Zz). (4.12) 

Substracting (4.3) from (4.4) and utilizing assumption (ii), we obtain: 

1 

(4.10)~ -oc lz1 -zzl 2 J s ds=- ; lz1 -z2 1
2

• 

0 

LEMMA 4.3. For all 1'] 1 , n2 E E, we have: 

(4.13) 

• 
h (171)-h (I'Jz)-g (zz)T (I'JJ -11z)~ -IVg (zzY (1'Jt-11z)l 2 /oc, (4.14) 

h (11t)-h (I'Jz)-g (zzY (1'Jt-11z)~ -IHol lzl -Zzl 2
• (4.15) 

Proof. For any positive definite matrix P, observe that -sP~ -P for all sE [0, 1]. 
Combing this relation with (4.12) and (4.3)-(4.5) gives us: 

1 

(4.10)=(z1 -z2Y [f -sVih(z2 +s(z1 -z2 ),1'J1) ds] (z 1 -z2 ) 

0 

~ -(z1 -zz)T H0 (z1 -zz) 

= -(I'Jl -1']z)T Vg (zz) H~ 1 Vg (zz)T (171-I'Jz). (4.16) 

Since the largest eigenvalue of H~ 1 is bounded by 1/oc (assumption (ii)), these 
last two inequalities lead to (4.14)-(4.15). • 
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LEMMA 4.4. Suppose that G:ZXM-tR1 , H:M----+Rl, M 11 cM, and for some p*, 
p11 e M and z* e Z, the following ralations hold: 

G(z*,p)-G(z*,p*)~O for all peM, (4.17) 

H (ph)=sup {H (v11): v'' e M 11}. (4.18) 

Defining the functional 

D (z, p1 , p2 )=H (p1)-H (p2)- G (z, p 1)+G (z, f..lz), (4.19) 

we have: 

D (z*, p11 , p*)?;:;G (z*, y11)-G (z*, p*)+D (z*, yh, p*) (4.20) 

for all y1
' E M''. 

Proof. Using the identity (4.19) and relation (4.17), we get: 

H(p11)=H(p*)+G (z*, ph)-G (z*, p*)+D (z*, ph, p*) 

~H (p*)+D (z*, ph, p*) . 

On the other hand, (4.18) implies that for all yh E Mh: 

H(ph)?;:;H(yh) 

=H (Jt*)+G (z*, y")- G (z*, p*)+D (z*, y1', p*). 

Combining (4.21) and (4.22) gives us (4.20). 

5. Restricted Range Approximation 

(4.21) 

(4.22) 

• 
The following approximation results are needed for the error estimates in 

Section 6. 

LEMMA 5.1. Consider the space P~ of piecewise constant functions and suppose that 
J, g E W 1 with fg=O. Then we have 

(5.1) 

Proof. Express the grid intervals of P~ as J0 uJ1 where the elements of J0 

are all the grid intervals T such that fiT=O. If T E J0 , then F = f=O on T. Introdu
cing the notation 

<J,g),o=}; (j,g)T, 
TEJo 

we conclude that: 

(5.2) 

If TEJ1 , the condition fg=O implies the existence of a ET such that g (a)=O. 
Since g E W 1

, a Taylor expansion gives us: 

(5.3) 
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On the other hand, fe W1 and by (3.7), we have: 

lf-Jlh~ch I f<lljy. 

Combining (5.3) and (5.4), we get: 

<F-f, g)T~ ch2meas (T) for all T E J 1, and 

<F- f, g)J, ~ch2 • 

Finally (5.2) and (5.6) imply (5.1). 

W. W. HAGER 

(5.4) 

(5.5) 

(5.6) 

• 
LEEMA 5.2. Consider the space P~ of piecewise constant functions and suppose that 
feW\ g E W 2 , g~O, and f' g:O. Then we have: 

(5.7) 

Proof. Express the grid intervals of P~ as J0 u 11 where the elements of J0 are 
all grid intervals T such that f'lr==O almost everywhere. 

