
Control 
and Cybernetics 
VOL. 8 (1979) No. 2 

Finite-difference Approximations To Parabolic Free 
Boundary Value Problems Arising In Modelling 
of Underground Gas Reservoir. 
Part I. Algorithms 

by 

ffiENA PAWLOW 

Polish Academy of Sciences 
Systems Research Institute 
Warszawa, Poland 

In the paper some finite-difference approximations to one-dimensional parabolic f~ee boundary 
value problems arising in modelling of an underground gas reservoir are proposed. In the process 
of constructing the difference scheme a preparatory transformation of the free boundary problem 
into a nonlinear problem in an a priori given domain is applied. The proposed schemes are of the 
homogeneous and balanced type. 

1. Introduction 

This paper establishes finite-difference approximations for one-dimensional 
parabolic free boundary value problems suggested by equations modelling flow of 
gas and water in an underground gas reservoir formed in a water-bearing layer 
[5, 10]. The algorithms presented in the paper may be useful for computations con
cerning design and exploitation of underground gas reservoirs as well as for solving 
optimal control problems of pipeline networks containing such reservoirs. 

The mathematical models of underground gas reservoir, formulated in terms of 
pressure or respectively in terms of filtration velocity, have been presented in [5, 1 0]. 
These models belong to class of so called two-layer parabolic free boundary value 
problems. Their analytical properties such as correctness in the Hadamard sense 
and the maximum principle have been proved in [10, 11]. We will make use of 
results presented in those papers in order to demonstrate the convergence of finite
difference approximations to the models considered. 

Numerical methods for solving parabolic free boundary value problems have 
been proposed by many authors [3 , 9, 18]. Most of them have investigated multi
phase problems, known also as Stefan problems. In view of the essential difference 
between multi-phase and multi-layer problems, inherent in form of conditions which 
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hold along free boundary, it was difficult for us to make use of the approaches 
proposed by these authors. 

Finite-difference approximations to multi-layer free boundary value problems 
have been investigated in [2, 7, 8, 17]. Most of the methods proposed in these works 
have not been studied from the theoretical point of view. Only numerical results 
testifying convergence of the methods in the case of particular boundary conditions 
(for which solution in analytical form is known) have been presented. The only 
exception is the work [2] by Ciment and Guenther in which theoretical analysis 
of the convergence of some finite-difference method has been performed as well 
as numerical results have been discussed. The method proposed in that work gene
rates an uneven grid on each time step what greatly diminishes the efficiency of 
the method. 

In the finite-difference methods which we propose the fixed grid pattern for the 
whole time interval is used. Moreover, the difference schemes express on the grid 
continuity flow principle, so they may be treated as a discrete models of filtration 
phenomena in the underground gas reservoir. 

In part I of the paper we present a finite-difference method based on some pre
paratory transformation of the free boundary value problem into a nonlinear para
bolic problem in domain with fixed boundary (Section 4). For the transformed 
problem we construct in Section 5 a finite-difference scheme of the conservative 
type, expressing on the grid fundamental physical conservation principles. Two 
numerical algorithms for solving the free boundary value problem, without iterations 
and iterative one, are presented (Section 5). 

In part II of the paper we will prove the convergence of the finite-difference 
scheme presented in part I. We also are going to describe a direct finite-difference 
method in which preparatory transformation of the problem is not used. Compari
son between numerical efficiency of the method with transformation and the di
rect one will be presented. 

2. Notations and Conventions 

D t; {(x, t)lx E (0, /), t E (0, T)}, F t; {(x, t)lx=y (t), t E (0, T)}, 

D1 ~:; {(x, t)lx E (0, y (t)), t E (0, T)}, D2 
6 {(x, t)lx E (y (t), /), t E (0, T)}, 

Z 1 
6 {(x, t)lx E (0, y (0)), t=O}, Z 2 

6 {(x, t)lx E (y (0), 1), t=O} 

where 1>0, T>O; function y describes the free boundary, y (t) E (0, I) fortE [0, T], 
y (O)=Yo· 

For convenience we denote 

v (t}£u1 (y, (t), t)=u2 (y (t), t) for t E [0, T], 

u(x,t) 6 ui(x,t) for (x,t)eclD;, i=l,2. 



Finite~difference approximations to parabolic 103 

By cl Q we denote the closure of the set Q. 
For me.K, c»'(Q) is the class of functions m-times continuously differentiable in Q. 
If (x, t) E Q c R 2 then, for m, n E .K' cm, n (Q) denotes the class of functions 

m-times continuously differentiable in Q with respect to x and n-times continuously 
differentiable in Q with respect to t. 

We introduce in D the grid 

w1n""w11 xw,={(x;, ti)lx; e·wh, tiE w,} 
where 

w11A{x;jx;=ih, i=O, 1, ... , N; h = ~}, 

w/" {til ti=fr, j=O, 1, ... , L; '= ~}, N, LE .K. 

