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In the paper some finite-difference approximations to one-dimensional parabolic free boundary
value problems arising in modelling of an underground gas reservoir are proposed. In the process
of constructing the difference scheme a preparatory transformation of the free boundary problem
into a nonlinear problem in an a priori given domain is applied. The proposed schemes are of the
homogeneous and balanced type.

1. Introduction

This paper establishes finite-difference approximations for one-dimensional
parabolic free boundary value problems suggested by equations modelling flow of
gas and water in an underground gas reservoir formed in a water-bearing layer
[5, 10]. The algorithms presented in the paper may be useful for computations con-
cerning design and exploitation of underground gas reservoirs as well as for solving
optimal control problems of pipeline networks containing such reservoirs.

The mathematical models of underground gas reservoir, formulated in terms of
pressure or respectively in terms of filtration velocity, have been presented in [5, 10].
These models belong to class of so called two-layer parabolic free boundary value
problems. Their analytical properties such as correctness in the Hadamard sense
and the maximum principle have been proved in [10, 11]. We will make use of
results presented in those papers in order to demonstrate the convergence of finite-
difference approximations to the models considered.

Numerical methods for solving parabolic free boundary value problems have
been proposed by many authors [3, 9, 18]. Most of them have investigated multi-
phase problems, known also as Stefan problems. In view of the essential difference
between multi-phase and multi-layer problems, inherent in form of conditions which
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hold along free boundary, it was difficult for us to make use of the approaches
proposed by these authors.

Finite-difference approximations to multi-layer free boundary value problems
have been investigated in [2, 7, 8, 17]. Most of the methods proposed in these works
have not been studied from the theoretical point of view. Only numerical results
testifying convergence of the methods in the case of particular boundary conditions
(for which solution in analytical form is known) have been presented. The only
exception is the work [2] by Ciment and Guenther in which theoretical analysis
of the convergence of some finite-difference method has been performed as well
as numerical results have been discussed. The method proposed in that work gene-
rates an uneven grid on each time step what greatly diminishes the efficiency of
the method.

In the finite-difference methods which we propose the fixed grid pattern for the
whole time interval is used. Moreover, the difference schemes express on the grid
continuity flow principle, so they may be treated as a discrete models of filtration
phenomena in the underground gas reservoir.

In part I of the paper we present a finite-difference method based on some pre-
paratory transformation of the free boundary value problem into a nonlinear para-
bolic problem in domain with fixed boundary (Section 4). For the transformed
problem we construct in Section 5 a finite-difference scheme of the conservative
type, expressing on the grid fundamental physical conservation principles. Two
numerical algorithms for solving the free boundary value problem, without iterations
and iterative one, are presented (Section 5).

In part I of the paper we will prove the convergence of the finite-difference
scheme presented in part I. We also are going to describe a direct finite-difference
method in which preparatory transformation of the problem is not used. Compari-
son between numerical efficiency of the method with transformation and the di-
rect one will be presented.

2. Notations and Conventions

DA{(x,t)|x € (0,1), € (0, T)}, I'2{(x,t)|x=y (1), 1€ (0, T)},
D A{(x,t)|x€ (0, y (t)), te (0, T)}, D2{(x,0)|xe(y(),]),te(0, 1)},
Z,2{(x,)]x € (0, y (0)), =0}, Z,2{(x, H)|x € (¥ (0),]), t=0}

where />0, T>0; function y describes the free boundary, y (¢) € (0, /) for ¢ € [0, 77,
¥ (©)=y,.
For convenience we denote

L;=0, L=1,
o ()2u, (y, (1), )=u, (¥ (1), 1) for te [0, T],
u(x, )2y, (x, t) for (x,t)eclD,, i=1,2.
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By ¢l @ we denote the closure of the set Q.

For meA”, C™(Q) is the class of functions m-times continuously differentiable in Q.

If (x,t1)eQ<R? then, for m,ne /', C™"(Q) denotes the class of functions
m-times continuously differentiable in Q with respect to x and n-times continuously
differentiable in Q with respect to ¢

We introduce in D the grid

O X o, ={(x;, t)|x; € w0y, 1; € @, }

where 1 }

a);,:‘—_ﬁ:lxilxi::ih, l=0, 1, weey N; 1‘:7\’—

T
a)té{tjlfj=jra Jj=0,1, .., L; Tzf}’ N,Le .

Let Z{ denote a grid function defined on the grid w,,. For a fixed je {0, 1, ..., L}
the following norms in the space of grid functions are used [13]:

|Zlo= max |Z]],
i€{0, ..., N} .