If T= [s, t] E J0 , then ji = f on (s, t) and 
t-

J g (a) d (Jl (a))=O. (5.8) 
s+ 

Let G1 be the union of all end points of grid intervals in 11 • Relation (5.8) 
and the identity [f, g]=O implies that: 

(5.9) 

Since f' g= O, we conclude that for all T E J 1 , there exists a ET such that g (a)=O. 
Moreover, g' (a) = O since g~O and g E W 2

• Therefore, by a Taylor expansion 
about .a, we get: 

(5.10) 

On the other hand, by (3.7) we have: 

IF (t+)-P (t-)1~ I P (t+) - f(t)l+ I P (t-) - f(t)l~ch I f(l)l· (5.11) 

Finally (5.9)-(5.11) gives us (5.7). • 
We say that fe Wk if there exist l<oo and scalars 0=s0 <s1 ... ~s1 =1 such that 

f<k) is essentially bounded on (si, si+L) for all j. 

LEMMA 5.3. Consider the piecewise linear space S1=C0 nP;. and suppose that 
f, g E W\ fg = O, and fE W2

• Then we have: 

(5.12) 

Proof. Express the gird intervals of S~ as Jdu J where Jd is the set of grid intervals 
T such that Tn { sk: k=O, ... ,l} ¥: 0, and let J0 and J 1 be the sets defined in the proof 
of Lemma 5.1. Since f=F on J0 and (5.5) holds on Jdn 1 1 , we get: 

<JI-f,g)J4~ch2 }; meas(T)=O(h3
). (5.13) 

TEJd 
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On the other hand, for all T E le we have f " IT EL oo and for piecewise linear 
interpolation, we obtain: 

I!-Fh~ch2 lf<2 liT for all TEl n 11 . 

Since Jl=f on 10 , (5.14) and (5.3) give us: 

<F-J, g),c=O (h3
). 

Combining Relations (5.13) and (5.15), we get (5.12). 

(5.14) 

(5.15) 

• 
LEMMA 5.4. Consider the pieecewise linear spaces~= C0nP~ and suppose thatjEW1n 
n W2

, g E W 2
, g~O, and f' g=O. Then we have: 

(5.16) 

Proof. Let (J0 , ft) and (Jc, ld) be the sets defined in Lemmas 5.2 and 5.3 respectively. 
Since f,/ 1 E W 1, we ·see that: 

[Jl-J, g]=<(Jl- f)', g) and (5.17) 

using the identity f 1 = f on 10 leads to: 

The interpolation estimate (3.7) gives us: 

ICJI -/)'jy~c for all TE T1 nfc, and 

ICF-J)'ly~ch for all TE11 nlc. 

Combining relations (5.19) and (5.10), we get: 

<(jl- f)', g),,M4~ch2 }; meas (T)~ch3 • 

Similarly, (5.20) and (5.10) imply that: 

<CJI-/)',g),,,.,,c~ch3 }; meas (T)~ch 3 • 
TEJc 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

Relations (5.18), (5.21), and (5.22) complete the proof. 11 
Let Pk be the space of polynomials with degree at most k-1. Given /ECk, we 

say that p E Pk interpolates f if the number of zeroes off-p is at least k (counting 
multiplicities). The following lemma appeared in [5], but the proof was never publi
shed: 

LEMMA 5.5. Suppose that J, g: [0, 1]-+ R, f ":? g, f E Ck, and there exists p E P k such 
that f>p":?g. Then f has an interpolate ji EPk sush that j"~Jl":?g. 

REMARK 5.6. If f has an interpolate ji EPk and {ti> ... , tn} are zeroes off- ji with 
associated multiplicities {m1 , ... , mn} satisfying 



78 W. W. HAGER 

recall [18, p. 244] that for all t E [0, 1], there exists ~ (t) e [0, 1] such that 

j(k) (~ (t)) " 
f(t)=Jl (t) +--k!-n (t-tj)'"1• (5.23) • 

j= 1 

Proof of Lemma 5.5. Define the set 

F={p EPk:f~p~g}. 

The lemma is an immediate consequence of the following assertion: 

If p e F, the number of zeroes of f-p (counting multiplicities) 
is f-1, and1-l<k, then there exists qeP1 such that (p+q)eF 
and the number of zeroes of (f-p-q) (counting multiplicities) 

(5.24) 

is at least !. (5.25) 

Proof of assertion 5.25. Let {t1 , •.. , t")c [0, 1] be the zeroes of (f-p) and let 
{m 11 ••• , m11 } be the associated multiplicities. Since f-p~O on [0, 1], we find by 
a Taylor expansion about tj that: 

(i) If t i < 1, then m i is even. 
(ii) For all j, ( -1)"'1 (f-p)<"' 1) (ti)>O. 
Given 8 > 0, define the function 

" it-tj i"'J 
p,(t)=8 n m-! for (E (0, 1]. 

j= 1 J 

(5.26) 

Since mi is even for t i < 1, we see that p. is a polynomial on [0, 1]; moreover, 
we have p, E P1 and p.~O. Defining 

(5.27) 

(i) and (ii) imply that there exist open intervals {l11 •• • , /,.} such that tie Ii and 

(f-p-p6,)(t)~O for all t E Ii and j=1, ... , n. 