Let Z{ denote a grid function defined on the grid w11,. For a fixedj E {0, 1, ... , L} 
the following norms in the space of grid functions are used [13]: 

IIZjllo= max IZfl, 
i E{O, ... , N} 

N-1 1 

IIZjllm=( _27 h IZfl'" ]--;;;-, m= 1, 2, 
i=1 

i 

11Zill3= 11xjllz where x{= ,27 hZ1. 
k=1 

We also define seminorm 11·114 [14]: 
N-1 

IIZj114 = 11Zi113 + !_27 hzfj. 
i=l 

The relationship W (J)=O (J'), rE f!lt means that W (J) is of the order J' when 
J--)0+, i.e. 

IW(J)I~MJ' 

where positive constant M is independent of J. 
By E (x) we denote the integer part of the number x E f!lt. 

3. Statement of Two-layer Parabolic Free Boundary V aloe 
Problems 

The following Dirichlet and Neumann free boundary value problems will be 
considered. 

Problems (B~), k=1, 2 
Find functions ut> u2 , y satisfying: 

- system of parabolic equations 

OU; i32 U; 

----a(- et.; i3x2 = 0 in D;, i= 1, 2; (3.1) 
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- initial conditions 

y (0)= Yo where Yo e (0, I), 

u1 (x, 0)=U10 (x) in Z 1 ; 

- conditions at the free boundary 

u1 (y(t), t)=u2 (y (t), t), 
ou1 ou2 

Y1 ox (y(t),t)=Yz ox (y(t),t), 

- boundary conditions: 
of Dirichlet type in case of Problems (Bf) 

U; (!;, t)=F; (t), t E (0, T]; 

of Neumann type in case of Problem (Bg) 

OU; 
Yt---;-- (/;, t)= rp1 (t), t e (0, T]; 

ux 

- ordinary differential equation defining the free boundary 

dy 
dt (t)= Pu1 (Y (t), t ), t e (0, T]. 

t E (0, T]; 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.5') 

(3.6) 

Here rt. 1, y1, p, Yo• i=l, 2, are given positive constants and u10 , F1, rp 1 are given 
functions. 

The above problems are particular cases of Problems (Bk) investigated in [10, 11]. 
The difference is inherent in form of conditions at the free boundary, more general 
for Problems (Bk). It has been shown in [1, 4] that such a simplification of the con
ditions at the free boundary is justified for filtration problems involving displacement 
of one fluid by another in porous media. 

Therefore one can consider Problem (B%) as a model of underground gas reser
voir, describing filtration velocity distribution and dynamics of the contact boundary 
between gas and water. Type of the boundary condition at x=O depends on the 
kind of control of the gas reservoir. It is assumed that at x=l the steady state con
ditions hold (F2 = 0 or equivalently rp 2 = 0 [1 0]). 

We will take it for granted that the following regularity and compatibility 
conditions for the boundary and initial data of Problems (B%) are fulfilled: 

(Hl) F; E C 2 [0, T]; 

(H2) F; (O)=u;o (/;); 

(H3) U1 0 E C 2 [0, Y0 ], Uz0 E C 2 [y0 , I]; 

(H4) Ulo (yo)=Uzo (yo), Y1 U~o (Yo)=y; Uzo (Yo); 

(H5) rp 1 e C 1 [0, T]; 

(H6) Yt u;o (l;)=rp; (0). 

We assume also that 

(H7) y (t) e (0, I) in the considered time interval [0, T]. 



Finite-difference approximations to parabolic 105 

It has been proved in [10, 11] that if the conditions (Hl)- (H4), (H7) are satisfied 
for Problem (Bf) and respectively the conditions (H3)-(H7) for Problem (B~), then 
there exist unique classical solutions {u1 , u2 , y} of Problems (BD, k = l, 2, in the 
interval [0, T]; at the same time ye C2 [0, T]. 

As a first step in investigation of convergence of numerical methods for these 
problems we are led to consider the following auxiliary problems associated with 
a given function y. 

Problems (bk), k=l, 2 
Let y be a given function such that yE C2 [0, T], y (0)=y0 , y (t) E (0, l) for 

t e [0, T]. We seek functions ul> u2 satisfying (3.1)-(3.5). 

The conditions (H1)-(H4) guarantee existence of a unique classical solution 
to Problem (b 1) whereas conditions (H3)-(H6) guarantee existence and uniqueness 
of solution to Problem (b2) [10, 11]. 

4. Reformulation of the Problems 

Let us assume that 

(4.1) 

where y,., YM are some given constants. Under this assumption we transform the 
(x, f)-coordinate system in the following way 

~-I 
l x 
---
2 y (t) 

l . . I (x-y(t)) 
-+- ----
2 2 (1 - y(t)) 

for x e [0, y (t)) 

(4.2) 

for x e [y (t), /]. 