N-1 .
1Zl=[ 3 12", m=1,2,
i=1

1Zlls=Ilx’ll, where xj= ) hZj.
k=1
We also define seminorm ||, [14]:

N=id
1Zs=1Z1s+| 3) 4z

The relationship W (6)=0 (J"), r € # means that W (J) is of the order 6" when
00+, ie.

|W (O)< M
where positive constant M is independent of &.
By E (x) we denote the integer part of the number x € %.

3. Statement of Two-layer Parabolic Free Boundary Value
Problems

The following Dirichlet and Neumann free boundary value problems will be
considered.

Problems (By), k=1,2
Find functions uy, u,, y satisfying:
— system of parabolic equations

Juy; Pu

Y —oc,'—ExT—‘:O in D;, i=1,2; 3.1)
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— initial conditions
¥ (0)=y, where y, € (0, 1), (3.2
u; (x, 0)=uy, (x) in Z;; (3.3)

— conditions at the free boundary

ouy Ou, ’
uy (y (@), )=u, (y (1), 1), hjl;—(y(t), t)=y2~%(y(t), ), te®T; (G4

— boundary conditions:
of Dirichlet type in case of Problems (Bf)

uy (I, )=F; (1), te (0, T]; (3.5

of Neumann type in case of Problem (B3)

Jdu;
Yi o a (lu t) @i (t)a te (0 T] (35’)

— ordinary differential equation defining the free boundary

dy
—d?(t)'_“ﬁul (y ®, t)’ te(0, T]. (3.6)

Here oy, i f, Ve, i=1, 2, are given positive constants and u;,, F;, ¢; are given
functions.

The above problems are particular cases of Problems (B,) investigated in [10, 11].
The difference is inherent in form of conditions at the free boundary, more general
for Problems (B,). It has been shown in [1, 4] that such a simplification of the con-
ditions at the free boundary is justified for filtration problems involving displacement
of one fluid by another in porous media.

Therefore one can consider Problem (Bg) as a model of underground gas reser-
voir, describing filtration velocity distribution and dynamics of the contact boundary
between gas and water. Type of the boundary condition at x=0 depends on the
kind of control of the gas reservoir. It is assumed that at x=/ the steady state con-
ditions hold (#,=0 or equivalently ¢,=0 [10]). '

We will take it for granted that the following regularity and compatibility
conditions for the boundary and initial data of Problems (Bf) are fulfilled:

(H1) F,eC?[0,T1;
(H2) F; (O)=u;, (1);
(H3) uy, € C? [0, y,], uz0€ C?[1,,1;
(HA) w1, (Vo) =tz (00)s 71810 (P)=77 thzo (V)
(H5) ¢, € C*[0,T];
(H6) 7 u;o (=0, (0).
We assume also that
(H7) y ()€ (0,]) in the considered time interval [0, T7.
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It has been proved in [10, 11] that if the conditions (H1)-(H4), (H7) are satisfied
for Problem (BS) and respectively the conditions (H3)-(H7) for Problem (B3), then
there exist unique classical solutions {u,, u,, y} of Problems (B}), k=1, 2, in the
interval [0, T]; at the same time ye C? [0, T].

As a first step in investigation of convergence of numerical methods for these
problems we are led to consider the following auxiliary problems associated with
a given function y. :

Problems (b)), k=1,2

Let y be a given function such that ye C?[0,T], y 0)=y,, y ()€ (©,]) for
te [0, T]. We seek functions u;, u, satisfying (3.1)-(3.5).

The conditions (H1)-(H4) guarantee existence of a unique classical solution

to Problem (b,) whereas conditions (H3)-(H6) guarantee existence and uniqueness
of solution to Problem (b,) [10, 11]. :

4. Reformulation of the Probiems

Let us assume that
' 0<y,<y ()<yyu <! for te[0, T) @.1)

where J,, yu are some given constants. Under this assumption we transform the
(x, t)-coordinate system in the following way

! X
5 7(75 for xe [0,y ()
é= (4.2)
LI G ) RPN
272 =y ) il

In accordance with (4.2) the domains D;, i=1, 2, are transformed into domains
D A{(E 1] (0, 12), te (0, T)} and D,L{(¢&, )| e (l/2,1), te (0, T)} respectively,
whereas the curve I” is transformed into line I"2{(¢, H|é=12,te 0, T)} (Fig. 1).

t
T T *
By 2y :> 51 ] 2
o r
o X 0 — : — 5
Z; Yo z, { Z, 5 d !