Since p, (t) is monotone in 8, (5.28) also gives us: for all 0~8~J1 , 

(f-p-p,)(t)~O for all t e Ii and j=l, ... , n. 

Define the following: 

I Ll={t E [0, 1]: t rf= Ii for j=l, 2, ... , n}, 

] Jz=inf {f(t)-p (t): tELl}. 

(5.28) 

(5.29) 

(5.30) 

Since f and p are continuous, Ll is compact, and Ll excludes all zeroes of 
f-p, we have J 2 >0. Observe that IP.I~8 and consequently 

(f-p-p02)(t)~O for all teLl. 

Combining (5.29) and (5.31), we get for all 0~8~min {J1, J 2 } , 

(f-p-p,)(t)~O for all t E [0, 1] . 

(5.31) 

(5.32) 

-- ---------- -
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Now define q=p,'" where 

8m=sup {8:(/-p-p,)EF}. (5.33) 

Since IP.I-HJJ as 8-HJJ, it follows that 8,<oo. Moreover, the number of zeroes 
·of (f-p-q) is greater than l-1 (or else (f-p-q-p,) E F for 8 sufficiently small 
and the extremality of 8, is violated). This completes the proof of asserion (5.25) . 

• CoROLLARY 5.7. Consider the space P;(k>O) and suppose thatf~O andj<k) is etsen-
tially bounded on the interior of all grid intervals for S~; then there exists pES~ 
such that f ~ p ~ 0 and for all grid intervals T, we have: 

lf-pjy~chk I f(k)lr· (5.34) 

Proof. Apply Lemma 5.5 and Remark 5.6 to each grid interval. • 

CoROLLARY 5.8. Consider the space S~=C0 nP~(k>1) and suppose that feW 1 , 

f'~O almost everywhere, and j<kl is essentially bounded on the interior of all grid 
intervals for S~. Then there exists p E s: such that p' ~ 0 and for all grid intervals T, 
we have 

(5.35) 

Moreover, p can be chosen so that p' lr=O whenever f' lr=O. 

Proof. By Corollary 5.7, there exists q E s:_ 1 such thatf'~q~O and for all 
grid intervals T, we have: 

We construct p E sz on the grid interval T= [r, s] as follows. First set 

then define 

t 

p(t)=f(r)+ J q(s)ds; 

(t-r) 
p(t)=p(t)+-(--) (f(s)-p(s)). 

s-r 

(5.36) 

(5.37) 

(5.38) 

Since O~q~f', we have both p'=q~O and f(s)-p(s)~O. Therefore, p'~O 
andp' lr=O wheneverf' lr=O. Furthermore, (5.38) implies thatp (r)=f(r) andp (s)= 
=f(s). Hence p E C0 nP~. Subtracting from (5.37) the identity 

t 

f(t)=f(r)+ J f' (s) ds 

and utilizing (5.36), we get 

But by (5.38), we have 

I p-plr~ I f(s)-p (s)j. 

Finally (5.40) and (5.41) imply (5.35). 

(5.39) 

(5.40) 

(5.41) 

• 
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6. Control and State Error 

Associated with any solution to the dual approximations (3.11)-(3.13) is a pair 
z"=(x1

', u") that achieves the minimum in the dual function. This section studies
the error llz''-z* ll where z*=(x*, u*). 

First let us describe more precisely the pair (x", u11). If ()''=(p1', A.", w'') solves 
(3J 1), we define 

17 11 (t)l'=(p1' (t)l',p" (t)l', A11 (t)T, W11 (t)T) for all t E (0, 1) (6.1} 

and z" is the function z given by (2.27} .for rt=rl. Similarly, if f-l"=(q", A.", v11} 
solves (3J2), we define 

171
' (t)T =(411 (t)l', q'' (t)T, A." (t)T, v" (t)T) for all t E [0, 1] (6.2) 

and z" is the function i given by (2.32) for 1J=11"· Finally, if u11 =(x", ).'', v") solves 
(3JO), we choose (qh, fl=u") satisfying (2.34)-(2.35) for (x, A., v)=(x11 , )/', v'') where 
q" (1)=0. 