In accordance with (4.2) the domains D;, i= 1, 2, are transformed into domains 
D1;:, {(c;, t)l~ E (0, l/2), t e (0, T)} and D2 ;:, {(~, t)lc; e (l/2, !), t e (0, T)} respectively, 
whereas the curve r is transformed into line f;:, {(~, t)l~=l/2, t e (0, T)} (Fig. 1). 

t t 

Ti-------:..--~ T 

02 01 02 

F 

X t 
0 

zl I Zz 2 

Figure 1 
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Let us denote 15 6 {(~,t)l~e(O,l), te(O,T)}, Z1 6 {(~,t)j~e(O,l/2), t=O}, 
Z 2 

6 {(~, t)j ~ e (l/2, !), t=O}. In the (~, t)- coordinate system we define functions 
fit, iito• v, i=1, 2: 

( ~ ) -i11 (~,t) 6 u1 -
1 

y(t),t =ut(x,t) for (~,t)eclD1> (x,t)eclD1 

i12 (~, t) 6 u2 [( ~~ -1) (1-y(t))+y (t), t]=u2 (x, t) for(~, t) E cli52 , (x, t) E clD2 , 

Uto (~) t:;. Uto (x) for (~, 0) E cl Zi, (x, 0) E cl Z1 , 

v(t}£ul ( ~ , t )=u1 (y (t), t) for t E (0, T]. 

Now Problems (B~) formulated in the (~,f)-coordinate system take the form: 

Transformed Problems (Bff), k= 1, 2 
Find functions i11., i12 , y satisfying: 

- system of nonlinear parabolic equations 

aal. ( z )2 a2 
u1 y' (t) aa1 _ 

at(~, t)=CI.t 2y (t) ~ (~, t) + y (t) ~ a~ (~, t) for (~, t) E D 1 , 

au2 ( l ) 2 az i12 y' (t) au2 

Tt(~,t)=CI.z 2(1-y(t)) ~(~,t)+(l-y(t))(l-~) a~ (~,t) 

for (~, t) e 152 ; ( 4.3) 

- initial conditions 

y (0)= Yo where Yo E [y,;., YM], 

ii; (~, O)=iito (~) in Zt; 

- conditions at the line r 

- boundary conditions: 
of Ditichlet type (Problem (Bf)} 

u1 (/1, i)=F1 (t), t E (0~ T], 

of Neumann type {Problem (BD) 

Yt I aut ... 
2 [/1 

_ ( -l)i y (t)] ac; (I;, t)= rpi (t), t E (0, T]; 

(4.4) 

(4.5) 

(4.6) 

(4.6') 
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- ordinary differential equation defining the coefficients of equations · ( 4.3) 

dy ( I ) --;tt (t)=Pftl 2 , t , t E (O, T]. (4;7) 

For the further considerations it will be convenient to rewrite problems (4.3)-(4.7) 
in the following way 

oft a [ au ] oft 
b (~, t) Tt (~, t) =a[ a(~, t) az-cc;, t) + c ((, t) a((, t) az-cc;, t)' 

{(, t)ED1, i=I, 2 (4.8) 

where ft ((, t)_!: fi 1 ((, t) for ((, t) E cl 151, 

I 
6 1'1 I - -

a1 ((, t)= 
2
y (t) for ((, t) E clD1 "-.cl r 

a((, t)= 
6 /'?I -

a2 ((, t)=i=!= 2 (l:_y (t)) for ((, t) E clD2 , 

I 
6 2yl - -

b1 ((, t)= et.
1 1 

y (t) for ((, t) E cl D1 "-.cl r 
b ((, t)= 

. 6 2y2 -
b2 ((, t)=-

1 
(1- y (t)) for ((, t) E cl D 2 , 

Cl2 

(4.9) 

I 
6 4 - -

C1 ((, t)=-
12 

y (t) y' (t) ( for ((, t) E cl D1 "cl r 
Cl! 

c((, t)= 
6 4 -

c2 ((, t)=-
12 

(1- y (t)) y' (t)(1-() for ((, t) E cl D 2 
Cl2 

Y (O)=Yo, (4.10) 

ii ((, 0)=ii0 (() where ft0 (() 
6 ii10 (() for ((, 0) E cl Z1; 

u(~ -,t)=ft(~ +,t), (4.11) 

a(+-,t)ft(~ -,t)=a(~ +,t)ft(~ +,t) , tE(O,T]; 
ft (/;, t)=F; (t), t E (0, T] (4.12) 

or 

(4.12') 

dy ( l ) --;tt (t)=Pil 2- -' t ' t E (0, T]. (4.13) 

The above boundary value problems formulated in terms of ft are respectively 
Dirichlet or Neumann nonlinear problems for parabolic equation with coefficients 
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discontinuous on given line. Nonlinearity follows from the fact that the coefficients 
depend upon the solution of an auxiliary ordinary differential equation with the 
right-hand side dependen.t in turn on u. 