Figure 1
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Let us denote DA{(1)|¢e(©, 1), te(©, T)}, Z, 2{¢ 1)|¢e(©, [J2), t=0},
Z,2{(¢&, n|E e ()2, 1), t=0}. In the (&, t) — coordinate system we define functions
i, ,, 9, =1, 2:

2
izl (5’ t)éul (_lé_y (t)’ t)=u1. (x7 t) fOI' (6’ t) € CI D~L7 (x’ t) € Cl Dl

/
ﬁlo (é)éulo (.X') fOI' (é’ 0) € CI Zi’ (x, O) € CI Zi )

az (f: t)—A—uZ I:(z_f— - 1) (l'—y (t))+}’ (09 t]=u2 (x’ t) fOI‘ (é’ t) € Cl 52’ (X, t) € d Dz ’

/
(1)L, <~2~ ; t)=u1 (@), t) for te[0, T].

Now Problems (Bf) formulated in the (¢, f)}—coordinate system take the form:

Transformed Problems (BY), k=1, 2
Find functions #,, #,, y satisfying:
— system of nonlinear parabolic equations

( ! ) A0,
= e e B £ 60 for (€D,

ﬁ _( I )au y()l
at (63 t)-f’-z 2(1-—)’(’)) aéz (5’ ) (t))( é) aé (é’ t)

for (¢,t)eD,; (4.3)

— initial conditions

y )=y, where yo € [V, Yul,

T 4.4
@ (&, 0=, (&) in Z;;
— conditions at the line [
N A
Uy 77t =U; 73t ’
1 3171(1 ) 72 aaz(l ) |
—, t)l=——— —|—, 1), £e(0, T]; I C
v () O (—y @) 2 \2 Q1] Bl
- boundary conditions:
of Dmchlet type (Problem (BY)) |
: w; (I, )=F; (), t€ (0, T], (4.6)
of Neumann type (Problem (Bg)) ‘:
: 7l "
(lu =g (), te(0,T]; (4.6")

2[h— (=D'y (] 35
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— ordinary differential equation defining the coefficients of equations (4.3)

dy . (l _
W(t):ﬁul —2—,t), te(0,77. 47

For the further considerations it will be convenient to rewrite problems (4.3)-(4.7)
in the following way

b(, t) £ (5 )= [a(f, Doz (é‘,t)]+6(¢’, a(, l‘) (f,t),

(Q, t)EDb l=1’2 (48)
where i (¢, 1)-2.4i; (¢, t) for (& t)ecl D,

a; (&, t) 2 (t) for (£, t)eclD,\cl I
a(é = g
A V2P ~
a (& 1= (l_y ) for (£, t)eclD,,
b, (&, t)~— ly(t) for (&, )eclD\cl Il
b(E 0= 4.9)
by (& 1y ”2, (I-y (1)) for (& )ecl D,
4 _
e (& 0Py ()Y (& for (&, ecl DNl T
(€ nN= ' A
N (A t)é;j;(l- ¥ () y () (1~&) for (& t)eclD,

y©)=y,, (4.10)
it (&, 0)=il, (&) where @, (&)L.k;, (&) for (&, 0)ecl Z;

/ /
ﬁ(?~ t) (2 + t) 4.11)

(g il =)ol ol i) oot
02,fu2,t=a“2" ,tuz ,t,IE(,],

i, )=F;(?), te (0, T] (4.12)
or
a(li,t) = (l,, =0, (1), te (0, T), i=1,2; 4.12")
T o=mly
— O=pi|5 =, 1], 1€, T1. (4.13)

The above boundary value problems formulated in terms of # are respectively
Dirichlet or Neumann nonlinear problems for parabolic equation with coefficients
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discontinuous on given line. Nonlinearity follows from the fact that the coefficients
depend upon the solution of an auxiliary ordinary differential equation with the
right-hand side dependent in turn on 7.

5. Finite — difference Approximations to Problems (B;)

In this section we are going to present finite-difference approximations to Pro-
blems (Bf), k=1, 2. The transformed forms of Problems (BY), introduced in the
previous section, will be used as a basis in the process of constructing the difference
schemes.