The tables below indicate the convergence rates that will be established for the 
error llz"-z* lf using various choices for the finite element spaces. The first three 
columns give the finite element space associated with each dual variable, and the 
last column gives the exponent in the convergence rate for llz"- z* ll. Following the 
tables, we state the regularity needed for our convergence proofs. 

The entries (k,j), (k,j), and k in the tables below mean PZ n Ci, PZ n Ci, and 
PZ, respectively. 

1. 
2. 

3. 
4. 

5. 

6. 
7, 
8, 

9. 
10. 
11. 

I Method (3.11) 

P I w 

I 

(2, 0) I 
(k + l,O) 

Method (3 12) 
(Affine State Constraints) 

q I }, I V 

(2,0) 

I 
1 1 

(3 ,0) (2,0) (2,0) 

Ck + l ,O) le (k, 0) 

Method (3.13) 
(Affine State Constraints) 

X I A I V 

(2,0) I 1 

I 
(2,0) 

(2,0) 

I 
(2,0) (2,0) 

Cf, o) k (le, 0) 

Method (3.13) 
(General Convex State Constraints) 

X 

I 

(2,0) 
(3,0) 

(k+l,O) 

I 
I A 

1 
(2,0) 

k 

I V 

(2,0) 
(2,0) 

(k, 0) 

I 
I 

I 

! 

I 

I 

Error 

.5 
k 

Error 

1.0 
1.5 
k 

Error 

1.0 
1.5 
k 

Error 

1.0 
1.5 
k 
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REMARK 6.1. We show later that the convergence rate in cost (such as !£ (fJh)
- C (z*)) is always twice the convergence rate of zh, 

REMARK 6.2. If the state constraints of (C) are vacuous, then programs (3.11) and 
{3.12) are the same; hence, the error in method (3.11) will satisfy the better estimates 
given for method (3.12) above. 

Assumptions 

In all cases, we assume that (1.2)-(1.4) hold; hence, there exist solutions to the 
primal and the dual problems. In addition, for each of the 11 cases above, we make 
the corresponding regularity assumptions listed below. The terminology "FA holds" 
means that there are a finite number of times on [0 ,1] where a state constraint 
alternates from binding to nonbinding (finite alteration). 

1. (x*, u*, A.*, v*,p*) E W 1 and (v*,p*) E W2 • 

2. (v*,p*)e W\ (A.*.v*,p*)E W\ and FA holds. 
3. (q*, .X*, u*, A.*, v*) E W 1

• 

4. (q*,x*,u*,.lt*,v*)eW1 and (A.*,v*,q*)EW2
. 

5. (q'\ v*) E W\ (q*, A.*, v*) E W\ and FA holds. 
6. (.X'\ A.*, v*, u*) E W 1

• 

7. (.X*,A.*,v*,u*)EW1 and (A.*,v*)eW2
• 

8. (x*, v*) E W\ (x*, A.*, v*) E W\ and FA holds. 
9. (x*,},*,v*,u*)e W 1 and K.eC3 • 

10. (x*,A.*,v*,u*)e Wl, (x*,A.*,v*)e W2
, and K.eC3 • 

11. (x<", v*) E W\ (.X*, A.* , v*) E W\ K. E C 3
, and FA holds. 

Proofs are now presented for Results 1, 3, 4, 5, and 9. Using the techniques 
introduced in these proofs, the remaining results can be established. 

Proof of Result 3. Define fl=(q, A., v), z=(x, u), p*=(q*, A.*, v*), H(fl)=L (/t) 
(L given by (2.30)), and 

G (z, fl)=(Sr v-q, x-Ax-Bu)+(),, Kc (u))+[v, K. (x)]. (6.3) 

By the complementary slackness conditions, G (z*, p*)=O and consequently 
we have: 

G(z*,fl)-G(z*,fl*)<O for all f1EM. (6.4) 

Let us apply Lemma 4.4 with y1'=p1=(q1
, A.1, v1

), an interpolate of (q*, A.*, v*) 
satisfying q1 (1)=0. 

