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The note contains results concerning observations and optimal observations based on finite

numbers of measurements. There are given properties of the sets U and {Jx of all functionals obser-
vable and optimal observable resprectively by s measurements. A modification of Krasovskii‘s
minimax rule is given. Influences of the time interval of the observation on the quality and the
number of measurements are investigated. Universal points for the observation are described.

1. Introduction

Consider a linear lumped parameter system

=K (1) %
(1.1
y=G({)x, O=<r<T,
where K (7) is an integrable n by » matrix and G (¢) is a continuous m by n one.
In praciice the output y (¢) is obtained by a measurement, which has an error
A(t):y(t)=G(¢) x (t)+ 4 (¢). Supposing that 4 (¢) satisfies the condition 4 (.) € S;,
S, being the ball of radius ¢ in the output space Y, Krasovskii [5] introduced an
optimal observation problem with the optimality in the minimum norm sense.
Kolmanovskii [4], Chernousko [2] and Solanik [13] considered an optimal obser-
vation problem in which the error A (¢) is a siochastic variable having the normal
distribution with the zero expectation and a known correlation matrix. The opti-
mality is understood in the sense of minimum of an integral functional characte-
rizing the quality of the observation process. Krasovskii’s problem was generalized
by Kurgianskii [6] as follows. The measurement of the output has now an error
of the type y(1)=G (t) x (t)+F(¢) { (t), F(¢) being a continuous m by r matrix
and () being a unknown funciion restrited by the condition { (.)e Z<L? [0, T,
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where Z is convex, closed and bounded. The system is also disturbed: x=K (t) x+
+C (t) v, where C (t) is a continuous 7 by s matrix and v is a disturbance satiéfying the
condition » (.)€ V<=L2 [0, T], where V is convex, closed and bounded. The opti-
mality of observations is understood in the minimax sense, which is a direct genera-
lization of the minimum norm sense. \
Rolewicz [12] extended Krasovskii’s problem to infinite dimensional! systems
consisting of operators acting on Banach spaces. In particular, the system (1.1) is,

following Rolewicz, expressed in the form |

XA O-E.Y, o)
where continuous linear operators A and B are defined by ‘
(Ax) D=9 (1, t,) x,. 0<t<T, xelX,
Bx(:) (=G @)x(), O0<i<T, x(-)ed,

(¢ (1, 1) is the transition matrix of (1.1)), X=R" is the space of all initial values,
[0=C, [0, T] is the space of trajectories, ¥Y'=Cy [0, T], E being an m-dimensional
space, is the output space. Functional fe X* is said to be observable if there is
@ € Y* such that f(x)=¢ (BAx) for all xe X, or in terms of adjoint operators,
f=A%B*p. ¢ is called an observation for f. Observation ¢, such that |p,|=
=inf {||g||: f=A*B*p} is called an optimal observation for f. Rolewicz obtained the
following fundamental theorem

THEOREM (Rolewicz [12]). If fe X* is observable, then there is an optimal obser-
vation ¢ of the form

o (r ()= (@) . (1.3)

where &, e E*,, 1, € [0, T], (., .) denotes the scalar product in R™.

Formula (1.3) means that @ 1s based on n=dim X measurements.

The aim of this note is trying to answer the questions: ”When can one reduce
the number of measurements in observations and optimal observations?”’, "How
can one define #, & in formula (1.3)?”, ”Are there common points of the measu-
rement for all observable functionals?”’

A majority of results of the note was announced in [11].

2. Soeme Elementary Facts

Let P be the set of all observable functionals. Since dim BAX=dim A*B*Y*=
=dim P, P is a r-dimensional subspace of X* if and only if the number of linearly
independent vector functions among # columns of matrix G (+) ¢ (-, t,) is equal to r.
Moreover, P=A*B*Y*=((Ker BA) (as X is finite dimensional). Hence, as a trivial,
consequence of Rolewicz’s theorem we cbtain
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CoroLLARY 2.1. If the number of linearly independent functions within #» columns
of matrix G (-) ¢ (-, #,) is equal to r, then every observable functional can be
optimally observable by r measurements.