In the domain D we introduce the regular grid w,,. We can assume without loss
of generality that NV is an even number. In view of this there are nodes of the grid
oy, at the line I'. According to the definition of the transformation (4.2) the irregular
grid ©,-2.0, X, defined in the domain D corresponds to the grid w,. (Fig. 2),
where

2y (ty . N
il ik, i=0, 1, ..., 5
Q8% )x;, =
' vy, N
21— 7 ih—142y(2)), l=-2— +1; i NG
52 @pp
+14 i + 4 ht
T r W
L
. L= ]
¥ -
(¢t
|
x &
0 O I !
Figure 2

Now we are in a position to begin the construction of difference approximations
to Problems (B}).
We shall do it in two stages.

Stage 1

First we are going to approximate the auxiliary problems (4.8)-(4.12") associated
with a given function y € C? [0, T] satisfying (4.1). We will assume boundary condi-
tions in the more general form

a; (lis t) %gi(lia t)+("_ 1)i g; (t) a (li3 t)=gi (t)a te (Oa 11, i=1,2 (51)

instead of the conditions (4.12) and (4.12),
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Later on to prove the convergence of finite-difference scheme related to problem
(4.8)—(4.11), (5.1) we will be under the necessity of assuming some regularity condi-
tions for the coefficients a;, b;, ¢;, 03, i=1, 2, as well as for the solution @ of problem
(4.8)~(4.11), (5.1). Namely, we will assume that:

(H8) a; e C*1 (cl D)), b, e C*>* (c1 D), c;e C** (cl D), i=1, 2;
(H9) 0;€ C1[0, T, 0,(t)=0, i=1,2,
0<o,<o; (t)+0, (), 1€(0, T] where o, is a given constant;
~ od;
(H10) d,e C*' (cl D)), i=1,2; a; e satisfies Lipschitz continuity condition in

B o, :
cl D; with réspect to ¢; &tl satisfies Lipschitz continuity condition in

cl D, with respect to &.

In order to obtain finite-difference approximation to problem (4.8)-(4.11), (5.1)
we use the integral-interpolation method [13, 14]. Integrating the equation (4.8)
in the elementary grid domain

J*’L(f t)che [sz 1 ‘+5]5 te [tj—la tj]} (5-2)

h

h
where c“i_%=£,~—-»? &, %=£-+~2~, we obtain so called balance equation [13]

E{fb(s,t)gj(f, t) dé d ?Z;lfgg[a(g, r)g—é@, t)]d; di+
L ([ e 2
+—}Ed.fc{e.,t)a(f,t)'a?(é,t)dgdt_ (5.3)

The above integral identity is used as a basis for obtaining the dlﬁ“erence equations.
To this end we rewrite (5.3) in the following way

t: Si+d 3
1 :
— f{f b (&) o G ) i o[BG 0-wE, ot
tj—1di-% tj 1
t; Si+d
f J cEDwE D dEdi=0  (5.4)
t.l 1 8i-%
where
B8
w(, )=a((, ’)"5'5 & 1. (50D

Note that by (4.11) the relationship (5.4) holds for every R;;, i=1,..,N—1;
j=1,.., L
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Next we approximate the expressions in (5.4) by linear combinations of values
of # in the grid points, postulating together with this some interpolations of functions
# and w in neighbourhoods of these points.

As a result we get the following homogeneous conservative system of implicit
finite-difference equations for U, (¢, t,) € w,, where U denote approximate values
of a solution to problem (4.8)-(4.11), (5.1) (see [10]):

7§ A 2 . S S
yl [Ui]Jl T h i h

Ud— =1 1 W A Y i i
h[ i . —A4; i 1]—_

, Saa = Uj-U/_
-—C{[KA{+1—+~1' +(1—K)A{——-—‘—i]=o,
h h

i=1,.,N—1; j=1,..,L, (5.6)

. : vi-uvy _uUl-wit
F2 [Uf1e4| - DY)y~ —oi Uj=g{, j=1,.,L, (57

. N R N Y Sl
F 3 [U/12(44+D3) s TE; +to; Uy=g;, j=1,...,L, (58)
F, [UI1LU2=q, (&), i=0,1,..,N (5.9)

where x is a constant from the interval [0, 1],

1 o o
El == b 1), Di=7 he(h1) a1y, (5.10)

oi=0 (1) g=m @), k=1,2; j=I,...L;

coefficients 47, B}, C/ are defined by the following expressions

a=|= f—"f CopoL Tb(f 1) de
- h a(éty) : Lo Sk adt
&y &ly
( vy '
c=— [ ety (5.11)
Si-1

and a, b, ¢ are defined by (4.9).