Consider the D terms in ( 4.20): After an integration by parts, we see that 
1 

D (z*, 171
', 17*)= J [h (z'' (t), 17h (t), t) -h (z* (t), 17* (t), t) 

0 

-(171
' (t)-17* (t))T g (z* (t), t)] dt (6.5) 

where h ( ·, · , ·) and g ( ·, ·) were defined in (2.31), 

17h (t) =((Jh (t), qh (t), A,h (t), vh (t)), and 

17* (t) =(q* (t), q* (t), A.* (t), v* (t)). 

(6.6) 

(6.7) 
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By Theorem 1.1 and Lemma 2.7, z* (t) achieves the pointwise minimum of 
h ( · , 17* (t), t) for almost every t E [0, 1], and by construction zh (t) achieves the 
pointwise minimum of h ( · , 1'/h (t), t) for almost every t E [0, 1]. 

For fixed t, define 

[ 

h (z, 1J)=h (z, 1'J, t), g (z)=g (z, t) 

(zl> 1'J 1)=(z" (t), 1'Jh (t)), (z2 , 1J 2 )=(z* (t), 11* (t)). 
(6.8) 

Applying (4.9) and integrating over t E [0, 1], we get: 

(6.9} 

Similarly, applying (4.14) with 11i =1JI (t)T =((jl (t)T, qi (t)T, . .F (t)T, vi (t)T), we 
have: 

D (z*, Jl, p*)?J; -c {llcY -4* 11 2 + llqi -q* II 2 + IW -).* ll 2 + llvi -v*W} (6.10) 

where oo > c>O is a constant depending on parameters such as I v't Kc (u* (·),·)I , 
IISII, and tf. . Combining (6.9), (6.10), and (4.20), we find: 

llzh-z* ll 2 ~c {(A.* -A. I, Kc (u*))+ [v* -vi, Ks (x*)] 

+ IW-4* 112 +IIqi-q* II 2 + IW-A.* Il2 + llvi -v*ljl}. (6.11) 

Finally (3.7), Lemma 5.1, Lemma 5.2, and (6.11) give us llzh-z* II =O (h). • 

Proof of Result 4. Since Jl-I=(qi,A.1,vi)eM, (6.11) again holds. Using the addi
tional regularity (q*, A.*, v*) E W2

, (6.11) and Lemmas 5.3-5.4 give us llzh-z* ll= 
=0 (h3/2). • 

Proof of Result 5. Choose S~cs: so that a grid point of sz lies at each point 
of discontinuity in (A.*, v*, q *) and at each point where a state constraint changes 
from binding to nonbinding. Let q1 be an interpolate of q* satisfying qi (1)=0, 
and let (A.1, vi) be the approximations to (A.*, v*) given by Corollaries 5.7 and 5.8 
respectively. Hence fl-I=(q1, A.1, vi) EM, and (6.11) holds. 

Since A.*?:;A.1 ?:;0?:;Kc (u*) and (A.*, Kc (u*))=O, we see that 

(A.*-A.1,Kc(u*))=0. (6.12) 

Since a grid point is situated wherever a state constraint changes from binding 
to no binding and v~=O on grid intervals where v; =0, we conclude that v~=O whe
never v; =0 and 

[v* -vi, Ks (x*)]=O. (6.13) 

Therefore, (6.11), (3. 7), (5.34), and (5.35) give us llz1
'- z* ll =0 (hk). • 

Proof of Result 1. Given p=(p, A., w) E \m, let ~ (p (1)) denote the value of ~ 
achieving the maximum in (2.10) for y=p (1). Define z=(x, u), p* =(p*, A.*, w* = 
=v*), 

H(p)=!f'o(Jl-)+!£ 1 (p(l))-p(O)Tx0 , and (6.14) 

G (z, Jl-)=(p, x-Ax-Bu)+()., Kc(u))+(w, Ks (x))-K, (x(l), 1Y ~ (p (1)). (6.15) 

------------------------------------------



Convex contiol and dual approxima.tions 83 

Since q* (1 - )= 0, we see that 

v1 K.(x* (1), IYv* (1-) - p* (1) = 0 . (6.16) 

From the complementary slackness condition [v*, K. (x*)] = O and the normali
zation v* (1) = 0, we obtain 

K. (x* (1), 1)T v* o-)= 0. (6.17) 

Since the components of K. ( ·, 1) are convex and K. (x* (1), 1):(0, (6.16) and 
(6.17) imply that 

J (p* (l)) = v* (1 -) and 

2 1 (p* (I)) = p* OY x* (1). 