5. Finite- difference Approximations to Problems (BD 

In this section we are going to present finite-difference approximations to Pro
blems (BD, k'= 1, i The transformed forms of Problems (B~), introduced in the 
previous section, will be used as a basis in the process of constructing the difference 
schemes . 

In the domain 15 we introduce the regular grid wh•· We can assume without loss 
of generality that N is an even number. In view of this there are nodes of the grid 
W11r at the line f. According to the definition of the transformation (4.2) the irregular 
grid D11r 

6 0 11 X w, defined in the domain D corresponds to the grid Whr (Fig. 2), 
where 

f 
T 

'T 

0 
X 

Figure 2 

t 

T 

L 

I tr 
0 

I 

w hr 

_____. 
I£ t ! , I) 

~ 

- - 1 _L I 
2 

Now we are in a position to begin the construction of difference approximations 
to Problems (Bt). 

We shall do it in two stages. 

Stage I 
First we are going to approximate the auxiliary problems (4.8)-(4.12') associated 

with a given function y E C2 [0, T] satisfying (4.1). We will assume boundary condi
tions in the more general form 

ou 
a1 (/1, t) a[ Cl~> t)+( -1)1 a; (t) u (!;, t)=g1 (t), t E (0, T], i= 1, 2 (5.1) 

instead of the conditions (4.12) and (4.12'), 
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Later on to prove the convergence of finite-difference scheme related to problem 
(4.8)-(4.11), (5.1) we will be under the necessity of assuming some regularity condi
tions for the coefficients a;, b;, c;, a;, i= 1, 2, as well as for the solution f1 of problem 
(4.8)-(4.11), (5.1). Namely, we will assume that: 

(H8) a; E C2
•
1 (clD;), b; E C2

•
1 (clD;), c; E C1

•
1 (clD;), i=l, 2; 

(H9) a; E C1 [0, T], a; (t)~O, i=1, 2, 

0<a*:(a1 (t)+a2 (t), t E (0, T] where a* is a given constant; 

ofl. 
(HlO) i1; E C 2

'
1 (clD;), i=l, 2; a; ad satisfies Lipschitz continuity condition in 

clD; with respect to t; 

cl D; with respect to (. 

oil; 
satisfies Lipschitz continuity condition m ot 

In order to obtain finite-difference approximation to problem (4.8)-( 4.11), (5.1) 
we use the integral-interpolation method [13, 14]. Integrating the equation (4,8) 
in the elementary grid domain 

(5.2) 

h lz 
\Vhere (;_ 1 =~; -2, (;H-=(; +2, we obtain so called balance equation [13] 

1 ou 
+~;; J J c (~, t) a((, t)a{ ((, t) d( dt. (5.3) 

RiJ 

The above integral identity is used as a basis for obtaining the difference equations. 
To this end we rewrite (5.3) in the following way 

1 'i "'+± oil . 1 '! 
J;; f f b (~, t) ot (~, t) d~ dt- In j [w (~;+t' t)- w ((;_ 1, t)] dt + 

'i-1"i-± fj-1 

h-e l j" c (~, t) w (~, t) d~ dt=O (5.4) 
'j -1 e,-± 

where 

oil 
w (~, t)=a (~, t)a{ (~, t). (5.5) 

Note that by (4.11) the relationship (5.4) holds for every Ru, i=1, ... ,N-1; 
j=1, ... ,L. 

- - --- ------- --- - - --
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Next we approximate the expressions in (5.4) by linear combinations of values 
of ii in the grid points, postulating together with this some interpolations of functions 
ii and w in neighbourhoods of these points. 

As a result we get the following homogeneous conservative system of implicit 
finite-difference equations for U{, (~ 1 , t1) E w11 , where U{ denote approximate values 
of a solution to problem (4.8)-(4.11), (5.1) (see [10]): 

U1 u1
-

1 
1 [ U1 U1 U1

- U1 
] ~- i . 1+1- i . i i-1 

ff1 [U1
1

] 6 BJ,.' - - A 1 -----A1---- -
't h i+ 1 h i h 

[ 
U! -U1 Uf-U1 

] 
-C1 A1 ~--' +(1- )A1 ' 

1
-

1 -0 
i K 1+1 h K i h - ' 

i=1, ... ,N-1 ;j=1, ... ,L, (5.6) 

j=1, ... ,L, 

ff 4 [U/J 6 Ut=i'io (~;), i=O, 1, ... , N 

where K is a constant from the interval [0, 1], 

coefficients A{, Bf, Cf are defined by the following expressions 

. [ 1 ~~ d~ J -1 

At= h ,.[ a(~, t1) ' 

. 1 
C!= 

' h 

and a, b, c are defined by (4.9). 

~i+! 