Functionals in X* are often considered as n-dimensional vectors. Then from the
definition of the observability it follows that functional ¢ of the form (1.3) based
on s measurements is an observation for fe X* if and only if

f= D) 0* (b 10) G* (8 & @D

Example 2.1. Consider the system

% | [000..0] [ X | 2.2)
X1
y=[1,0,...,0]] : |l=x;, a<t<b
Xon

.......................... - (2.3)

If f has an observation ¢° of the form (1.3) based on p measurements with &2>0,
k=1, ..., p, then ¢° is optimal. Indeed, by (2.3) we have for every observation ¢ of
the form (1.3) (for /)

o= X' 1&d= D' &=fi= D' &=l¢°l.
Now consider the integral functional fe Y*
T )= [ x@p @ dr, 2.4)

p (t) being a nonnegative integrable function vanishing only in a set of measure zero.
/ corresponds to fe X*:

b b (Z—to)z""l
= [ [r@d, ., | p(t)mdt]- 25)

a
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x; (¢) satisfying (2.2) is a polynomial of degree 2n— 1. Hence we have the Gauss
type quadrature formula

b n
[xi@p@ydr= Y &oxi(t),  teela, bl &>0.
a k=1
Since &,>0 the formula defines an optimal observation for funcriondl (2.5),

i.e. for integral functional (2.4). This optimality was proved in another way in [10].

3. Sets of Functionals Whose Observations or Optimal
Observations can be Based on the Same Number of Measu-
rements

By U, (U,) we denote the set of all /'€ X* whose observations (optimal observa-
tions resp.) may be based on s measurements (U, = U,={0}).

THEOREM 3.1:

(a) Uos Uik ... § U, =0, 1y=..=U,=P,
(b) Ues & o &0, = ci=w =U,=U,=P,

where s; and s, depend on the linear system.
The proof is based on the following

LeMMmA 3.2:
(a') Us+r=Uv+ U,.,
(b) Uv+chs+Ur~

Proof.. (a) Clear, by (2.1). :
(b) Let fe U,,,. Its optimal observation ¢,., is defined by #, &, k=1, ..., s+r,
as follows

s SR
f= ) 0% (1 1) G* (W&t Y] 9% (1o 10) G* (1) & Sk
k=1 k=s+1

The first sum defines an optimal observation ¢, for f;. Indeed, if [1¢;ﬁ\=\:§jﬁrékll>
k=1

inf {||o| : ff=A%B*p}, then by Rolewicz’s theorem there are #;, 0, k=1, ..., n,
such that

fi= D) 0% O t) G* @I me  and D) limdl< D) Il
k=1 k=1 k=1

This contradicts the optimality of ¢,.,, since llgs../|=loJl+¢.l. Similarly,
the second sum defines an optimal observation ¢, for f.. Q.E. D.
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Proof of the theorem. (a) follows fiom the fact that if U,_,=U,, then U, ,=
=U;+U,=U;_;+U,=U;. Now we shall show (b). For this purpose we shall
prove that if U,_,=0,, then 0,=0,,,. Let f,., € U, and let ¢,,, defined by
4, & k=1, ..., i+1, be its optimal observation:
it
Jror=0% (11, 1) G* (1) &+ D) 0% (i, 10) G* (1) &L 11+ f;.
k=2
Clearly ¢, defined by ¢,, &, and ¢; based on #, &, k=2, ...,i+1, are optimal
observations for f; and f; respectively. On the other hand, since f;e J,=0U,_,,
there is ¢;_; which is an optimal observation for f;. Thus ll¢||+|p;_,|=¢+

+lod=1pi+1ll, e fir: €U, Q.E.D.
From equation (2.1) it follows that
Us: (J Lil'l [(ﬂ* (rla z‘O) G* (rl)a sixay Q* (tss rO) G* (rs)]
tiy,..,t5€[0, T]

where Lin [ ] indicates the space spanned by the columns of the matrix. Furthermo-
re, U, and U, are cones and they are symmetrical with respect to the origin.

Since X is finite dimensional and so A*B*Y* is closed, by the Banach theorem
on inverse operators we trivially get

LemMmA 3.3. If f"—>f°as n— o0, then
inf {[lgl|:f "= A* B* g} >inf {|lp|: f°=A4* B* 0}
In the majority of practical cases, the time interval [0, 7] is bounded and closed.
In this case we have
THEOREM 3.4. U, is closed for all s=0.