Therefore, using (6.17), we have G (z*, Jl*) = O and 

G (z*, Jl) - G (z*, Jl*):(O for all Jl E 9JL 

(6.18) 

(6.19) 

(6.20) 

Let us apply Lemma 4.4 with y''=J11 =(p1
, A.1 , w1

), an interpolate of Jl* satisfying 
p1 (1) = p* (1). Define the variable r!'' by (6.1) and the variables rt* and Qh by 

rt* (t)T=(p* (tY,p* (t)r, J..* (t)T, v* (t)r), and (6.21) 

Q"= 2 1 (p" (1)) - 21 (p':' (1)) - {x* OY (p" (1) - p* (1)) 

+K. (x* (1), 1Y [J (p'' (1))-J (p* (1))]}. (6.22) 

After integrating by parts, we obtain: 

1 

D(z*, 171
', rt*) = J [h (z" (t), rt" (t), t)-h (z* (t), 11* (t), t) 

0 

- [(11" (t) - rt* (t)y g (z* (t), t)] dt+Q" (6.23) 

where h(·, ·,·)and g(·, ·)were given by (2.5). Combining (6.17)-(6.19), we 
observe that 

since 

21 (p" (1))=21 (p" (1), J (p" (1))) 

=minimum {xr p" (1)-K. (x, 1Y J (p" (1)):x ER"}. (6.25) 

By Theorem 1.1, (x*, u*) achieves the minimum in (1.5) for(p, ),, v) = (p*, A.*, v*). 
Hence by Corollary 2.8, we have: 

h (z* (t), rt* (t), t) = minimum {h (z, rt* (t), t):z ER"+"'} (6.26) 

for almost every t E [0, 1]. 
As in the proof of Result 3, we apply Lemma 4.2 to the integran d in (6.23) and 

combine with (6.24) to get: 

(6.27) 
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Similarly applying (4.14) with r/f =rl (t)r =(pr (t)T,pr (tY, . .F (t)r, vi (tY) leads to: 

D (z*, rl, 17*)~- c {lW-p*ll2 +IIPI -p*ll2 +!i..1/- A. *ll 2 +!1wr- w*ll2
}. (6.28) 

By our regularity assumption and (3.7), we see thatpi-p*=O(h)=}/-)* and 
pi -p*=O (h)=wr-w* except for a fixed set of grid intervals where pr-p*=O (1)= 
=wi-w*. Hence (6.28) gives us: 

D (z*, 17r, 17*)~0 (h). (6.29) 

Combining (4.20), (6.27), and (6.29), we get: 

llz"- z* ll 2 ~ c (), *- //, Kc (u*))+c (w*- w1
, Ks (x*))+O (h). (6.30) 

By Lemma 5.1 , (),*-A. I, Kc (u*))=O (h 2 ); similarly, (w*- wi, K. (x*))=O (h) 
since wi- w* =0 (h) except for a fixed set of grid intervals where w*- wi =0 (1). 
Therefore, (6.30) implies that llz''-z* II =O (h1

'
2

) . • 

Proof of Result 9. Define p=(x, A., v), z=(x, u), p*=(x*, /,*, v*), and H(p)= 
=l (p) where lis given by (2.43). For given p=(x, A., v) E F, the feasible set (3.3), 
let (q (p), u (p)) denote the (q, u) pair satisfying (2.34)-(2.35) and the initial condi
tion q (1)=0; we set 

p(p)( · )=V1 K. (x (·), ·Yv(·)-q(p)(·) and (6.31) 

G (z*, fl)=(p (J-l), x-Ax-Bu)+(A., Kc (u)) 

+ [v, Ks (x)]- Ks (x (1), l)Tv (1-). (6.32) 

Using (6.17) we find: 

G(z*,p)-G(z*,p*)~O for all pEF. (6.33) 

Let us apply (4.20) with y"=f11=(xi, A.I, v1), an interpolate of (x *, A.*, v*) such 
that xi (0)=x0 , xi (1)=x* (1), and vi (1)=v* (1-). Define u''=u (J-l"), ur=u (/-li), 
p"=p (ph), 11'' by (6.1) with wh replaced by v", and 17* by (6.21). By our choice of 
finite element spaces, observe that p 1

' EA; integrating by parts, we get: 