Bf = ~ f b (~, t1) d~, 
<•-t 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

The introduced finite-difference scheme is homogeneous in such a sense that the 
difference operator ff 1 has the same form at all nodes of the grid. The difference 
operators ff 2 and ff 3 correspond to boundary conditions (5.1) whereas ff 4 corres
ponds to initial condition (4.10). 

Let us denote by Zf error of the finite-difference scheme, i.e. the difference 

z{ 6 Uf-u·{ (5.12) 
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where iif =ii (~;, tJ. If we substitute U/ =Z/ +ii{ into the expressions (5.6)-(5.9), 
we obtain the following difference problem for Z/ 

ff' 1 [ZfJ=lf!{, i=l, ... ,N-1, j=1, ... ,L, (5.13) 

ff' 2 [Z/] =v{ , j=1, ... ,L, (5.14) 

:#'3 [Z/]=vL .i=1, ... ,L, (5.15) 

:#'4 [Z/]=0, i=O, 1, ... ,N (5.16) 

where 

lf!{= -ffl [iif], (5.17) 

vf=g{ -ff'z [ii{], v~=g~+ff3 [ii{]. (5.18) 

According to the terminology of [13] lfl{ is error of approximation of equation 
(4.8) by the difference equations (5.6); v{, ~are errors of approximation of boundary 
conditions (5.1) by difference equations (5.7), (5.8) (all the errors correspond to the 
solution of problem (4.8)-(4.11), (5.1)). 

Note that if in the difference scheme (5.6)-(5.9) instead of (5.7), (5.8) there 
are given conditions 

UJ=g1 (t1), U~=g2 (tj), j=O, 1, ... ,L 

then in problem (5.13)-(5.16) conditions (5.14), (5.15) take the form ZJ=Z~=O and 
vf=v{=O, j=1, ... ,L. 

To prove the convergence of the difference scheme (5.6)-(5.9) to solution of 
problem (4.8)-(4.11), (5.1) we make use of works by Samarskii [14, 15, 16] where 
the finite-difference schemes for partial differential equations with discontinuous 
coefficients have been investigated. 

It follows from [15, Theorem 2, pp. 617-618] that if there are satisfied conditions 

(i) 0<c1 ~Af~cz 

(ii) 0 < c3 ~B{ ~ C4 

( iii) I C(I~c5 i=1, ... ,N-1; j=1, ... ,L 

I 
B!-B!-11 

(iv) · ' r ' ~ c6 

(v) E{~c? h>O, 1Et-:f-lj~c8 Ef, 
(vi)af~O, af+ai~a*>O k=1,2 

where O"*' cm (m= 1, ... , 8) are some given constants independent of hand,, then for 
the solution of difference problem (5.13)-(5.16) the following a priori-estimates hold 

II Zillo~MlliiZ0 II o +k e~.~.~ il (ll lf!kl l4 + lv~ I+ lv~l) ln11 ~] (5.19) 

for hE (0, h*], 't" E (0, 't";], j= 1, ... , L, 

IIZillo~Mt [ II Z 0 IIo+ max ( ll lf!k ll4+1v~l+ l v~l) lno_·~-] (5.20) 
. kE{l, ... ,j} . 't" 

for h E (0, h*], rE (0, ,;], .i= 1, ... , L 
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where 6= 1 +e, e is any arbitrary positive constant, h*, 1:;, 1:~ are sufficiently small 
positive constants; h*=h* (e), 1:~=1:~ (e), M 1 >0 denotes a constant independent 
of h and 1:. 

Now we are going to verify that in the considered problem (4.8)-(4.11), (5.1} 
the conditions (i)-(vi) are satisfied. From definitions of A{, B{, Cf and assumption 
( 4.1) it follows immediately that conditions (i)-(iii) are fulfilled with constants. 

l . { Y1 Yz } c =--mm---
1 2 YM' /-Ym ' 

_ 2 J Y1 Y2 l 
C4 --1 max l- . YM, - (l-ym)J, 

()1.1 ()(2 

4 {YM l- ym) 
c =-cmax- --1· s I d1 ' O'.z 

where 

c = sup ly' (t)l . (5.21) 
t E [0, T] 

To verify condition (iv) observe that 

.:'id· 
B{-B{- 1 B(tj)-B(tj-1) 6 1 J 
----= where B(t)=- b (~, t)d~. 

1: 1: h 
.:';-t 

If the node (~i' tJ rj: f then function b defined by (4.9) is continuous with the 
ob 

first derivative at in the domain Rii. Therefore 

and 

(5.22) 

where 

f I ob; ~ I . l_ 2c f Y1 Y2 t 
c6 =max) max ~ Tt (<;, t) , z=1, 2J - - 1-max l-;-' -;-j· 

(.;,t)EclD; 1 2 

If (~i' tJ E f then we have 

dB 1 112 ob · 1 ''+1· ob 
dt(t) =h J o/ ((, t) d~ +h J 0: ((, t) d( for t E [tj_ 1 , ti] 

.;,_t l /2 

so that the estimate (5.22) also holds. Taking into account the definitions of Ef., 
E1 we can easily check that conditions (v) are fulfilled with constants c7 =c3 , c8 = 
=c4/c3. 