The introduced finite-difference scheme is homogeneous in such a sense that the
difference operator #; has the same form at all nodes of the grid. The difference
operators %, and & ; correspond to boundary conditions (5.1) whereas %, corres-
ponds to initial condition (4.10).

Let us denote by Z{ error of the finite-difference scheme, i.c. the difference

Zis - (5.12)
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where @#H=i (¢, t,). If we substitute U/=2Z/+#) into the expressions (5.6)(5.9),
we obtain the following difference problem for Z;

#F; [Zl=w!, i=1,..N=-1, jp=1,..L, (5.13)
&, =9, =10l . (5.14)
F4[Z]] =v£, F=1,, s (5.15)
FlZl1=0, =01 ..,N (5.16)
where
yi=—F, @], (5.17)
vi=g| =7, [i], vi=gi+F;[i]]. (5.18)

According to the terminology of [13] t//l' is error of approximation of equation
(4.8) by the difference equations (5.6); v}, v}, are errors of approximation of boundary
conditions (5.1) by difference equations (5.7), (5.8) (all the errors correspond to the
solution of problem (4.8)~(4.11), (5.1)).

Note that if in the difference scheme (5.6)-(5.9) instead of (5.7), (5.8) there
are given conditions

Ul=g;:{t)s Ud=g:lty)s =0, 1. L

then in problem (5.13)(5.16) conditions (5.14), (5.15) take the form Zi=Z;=0 and
v ey, jesl, ..., L

To prove the convergence of the difference scheme (5.6)-(5.9) to solution of
problem (4.8)-(4.11), (5.1) we make use of works by Samarskii [14, 15, 16] where
the finite-difference schemes for partial differential equations with discontinuous
coefficients have been investigated.

It follows from [15, Theorem 2, pp. 617-618] that if there are satisfied conditions

(i) 0<C1<A{<02

(il 0<c3<Bi<e,

(iii) IC"|<c3 i=1,..,N—1; j=1,..,L

=
(iv)

<6

E/—Ej~1

V) Eizc, h>0, <eg B,

Vi) 6i=0, oi{+0iz0,>0 k=1,2
where gy, ¢, (m=1, ..., 8) are some given constants independent of / and t, then for
the solution of difference problem (5.13)-(5.16) the following a priori-estimates hold

1
1Z7llo< M, ‘HZO\]O%- gnax (w*la4 i1 DA)) In? ] (5.19)
ke{l
for he(0,h*], <€(0,7;], j=1,..,L,
1
\Zoo< M, {”ZOHO'I" max (H'//kH4+|V11+[V2|) In® ] (5.20)
ke{l,.

for he(0,h*], ©€(0,13], j=1,..,L
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where d=1+¢, ¢ is any arbitrary positive constant, A*, 1}, 1, are sufficiently small
positive constants; h*=h* (¢), 15=13 (¢), M;>0 denotes a constant independent
of h and 7.

Now we are going to verify that in the considered problem (4.8)~(4.11), (5.1)
the conditions (i)-(vi) are satisfied. From definitions of 47, B/, C{ and assumption
(4.1) it follows immediately that conditions (i)-(iii) are fulfilled with constants.

! ReRL _ l [yl 72
Cl—“‘ mIﬂ (‘2—"_51113)(17, [—-——yw y

2 M l ym
2 i V2 } fri 7 |
C3 l min {‘11 Yo oy ( yM) ’ Cs l maxtal‘ Y oy ("I ym)j:
o 4 = IyM ! ym"
¢s=——C¢max)—,—
# oky o
where
¢= sup |y (). ‘ (5.21)
tef0,T]
To verify condition (iv) observe that
. 3 Sivd
B/{—BI"' B()—-B(t;_1) 1
——=—"——"% where B (12— f b £)dE.
e:‘w%

If the node (&;, ¢;) ¢ I then function b defined by (4.9) is continuous with the

b
first derivative — in the domain R;;. Therefore

ot
Sit+d
dB 1 b )
— 0= f S G0 dE for telt;_y, 1)
Si-%
and
[B(t)—B(t;-)I<es T (5.22)
where
0b;
cg=max) max |—— (&, 1) ,i=1,2}‘ —--Tmax{y1 7)2}.
(é,t)eclﬁi J %1 %2
If (&, t;) eI then we have
dB 1 an 1t o
2
“dt*(t)"—“ f t)dc+7; f P 1) d¢ for tet; s, 1]
&y 12

so that the estimate (5.22) also holds. Taking into account the definitions of Ej,
Ej we can easily check that conditions (v) are fulfilled with constants c;=c;, cs=

=C4/C'3.
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To satisfy condition (vi) we have been obliged to postulate the mentioned above
assumption (H9) relating to functions ¢, o,. Such an assumption excludes the case
when both boundary conditions at x=0 and x=/ are the Neumann conditions.