Proof. Let f,e U, and f,~f,. Of course f, € A*B* Y*. Hence f, is observable.
By the definition of T, there are optimal observations ¢, for f, of the form

0a (¥ (D)= X (& y ().

The norms of ¢, are, in view of Lemma 3.3, uniformly bounded. It implies that
the norms of & are also uniformly bounded. Using the compaciness argument we
can extract a subsequence ¢, such that ¢ and #" are convergent to & and ¢, corre-
spondently. Thus

.

GO Y Gur @)

I
ik

defines an optimal observation for f,. Therefore f, € U,. Q. E. D.

ProposiTioN 3.5. If for all € [0, T] rank G (¢)=m, then U, is closed.
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Proof. Let f"=¢™* (¢", t,) G* (t")&" and f"—f". Since rank G (¢)=m for all t€ [0, T]
there is a constant M such that [|&"|< M| f"|| for all. n. Using the compactness argu-
ment we can chose converging subsequences £" and ¢™. Then f°= ¢* (¢°, t,) G* (¢°) &°,
where t°=Iim " and &°=Ilim &". Q.E.D.

If the time interval is unbounded, then U; may not be closed as is shown by the
following

Example 3.1. Consider the system
|3.C| =21 %
])'c2=/12 X,
y=x1+x,, O<t<+o0, 1,=0.

A, <A, <0,

Since 1, <0, 4, <0 all solutions of the differential equations are continuous and
bounded and so they are elements of the Banach space C [0,+o0). Let us observe

1
functionals f ”=( 1, -n—) It is easily verified that ¢” based on one measurement "=

A1

1 :
=~/:>—-/1— Inn, E"=n*>"*t is an observation for f". On the other hand, f"—f°=
Lo G )

= (1, 0), which is not observable by one measurement. Thus U, is not closed.
Two examples below give answers to the quaestion: whether U= U,?

Example 3.2. Consider a stationary two-dimensional system whose matrix has
complex eigenvalues « + iff (f#0):

[Xl_:axl —fx,,

1332 =fx;+ox,,

y=x,+gx,, O0<¢<T,

(taking G=(1, g) does not lose generality). It is not hard to see, by equation (2.1),
that U;=X* if T>n/f. Furthermore, if =0, then solving equation (2.1) for the
considered system "relatively &, and comparing the norms of all observations 0,
(consisting of two measurements) with the norm of ¢, show that U, =U,=X*.

Example 3.3. Consider the above system. Let «.<0. Then one easily sees that all
functionals satisfying the condition gf, =£, belong to U}, i.e. {0} U,. Now suppose

1
a=-—10, f=1, g=1 f=(10,0). The only ¢, based on t,=7n/4, & = Vz..elo"/"
10
has the norm |jp,|!=—=e'°"*>|p,|l, where ¢, is based on .two measurements

o
at 1/10 and 1/9. Thus {0} U, g U,.
Example 3.2 has the following extension

ProrosiTioN 3.6. Consider a 2n-dimensional stationary system with one dimen-
sional output (g#0)

Xx=Kx,

y=gx, 0<t<T, t;=0.
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If matrix K has 2n single complex eigenvalues o, +iff, and T>7n/f (f=min S,
bi>0), then U,=X*.

Proof. Basing on the form of ¢ (7, 0) we obtain

y()=gp (2,0) x=e"*(J, cos B, t+o; sin f; t)+ ... +
+e** (8, cos Byta, sin B, )Ly, )+ ... +3, (1),

and y(t)=y, (t) if x=(x', x%,0, ..., 002 x,. Then we have a corresponding decom-
position X=X,@ ... ®X,. Applying Example 3.2 to two-dimensional system

kal—/ﬁa D—Bq Y

we obtain an observation ¢, € Y*, based on one measurement, for f; € X, induced
by fe X* by the formula f; (x;) =7 (x,). Now we can trivially prove that functional
¢= > ¢ is a desired observation for /. Q.E.D.
k=1
Now we deal with universality of the optimal observation problem with output
space Cg [0, T']. Consider a linear system x=K () x, y; =G, (t) x, or