---- - - - --- - - - --- - ----
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To satisfy condition (vi) we have been obliged to postulate the mentioned above 
.assumption (H9) relating to functions cr1 , a 2 • Such an assumption excludes the case 
when both boundary conditions at x=O and x=l are the Neumann conditions. 

Thus we have verified that conditions (i)-(vi) are actually fulfilled. 

In order to make use of the a priori-estimates (5.19), (5.20) we shall estimate 
lllf/i[[4, [vf[, [vj[ for j= 1, ... , L. The following lemma is true (see Appendix A): 

LEMMA 5.1. If conditions (H8)-(H10) are fulfilled then 

[[lf/i[[4=0 (h+<), j=1, ... , L, (5.23) 

[vf [=O(h2+<), k=1,2,j=1, ... ,L. (5.24) 

By (5.23), (5.24) we obtain from (5.19), (5.20) the following result 

THEOREM 5.1. Assume that there exists a unique solution of problem (4.8)-(4.11), 
(5.1) and conditions (H8)-(H10) are satisfied. Then the difference scheme (5.6)-(5.9) 
is uniformly convergent to the solution of problem (4.8)-(4.11), (5.1) with the rate 

of convergence 0 ( h ln6 ~ + r ln6 +) where o= 1 +e and e is any arbitrary positive 

constant, i.e. for sufficiently small h, ' (h~h*, <~<*) 

max [U/-ii(l;;, tJ) l ~M(h ln6 ++r ln6 ~) 
(i;;,tj)E(JJ/It 1 't" 

(5.25) 

where lvf is a positive constant independent of h and <. 
Now we are in a position to pass on to the second stage of constructing finite

difference schemes corresponding to Problems (Bg), k= 1, 2. The estimate (5.25) 
will be of great importance in our further considerations. 

Stage II 
We will make use of Problems (B%) in the transformed form (4.8)-(4.13). In order 

to apply the difference scheme (5.6)- (5.9) to Problems (B%) it is necessary to compute 
values of funCtion y and its derivative y' at discrete points tJ, j= 1, ... , L, by solving 
the ordinary differential equation (4.13). We are going to use two different methods 
of approximating equation (4.13) at each time step: the extrapolation Euler-Cauchy 
method and the predictor-corrector routines in Euler-Cauchy, Milne or Hamming 
versions [12] . 

First we shall describe the algorithm where the extrapolation Euler-Cauchy 
method is used for solving equation (4.13). Let U{, Yi, (Y')i denote respectively 
approximate values of ii (l;i, ti), y (ti), y' (tJ and Vi= U~12 be corresponding ap
proximation to v (tJ) . 

If the approximate values of solution at ti_ 1 are known then for determining 
respective values at tJ we compute Y 1 on the basis of Euler-Cauchy formula, i.e. 

yJ = yJ-1+< (Y')i-1. 

To this end first we have to determine (Y')i - 1 . 

To do that we will apply a regularization method whose aim is to assure a priori 
boundedness of the discrete approximations to second derivative of the function y 

------· 
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(see Part II). Idea of this method is the following. For given hand -r (h =l/N, -r=T/L} 
we introduce regularization parameter Q 

Q 6 min{QE.!V IQ~Q12 and L/QE%} (5.26) 

where 

!max {Qu Q2 } if h ~h* and -r~-r* 
Q12 ll 

1 otherwise, 

Ql ll E(hl-et 't-1)+1, Qz ll E(-r-")+1 

and e1, e2 are arbitrarily chosen constants from the interval (0, 1). 
We define 

K=L/Q. (5.27) 

Observe that Q-HXJ, K--+oo, Q-r--+0 when h, -c--+0. (Y')i will be calculated as follows: 

(Y')0 =fJV0
, (Y')'Q=fJVrQ- 1 for r=1, ... , K, 

(Y')i=(Y')<r- 1 )Q for (r-1) Q+1~j~rQ-1. 

Such a method makes it possible to prove convergence of the algorithm described 
below. 

Finite-difference scheme (1). Algorithm without iterations 
Given: h, <, Q; 

Y 0 =y0 , U?=i10 (.;J, i=O, 1, ... , N; 

set V0=U~12 , (Y')0 =fJV0
, j=1, r=l. 

Step 1. 
(a) Set Yi=yi- 1 +-r (Y')i- 1 • 

(b) If Ym< Yi<yM then go to 1 (c), if not then STOP. 
(c) If j<rQ then set (Y')i=(Y')<r-!JQ, otherwise set (Y')i=[JVi- 1 and r+--r+l. 