1 

D (z*, 171
', 17*)= J [h (z'' (t), 171

' (t), t)- h (z* (t), 17* (t), t) 
0 

-(17" (t)-17* (t)y g (z* (t), t)] dt+Q11 (6.34) 

where h (·, ·, ·) and g (·, ·) were given in (2.5) and 

Q"=ph (l)T x11 (1)-K. (x" (1), 1Yv'' (1-)-p* (1)T x* (l)+K. (x* (1), 1Yv* (1-) 

-{x* (l)T (p" (1)-p* (1))-K. (x* (1), IY (v'' (1-)-v* (1-))}. (6.35) 

Since (x, ii)=(x'', u1
') satisfy (2.34)-(2.35) for (q, A., v)=(q (p"), A.",/'), we know 

that (x", u1
') achieves the minimum in the dual function (1.5) for (p, A., v)=(p'', /,", v11). 

Hence Corollary 2.8 is applicable and (2.39) gives us 

p11 (l)r x'' (1)-K. (x" (1), lYv" (1-)=21 (p" (1), v" (1-)). (6.36) 
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Combing (6.17) and (6.36), we obtain .Qh~ 0. Moreover, Corollary 2.8 implies 
that z1' (t) and z* (t) minimize h ( ·, rth (t), t) and h ( ·, rt* (t), t) respectively for almost 
every t E [0, 1]. 

As in the proof of Result 3, the application of Lemma 4.2 to the integrand in 
(6.34) leads to: 

(6.37) 

Similarly, (4.15), (2.47), and (3.7) give us: 

D (z*, 1Jr, rt*);:: ·-c {llxr -x*[[ 2 +[1ur -u*[[Z} 

;:: - c {litl- ,u*[[ 2 + lW - .X*[[2 }=0 (h2
). (6.38) 

Moreover, by Lemmas 5.1 and 5.2, we have: 

G (z*, flr) - G (z*, fl*)=()/ - ), *, Kc (u*))+ [v - v*, K. (x*)]=O (h2). (6.39) 

Combining (4.20) and (6.37)-(6.39), we get [[zh-z':'II=O (h). • 
Proof of Remark 6.1. Suppose that flh satisfies (4.18) and p* eM satisfies 

H (tt*)=maximum {H (/1): f1 EM}. (6.40) 

Observe that 

In the proofs above, we worked with the estimate 

(6.42) 

Hence (6.41) implies that the error bound for H(f1*)-H(f111
) would be the 

square of the bound for llzh- z*[ j. 11 
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Wypukle problemy sterowania i aproksymacje dualne 

Korzystajflc z dualnego sformulowania wypuk!ych problem6w sterowania [2] otrzymano 
oszacowanie bl~du dla aproksymacji elementami skonczonymi. Wczesniejsze rezultaty [4] dotycz~ce 
metody Ritza-Trefftza dla zadan z kwadratowym wskaznikiem jakosci przy afinicznych ogranicze
niach nier6wnosciowych stanu i sterowania zostaly rozszerzone na og6lny przypadek wypuk!y. 
R6wniez wprowadzono i zbadano dwie nowe wersje metody Ritza-Trefftza. 

BI>myimLie 3a,LJ,aqu ynpan.TJeHIIB n ,LJ,yaJII>Hhie annpoi~cnMaQnn 

HcrrOJih3Yli p,yaJibHYIO <]JopMyJIHpOBKY BbiiiYKJib1X 3aAa'i yrrpasJieHIDI [2] r;oJiy'ieHa ou;eHKa 
orrm:6KH arrrrpoKcHMau;mr KOlfe'iHDIMll 3JieMeJ1TaMH. EoJiee pamm:e pe3yJibtant [4], KacaEOJ.IIl[ecli 
MeTOAa Plfl(a-Tpe<]Ju;a AJili 3Ma'i C KBaApaTHbiM IIOKa3aTeJieM Ka'ieCTBa, IIPH a<]J<jJHilf!hlX orpann
'IeHHliX THIIa Hepasel{CTBa l{a COCTOlllfJie R yrrpaBJieHRe, 6bJJIII paCIIIJipeHbt AJili o6ru:el1: Bh!IIYKJ!OH 
3aAa'iR. nhiJIH BBeAeHbi H RCCJieAOBalfbi TaKJKe ABe lfOBhie Bepcmr MeTOAa Pnu;a-Tpe<]Ju;a. 
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