& 8 ¢y

where Y is a separable Banach space. There exists, by the universality of Cg [0, T,
an isometric embedding D of Y into C [0, T]:

D Bl St e 1Al (I1)
By the Hahn-Banach theorem we get the

ProposITION 3.7. If ¢ is an optimal observation in system II (II-observation) for f,
then ¢} =D* ¢ is an optimal I-observation. Conversely, if ¢{ is an optimal I-obser-
vation, then there is an optimal IT-observation ¢4 satisfying ||¢%||=inf{||p,[: ¢$=
=D* p, L.

ProposiTioN 3.8. If Y* in problem I is strictly convex, then in problem II we have
0,=U,=P.

Proof. If fe X* is observable, then its optimal observation ¢ is unique by the strict
convexity of Y* and ¢} is an extremal point of the ball K,, = Y* of radius a,=
=inf{[p,||: f=A*B*p,}. Taking into account that for all ¢, € (Cg [0, T]))* we have
ID*,||<|lp2|l and a, =inf{||lp,||: f=A*B*D*p,}=a;, we see that ¢{ is an extremal
point of D* K, , where K, is the ball of radius a, in (Cg [0, T])*. Therefore we can
find ¢} € K,,ND*~! ¢ such that ¢ is an extremal point of K, and then ¢j is
a required optimal observation. Q. E. D.

REMARK. Proposition 3.8 has the following noteworthy consequence: There exists an
output for the given process X=K (¢) x such that U, =X*. Indeed, first we take
space Y such that Y* is strictly convex and a matrix G, (¢) such that dim BAX=n.
Next, we find an isometric embedding D of Y into Cy [0, T]. Then operator DB is
a desired output (but this output is not given by a matrix of the form (1.1)).
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4. An Explicit Solution of the Optimal Observation Problem

Another proof of Rolewicz’s therem. Let »° be a minimal element, i.e. [y°|=
=inf{||yl: y=BAx, f(x)=1}%p°. Then every optimal observation ¢° satisfies the
maximum property [5]

o° (3°) max (y°)=lo°ll »°]-
fill=1/00

This means that ¢° is collinear with »° (in the sense of Luenberger [8].) By analogy
with equation (2.1), in virtue of the collinearity we see that ¢° is an optimal obser-
vation for f if and only if

I= [ 0% (1) G* ()& W) b @) dr,

Dyoe

where D,.={re[0, T]:(y° () [|=I]y°ll}, &°(¢) is a unit vector collinear with »° ()
and b (1)=0.

Let dim Lin {¢* (¢, 1,) G* (1) &°(t), t€ D,.}=d. Of course d<n. One can now
choose d linearly independent vectors within the vectors ¢* (7, 1) G* (1) &° (1),
t e D,,, say the vectors with t=t¢, ..., f, such that

d

f= Y 0%t 1) G* (1) E (1) b (1), b (1)>0. @.1)

k=1

The obtained formula defines an optimal observation based on d< n measurements.
Q.E.D.
From this proof we deduce:

RULE 4.1 (of the determination of optimal observations).

1. Define a minimal element y° of the problem.

2. Find D,,. Calculate m-dimensional unit vectors &°(¢) collinear with y°(f)
for te D,,. Functional ¢ € Y* defined by the formula

(ﬂ(}'('))= 2 (bk fo (L‘c):,v(rk))ﬂ bk>07 kaDyo,

k=1

is an optimal observation for f if and only if

.f: 2 {/’* (fka Z‘O) Gv (vllc) éo (rlc) bk ¢
k=1
If the linear system is stationary and the unit ball in the space £ is a polyhedron
in a dual general position with respect to the system, then D,, contains only a finite
number of points [12]. Thus Rule 4.1 becomes more pratical.
The following example yields an extension of the result in Example 3.2.

Example 4.1. Consider a four-dimensional system with one dimensional output:
x=K,x, y=gx, 0<t<T, t,=0. Suppose that K, has single pure imaginary eigen-
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)

Y - .
values =+ fi, +yi such that e = —— for some integer k and f is near to y so that
\¢

the phenomenon of beats happens ([3] pp. 5-7) and assume that 7>27nK/y. Then
every fe X* can be optimally observable by two measurements. In fact, for all
X € X the output takes the form

yv{(t)y=a, sin (ft+b,)+a, sin (yi+b,).