Step 2. 
(a) Compute A{, B{, C{, i=1, ... ,N-1 on the basis of expressions (5.11) with 

b (.;, tJ= 

.; E [ 0, ~) 

2 (/- Yi) for .; E [ ~, l 

!
~Yi for 

0(.1 l 

2yz (!- Yi) 
!X.z l 

.; E [ 0, ~) 

for .; E [ ~ , t]. 
(5.28) 
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(b) Compute U{, i=O, 1, .. . , N, by solving the system of difference equations 

fi' 1 [U{J=O, i=1, ... ,N-1 

with conditions: 
for Problem (BD: 

U6 = F1 (ti), U~ =F2 (ti), 

for Problem (B~): 

Ui-Ui U6 - U6- 1 

(Ai-D{) lh o_Ef T =rpf 

Ui -Ui Ui - Ui- 1 

(Ai+Dj)_N_ N-1 +Ei _ N _ _ N_ = j 
N 2 ft 2 '[ rp2 

where Df, Ef, k=1, 2, are defined by (5.10), (5.28). 

(5.29) 

(5.30) 

(5.31) 

To this end we apply the Gauss elimination method leading for three-diagonal 
matrices to so called outstrip formulas [13], very efficient and suitable for auto
matic computation. 

(c) Set Vi = UJ12 . 

(d) If j <L then go to Step 3, otherwise STOP. 

Step 3. j~j+ 1 and return to Step 1. 

The above algorithm may be used in an iterative version. Then the ordinary 
differential equation (4.13) is solved by means of a predictor-corrector routine. 
The modification of the algorithm presented, to obtain its iterative version, is obvious 
(see [10] for details). 

APPENDIX A 

Proof of Lemma 5.1. 

First we rewrite the expression (5.17) defining If!{ in other form. After adding 
by the sides (5.17) and (5.4) If!{ can be expressed as follows 

lfi{=(Jlx){+t~{+({, i = 1, ... , N - 1, j = l, ... , L (A.1) 

where 

j j 

( )
j = J-li + 1 - J-li 

f-lx i h • 
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Now we are going to show that if conditions (HS), (HlO) are satisfied then 

j e(h2 + -r) for (i,j) E A 
Jl; = 0 (h + -r) for (i,j) E Ar, 

j_{o (h+-r) for (i,j) E A 
r~; - 0 (1) for (i,j) E Ar, 

(A.5) 

(! = {0 (h + -r) for (i,j) E A 
' 0 (1) for (i,j) E Ar 

where 

A e:, f(. ·')!' = N r= ll,J l 2 , j = 1, .. . , L}, 

A 6 {(i,j) li=l, .. . , ~ -1, ~ +l, ... ,N- l,j=l, ... ,L}. 

First let us estimate 11{ for (i,j) EA. In view of the definition of A{ we can rewrite 
the expression (A.2) in the form 

(A.6) 

By the assumed regularity of functions a and fi we have 

for (i,j) EA (A.7) 

for (i,j) EA. (A.S) 

After putting (A.7) and (A.S) into (A.6) we get 

Hence in view of the assumption (HlO) relating to function w we get 

f1{=0(h 2 +-r) for (i,j)EA. 



, 
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To estimate p{ for (i,j) eAr let us rewrite expression (A.2) in the form 

1 r, A{ ~~ [ oii ] 
p{=~ J h J 3f((,t1)-w((1_!,t) d(dt. (A.9) 

fJ- ! ~1-1 

Taking into account the equality 

(A.10) 

and (A.9) we obtain 

(A.ll) 

Since w is a function continous in cl D as well as it satisfies Lipschitz continuity 
condition in cl D1, i = 1, 2, with respect to ( and t, we conclude that 

lw ((, t1)-w ((1_h t)l =0 (h+r) (A.l2) 

for ((, t) E {((, t) /( E [(1_ 1 , (J, t E (tJ-1> tJ}, (i,j) EAr. 

Combining (A.ll) and (A.12) as well as the definition of A{ we get 

pf =0 (h+r) for (i,j) eAr. 

Now we are going to estimate 17{. Due to the assumed regularity of functions 
oil _ 

b, at in clD;, i=1,2, we conclude that 

17{=0 (h+r) for (i,j) eA. 

oil 
F~om~he fact that functions band at have discontinuity of the fiFst kind along 

the hne r we get 

oil oil 
b((, t)at((, t)-b ((, tJ at((1, t)=O(l) (A.13) 

in the sets Ru, (i,j) eAr. 

From (A.l3) and (A.3) it follows that 11{=0 (1) for (i,j) eAr. By discontinuity 
of the function c on r 

c ((, t1) [KA{+ 1 ilf+ ~1-il{ + (1-K) A{ il{ -:f- 1
]- c ((, t) w ((, t)=O (1) 

for ((, t) E R 11, (i,j) EAr. 