Thus we have verified that conditions (i)-(vi) are actually fulfilled.

In order to make use of the a priori-estimates (5.19), (5.20) we shall estimate
1wllss ]I, Iv]] for j=1, .., L. The following lemma is true (see Appendix A):

LemmA 5.1. If conditions (H8)-(H10) are fulfilled then
ly/lla=0 (A+7), j=1, ..., L, (5.23)
vi|=0 (B2+n), k=1, 2, j=1, .., L. (5.24)
By (5.23), (5.24) we obtain from (5.19), (5.20) the following result

THEOREM 5.1. Assume that there exists a unique solution of problem (4.8)-(4.11),
(5.1) and conditions (H8)-(H10) are satisfied. Then the difference scheme (5.6)-(5.9)
is uniformly convergent to the solution of problem (4.8)-(4.11), (5.1) with the rate

1 1
of convergence 0 (h In? 7 +7 In’ T) where d=1+¢ and ¢ is any arbitrary positive
constant, i.e. for sufficiently small 4, © (h<h*, 1<t%)

1 1
max |Uj—d (&, tj)I<M(h ln‘s?-l-r In® —t-) (5.25)

(&is t)) € Ope
where M is a positive constant independent of /# and .
Now we are in a position to pass on to the second stage of constructing finite-
difference schemes corresponding to Problems (BY), k=1, 2. The estimate (5.25)
will be of great importance in our further considerations.

Stage 11

We will make use of Problems (Bf) in the transformed form (4.8)~(4.13). In order
to apply the difference scheme (5.6)—(5.9) to Problems (BY) it is necessary to compute
values of function y and its derivative y” at discrete points #;, j=1, ..., L, by solving
the ordinary differential equation (4.13). We are going to use two different methods
of approximating equation (4.13) at each time step: the extrapolation Euler-Cauchy
method and the predictor-corrector routines in Euler-Cauchy, Milne or Hamming
versions [12].

First we shall describe the algorithm where the extrapolation Euler-Cauchy
method is used for solving equation (4.13). Let UJ, Y7, (Y')’ denote respectively
approximate values of % (&, 7;), ¥ (¢, y" (¢;) and V/=Uy,, be corresponding ap-
proximation to 9 (z;).

If the approximate values of solution at #;,_; are known then for determining
respective values at #; we compute Y7 on the basis of Euler-Cauchy formula, i.e.

Y=Y/ '+ (Y)y1.
To this end first we have to determine (¥”)'~1.

To do that we will apply a regularization method whose aim is to assure a priori
boundedness of the discrete approximations to second derivative of the function y
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(see Part II). Idea of this method is the following. For given % and t (A=I/N, t=T/L)
we introduce regularization parameter Q

QLmin {0 e #|0>0Q;, and L/Q e 4} (5.26)
where

. |max {04, 0,} if h<h* and t<t*

12— %
1 otherwise,

AE Gt )41, 08 (17)+1
and ¢, &, are arbitrarily chosen constants from the interval (0, 1).
We define
K=L/Q. (5.27)
Observe that Q— o0, K—o0, OQt—0 when /4, 1—0. (¥Y”)? will be calculated as follows:
(X P =8P (Y P2%=HV"2 1 for r=1, .. E
(Y'Y=(Y)r-12 for (r—1) Q+1<j<rQ—1.

Such a method makes it possible to prove convergence of the algorithm described
below.

Finite-difference scheme (1). Algorithm without iterations
Given: h, 1, Q; 5
Y=y, Ud=i, (), i=0,1, ..., N:
set Vo=U%,, (Y)°=4V°, j=1, r=1.
Step 1.
(a) Set Y/=Y/~141 (Y1,
(b) If y,<Y’/<yy then go to 1(c), if not then STOP.
(¢) If j<rQ then set (Y')y=(Y")"~1)¢, otherwise set (Y')=AV'~1 and rer-41.