» () has amplitude a (¢) which varies periodically between a,+a, and |a; —a,|

2r 2rk

with period . = —— equal to the period of y (¢) ([3] pp. 5-7). Then |y (¢)| takes
P }; '}1

the maximum being the maximal value in the whole time axis once or-twice in

27k
[O, : ) for each x € X. Now using Rule 4.1 concludes the proof.

5. Influence of the Time Interval of the Observation on the
Quality and the Number of Measurements of Observations

In this section we shall examine different intervals of time assuming that the
conditions on K (z) and G (z) in Section 1 are always satisfied. It is obvious that
observability in [7, T,] implies observability in [T, 7-]=[T,, T,]. The following
proposition whose proof is simple precises the situation in which a converse sia-
tement is true.

ProprosITION 5.1. Every functional observable in [T, T,] is also observable in
a subinterval [T, 7] if and only if the number of linearly independent functions
among n columns of the matrix G (-) ¢ (-, #,) for the subinterval is the same as
for [Ty, T,). In particular, for stationary systems from the observability (for f)
in a certain interval it follows the observability in every interval.

In [14] it was introduced a concept of differential observability and there was
proved a fact similar to Proposition 5.1 for complete observability.

ProposiTioN 5.2. Let ¢ and @ be optimal observations for fin [T, T,] and T T
respectively. If [T, T,]<[T;, T,], then ||@|>]l¢|| (i.e. shortening the time interval
decreases the accuracy of optimal observations).

Proof. Let »° (¢) and 7° (¢) be minimal elements in [T, 7,] and [T, T,] resp. Then
= max ||’ (1)||< max [[y° ()< max [[y° ()][=p°.
[T1:T5] [T T4l [Ty T2]

Hence

11
ol =—%>;= loll. Q.E.D.
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We say that observation ¢, defined in [T}, T,] is a globally optimal observation
if we have ||po[|<||¢|| for any observation ¢ in any interval. One easily proves, by an
argument similar to that in the above proof, that there exists a globally optimal
observation in [T, T,] if and only if there is a globally minimal element )° (¢) (i.e.
a function »° (¢) which is a minimal element for the problem in any interval [T}, T,]>
>[T,, T,]) and max [)y° (t)||= max |y°(?)|| for any [Ty, T,]1=[T;, T>]. Furthermore,

[T T2] T1,Ts

if all y (r) are periodical wit}[x the]same period, then every observable functional
has a globally optimal observation in any interval with the length equal to the period.
As a trivial example of such systems we can take a stationary system in which matrix
K has single pure imaginary eigenvalues +if, such that ﬁ’k are commensurable.

Now we deal with a dependency of the number of measurements on the length
of time interval. One easily sees that lengthening the interval does not increase the
number of measurements in observations. The situation with optimal observations
is more complicated. Two examples below show that we may reduce the number
of measurements in certain cases by lengthening the interval and in other cases
by shortening it.

Example 5.1. Consider functional f= (V/:‘?, 1) in the system

,(5(1= —X3,
]xl‘.:Xla
y=2X;i .

There is the unique observation consisting of one measurement (at 7=57x/6)
and it is globally optimal. On the contrary, if we permit to observe the output in
[0, /2], then to optimally observe /' we have to make two measurements.

Example 5.2. Given the functional f=(1/1°, 10) and the system
[ =—10x;+x,,
%= —10x,,
y=10x,, O=1<<T, T>100.

It is not hard to show that the only observation based on one point, namely
elOOO

100
the output only in [100, 7], then the observation ¢, is optimal. To verify this compare

llpll with |[g,| for all ¢, based on two measurements. (It should be pointed out
that the optimality in [100, 7] is worse than that in [0, 7°].)

t; =100, possessing the norm ||¢,||= is not optimal. If we are able to observe

6. Universal Points for the Observation

A set of points {¢1, ..., [} =1, 4 € [0, T, is called a universal set (of points of the
measurement) for the linear system, provided that every observable functional has
observations based only on measurements at .
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TeEOREM 6.1. If there is ¢; € [0, 7] such that rank G (¢;)=m and if dim P=r, then
there exists a universal set consisting of r—m-+1 points. Without the assumption
about G (¢) we shall have a universal set consisting of r points.