That is why ({=0 (1) for (i,j) eAr. 

There are still to estimate C{ for (i,j) eA. Let us observe that by (A.7) and (A.8) 

(A.14) 

4 
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After substituting (A.14) into (A.4) we get ({ =0 (h+1:) for (i,j) E A. Thus we 
have proved that all the estimates (A.5) hold. 

Now we are going to show (5.23). First let us estimate [[ lf/i [[ 3 . To this end 
observe that by (A.5) we immediately get 

N-1 i N-1 

) . 2 ~ [ ~ ) •]2 - ~ . j 2 fi (JLx ' IJ3 = L_; h L_; h (JLx t - .L..J h (JL{ +1- JL1) < 
i=l k=l i=l 

N-1 N-1 N-1 

<2}; h[(JL{)2+(JL{+1)2]=2[}; h(JL{)2+ }; h(JL{)2+h(J1~'/ 2)2] = 
i=1 i=l i=2 

i;t.N/2 

N-t 

11 11j ll 3<2y71111j il1 =2~17(}; h 11l{l +h 111~1 21] = 
i= 1 

i#N/2 

=2yl [I 0 (h 2 +1:)+h 0 (1)]=0 (h+1:), (A.16) 

N-1 

IJ(ilb <2y71J(ill1 =2yl(}; hl({ l +h l(~12 1 ]= 
i= 1 

i#N/2 

=2j/'7 [I 0 (h+1:)+h 0 (1)]=0 (h+1:). (A.l7) 

By (A.l5)-(A.l7) we obtain 

II IJI% = 0(h+c) for j = l, ... ,L. (A.l8) 

N-1 

Now we shall estimate 1:2; hlfl{ l. Observe that due to (A.5) 
i=1 

N-1 

I}; h (JLx){j = IJL~ - JL{ I< IJLkl + IJL{ I = 0 (h2 +1:), (A.l9) 
i=1 

N-1 N -1 

IL: h17fl<}; h 117{1= !11Jj ll t =O(h+1:), (A.20) 
1=1 i=1 

N-1 

IJ; h(fl< ll(il[l = O(h+c). (A .21) 
i=1 

Hence 

N-1 

I}; hlflfi=O (h+1:). (A.22) 
i=l 

From (A.l8) and (A.22) it follows (5.23). The estimates (5.24) follow from results 
of Samarskii (14]. Q.E.D. 
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Aproksymacje ro:inicowe parabolicznych zagadnien brzego
wych ze swobodnl! granicl! opisujl!cych dynamik~ podziemnego 
zbiornika gazu. Cz~sc I. Algorytmy 

W pracy zaproponowano aproksymacje r6znicowe jednowymiarowych parabolicznych zagadnien 
brzegowych ze swobodn~ graniq, wyst~puj~cych przy modelowaniu podziemnego zbiornika gazu 
w warstwie wodonosnej. Przy konstruowaniu schemat6w r6znicowych stosowano wst~Pl1'1 transfor-



120 J:. PAWtJOW 

macj~ zagadnienia ze swobodnq granic<l, pozwalajqCq sformulowac r6wnowa:i:ne mu nieliniowe 
zagadnienie paraboliczne w obszarze zadanym a priori. Proponowane schematy r6:i:nicowe nale:i:q 
do klasy tzw. schemat6w jednorodnych, zbilansowanych. 

Pa3HOCTHLie annpoKcHMa~un napa6oJin'lecr.:nx 3a,ZJ;a'l eo 
CB060,ZJ;HOH rpau~eii, B03HHKaromDX npn MO,ZJ;eJIHPOBaHHH 
no,ZJ;3eMnoro ra3oxpaunJiuma. qaCTb I. AJiropnTMbi 

B CTaThe BBe,LICHbi pa3liOCTHbiC aiUipOKCHMai(HII O,LiliOMCpllbiX rrapa60JI!r'ICCKHX 3a,Lia'I CO CBO• 
60,LIHOH rpamw;etf, B03H!IKaiOIIUIX IIpH MO,LieJIHpOBaBHH IIO,L13CMHOTO Ta30XpaliHJIH~a B BO,LIOHOC
HOM IIJiaCTe. llpll IIOCTPOCHHII pa3HOCTHbfX CXCM IICIIOJib30BaHO HeKOTOpoe rrpeo6pa30BaHHe IIC
XO,LIHOH 3a,Lia'IH CO CB060,LIHOH rpaHHIJ;eH B KpaeByiO 3a,Lia'Iy C BbrnpHMJICltHOH rpaHHI(CH. Tipe,LICTaB· 
JieHHbiC pa3liOCTHhiC CXCMbl rrpKHa,LIJie:a<aT KJiaccy O.iJ;liOpO,LillbiX KOJrcepBaTHBHblX cxeM. 