Step 2.
(@) Compute 4/, B], C], i=1,..,N—1 on the basis of expressions (5.11) with
;1 l )
- 3 for ¢e [0, EY
a(é t)=
' nl . [ ! ]
2(1-—Yj) or ¢e *2*,1 s
2y [ / )
J i
-y Y’ for £&e€l0, 5

b (és tj)= (5'28)
2y, ) /
(I-Y) for (e [3-, l] 5

0(.21

4 )
117 Y/’ (Y')j f for f e [0, ?)
c (‘f: tj)=4 4

o, 12

(I-Y) (Y'Y (I-¢&) for ée[é, 1].
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(b) Compute UJ, i=0, 1, ..., N, by solving the system of difference equations
F, [Uil=0, .i=1 cuN=1 (5.29)

with conditions:
for Problem (BY):
; Ug=F, (1), Ui=F, (), (5.30)
for Problem (B3):
vi-Uj  U-Ut
lh (8] ‘-‘E{ (3] - (8] ZQf

Ui —-Uji_, -0~
S = ) 5.31 E
h E2 T (02 ( )

(4{-D))

(4%+DY)

where D}, E/, k=1, 2, are defined by (5.10), (5.28).

To this end we apply the Gauss elimination method leading for three-diagonal
matrices to so called outstrip formulas [13], very efficient and suitable for auto-
matic computation.

(c) Set V=Uj,.

(d) If j<L then go to Step 3, otherwise STOP.

Step 3. j«<j+1 and return to Step 1.

The above algorithm may be used in an iterative version. Then the ordinary

differential equation (4.13) is solved by means of a predictor-corrector routine.

The modification of the algorithm presented, to obtain its iterative version, is obvious
(see [10] for details).

APPENDIX A

Proof of Lemma 5.1.

First we rewrite the expression (5.17) defining w7 in other form. After adding
by the sides (5.17) and (5.4) wJ can be expressed as follows

yi=)l+ni+¢, i=1,..,N—1, j=I1,..,L (A.D)
where
., ﬂ{+1_ﬂ{
o e e
(l‘tx)i h b

N U T
p=al == | WD, (A2)

tj—-1

r; S+

=] i . il oil
i=w [ [b(é,r)—a—t-@,t)—b(f, tj)g(é,-,o]dfdt, (A3)

tj-1 Si-%
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Si+h y 1 . "
o o R =y
B=r | f{c(f,tj)[xAg+1-—h——+(1—x)Ag——h——
tj—1 Si-%

—c&w(, t)} dcde. (A4

Now we are going to show that if conditions (H8), (H10) are satisfied then

;_fom*+t)  for  (i,j)e4
M=o (h+1)  for  G,j)edr,

5 {0 (h+7v) for (i,j)e4 (A.5)

=10 (1) for (i,j)eAr,

fim 0(h+1) for (i,j)ed
1710 (1) for (i,j)eAr

where

A ;A:[(i j){i=—{v~ j=1, ... L}
T 1 > 2 L5 s H S

N N
AL izl s = Lo ¥ by o N= 1, j= i Ef

First let us estimate y] for (i, j) € A. In view of the definition of 4] we can rewrite
the expression (A.2) in the form

1 tj l-l & df -1 ﬁj"‘ﬁ}j_ ‘
T fh_z— f a(& t.)] i h - — W€z, t)}dt. (A.6)
3 =

tj—1

i—1

By the assumed regularity of functions « and # we have

) 1 & df af ;
AL f ] =a(ly t1)+0 ) for G j)ed (A7)
g

a, 1)
i—1
W—w_,  oh o
——,’1—:3—5(5i~%,1‘j)+0(h2) for (,j)ed. (A.8)

After putting (A.7) and (A.8) into (A.6) we get

1 7
= [ s ) =w G DO ()] a1,
tyi

Hence in view of the assumption (H10) relating to function w we get

p=0(H*+7) for (,j)ed.
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To estimate z] for (i,j) € Ay let us rewrite expression (A.2) in the form

t
-
H; T

53 a4
f [79%(5’ t)=w (G- t)]dé dt. (A.9)

tj-1 Si-1

Taking into account the equality

Al Fwlign
W | ety de=wsd (A.10)
and (A.9) we obtain
L1 T4 FwEt)—w g D) ]
p=— [Tg f T de\ar. (A.11)
tj-1 i—1

Since w is a function continous in cl D as well as it satisfies Lipschitz continuity
condition in cl D;, i=1, 2, with respect to ¢ and ¢, we conclude that

[w & t)—w (s D] =0(+2) (A.12)

for (¢, )e{(& DI¢elio1, &l telt;—y, 8]}, (7)€ Ay
Combining (A.11) and (A.12) as well as the definition of 47 we get

wi=0(h+t) for (i,j)eAr.

Now we are going to estimate ). Due to the assumed regularity of functions
oi ~
b, ) in cl D;, i=1, 2, we conclude that
7{=0 (h+7) for (i,/)ed.
. o o o B .
From the fact that functions b and En have discontinuity of the first kind along
the line I’ we get

n

(4!

i o
b D5 & D= 1) 5 N=0) (A.13)
in the sets R;;, (i,j) € Ar.

From (A.13) and (A.3) it follows that /=0 (1) for (;,j) € Ar. By discontinuity
of the function ¢ on [’

: ﬁ{+1_u{ .ﬁ{“’ﬁ{—1
) [ L S P

for (£, t) € Ryy, (i,7) € Ar.
That is why (/=0 (1) for (i,j) € Ay.
There are still to estimate {J for (i, /) € 4. Let us observe that by (A.7) and (A.8)

i —i
i t—1 _. 2
S W (G )0 ) (A.14)

Al 7
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After substituting (A.14) into (A.4) we get {J=0 (h+1) for (i,j) € A. Thus we
have proved that all the estimates (A.5) hold.

Now we are going to show (5.23). First let us estimate |jy’l;. To this end
observe that by (A.5) we immediately get

(s I3= Z [2 R = W(um )<

<2 3 hlGdy -+t )= 2[2 h (P + 2 h () +h ()| =

=t x#Nﬂ
2 [(N=1) 50 (h*+12)+(N—3) h 0 (h* +12)+h 0 (B2 +12)]=0 (P +72), (A.15)
N—-1

il <2y Til=2y/7] 3 hindl+h k] =
i;;éZ

=2y/1 [10 (F*+1)+h 0 (D]=0 (h+7), (A.16)

N—1
<2y TN =2y/T[ 3 hIci+h1Gl] =
14N
=2/T [10 (h+7)+h0 (1)]=0 (h+1). (A.17)
By (A.15)-(A.17) we obtain
ly/ls=0 (h+1) for j=1,..,L. (A.18)

N-—
Now we shall estimate | >’ hy]|. Observe that due to (A.5)

1=1

N-1
| Dl = 1= < 1 1=0 (2 47, (A.19)
i=1
N—~1 N-1
| 3 < X mimli=1nl =0 (h40), (A.20)
i=1 i=1
N-1
| 37 i <=0 (h+1). (A21)
i=1

Hence

(A.22)

N—1
S i
i=1

From (A.18) and (A.22) it follows (5.23). The estimates (5.24) follow from results
of Samarskii [14]. Q.E.D.
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Aproksymacje réznicowe parabolicznych zagadnienn brzego-
wych ze swobedna granica opisujacych dynamike pedziemnego
zbiornika gazu. Czes¢ I. Algorytmy

W pracy zaproponowano aproksymacije réznicowe jednowymiarowych parabolicznych zagadnien

brzegowych ze swobodng granica, wystepujacych przy modelowaniu podziemnego zbiornika gazu
w warstwie wodonosnej. Przy konstruowaniu schematéw roznicowych stosowano wstepna transfor=
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macje zagadnienia ze swobodng granica, pozwalajaca sformutowaé réwnowazne mu nieliniowe
zagadnienie paraboliczne w obszarze zadanym a priori. Proponowane schematy réznicowe naleza
do klasy tzw. schematéw jednorodnych, zbilansowanych.

PasHocTHBIe annpoKCHMamuu napafo/HYecKHX 3a4ad  Co
CcBOOOJHOI TrpaHnleil, BO3HUKAMINX NPH MOEIHPOBAHAH
nojzemHoro rasoxpammmma. Yacte I. AiropurMer

B craTbe BBEIEHB! PAa3HOCTHBIE ANMPOKCHMALMH OJHOMEPHBIX NapaboIMyecKux 33434 CO CBO-
Gommoii TpapuIlell, BO3HAKAIOMNX TIPH MOJEIMPOBAHUH IMOA3EMHOIO Ta30XpaHHIIAIIA B BOIOHOC-
HOM Iutacte. Ilpd HOCTPOEHMH Pa3HOCTHHIX CXEM HCIOJL30BAHO HEKOTOPOE IPeoOpa3oBaHHE HC-
XOIHO# 3aayu cO CBOGOIHON IpaHULE B KDAEBYIO 3a/1a4y C BLINPSAMIICKHON rpanumeii. IIpeacras-
NEEHBIE PAa3HOCTHBIC CXEMBI NMPHHAIJIENKAT KIACCY ONHOPOIHBIX KOHCEPBATHBHBIX CXEM.