Proof. Since rank ¢* (¢, t,) G* (¢;)=m among n rows there are m linearly inde-
pendent rows, say m first ones. Then n—m remained rows are linear combinations
of them:

row (m+1)= (a7, ..., am*!

....................................... 6.1)

row 1 = (0l sves, 00)

where, for simplicity, in the right sides we write only the coefficients of the combi-
nations. Assume that r>m (if r=m, then the following procedure of the proof will
be finished after the first step). Since dim P=r the number of linearly independent
functions among n columns of matrix G () ¢ (-, #,) is equal to r and one can
choose ¢, € [0, 7] such that for the matrix ¢* (¢,, t,) G* (¢,) there is at least one
equality in (6.1), which becomes an inequality, say row (m-+1)s (", ..., am*1).
Clearly in the matrix [p* (¢, to) G* (1), ¢* (t,, to) G* (t,)] m+1 first rows are
linearly independent. Continuing the procedure we finally obtain

ra‘nk [?’* (tl, tO) G* (tl): v (0* (tr~m+ 1> rO) G* (tr—m+ 1.)]=r'

As dim P=r a glance at the equation (2.1) assures us that the set {¢;, ..., f,_pr1}
is universal. Q.E.D.

The following proposition has elementary proof. which is omitted.

PROPOSITION 6.2:

(a) The set of all universal sets consisting of s points is open in [0, T]*=[0, T]x ...
10,7,

(b) The mentioned set is everywhere dense in [0, TT° if the number of linearly
independent functions among n columns of matrix G (+) ¢ (-, #o) is equal to s in
each subinterval of [0, T]. If, further, rank G (¢)=m for all ¢ € [0, 7], then we have
the same fact but for universal sets consisting of s—m+ 1 points and for [0, 77]s~™* 1.
If, moreover, dim P=n, then setting s=n in the above statements we obtain a ne-
cessary and sufficient condition for the density.

Let us note that for any observable functional f there is a universal set such
that f is optimally observable only by points of this set. Indeed, by (4.1) f is opti-
mally observable by ?,,-.., #;. Of course rank [p* (¢, to) G* (¢1), - @™ (fa5 to)*
-G* (t)]<dim P. If we have the strict inequality, then we can choose points
ta41, - Ig 8O that the inequality for 74, ..., z, becomes an equality and we get a
required universal set.

Conversely, for given universal set t there is the “worst” functional f* in the
sense that

inf [lpf"|= sup inf [|pf]]

4 lifl<s1 o
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where ¢/ denotes an observation for f, based on 7 and the infimum is taken over

all such observations. Precisely, for (¢4, ..., tg)=7 the formula f= _7 0 (e, 16) GF (L),
k=1

defines a linear operator Q from E*x...xXE* onto P. Since the unit ball in

E*> ... xE* is compact, by a method of Rolewicz ([12], Theorem V.6.2), we see

that the inf ||p’||= inf ||p| is attained at an element @7. By the mentioned Banach
® Q=1
theorem the linear operator Q! from P onto £*x... X E*/Ker Q is bounded. The-

refore [[@7]|=/Q0~* (/)| is a continuous function of f. Thus by the compactness of
t p

the unit ball in P for a certain f* € P we have: sup ||p7||= @7 *||.
IFl<1
We say that universal set ¢! is better than 7* if |7 || <|[|p;?|. Unfortunitely, in

general, the best (optimal!) universal sets do not exist since the set of all universal
sets is open.

7. An Extension to the Observation for Systems of Functionals

Let the linear system (1.2) be given. Consider a system of functionals F=(f, ...
.y J4). F can be regarded as an operator mapping X into a g-dimensional Banach
space H. System [ is said to be observable if there is an operator y such that the
diagram
X2 - ¥
NG
H

is commutative and to be optimally observable if there is such a w with minimal
norm [12].

Using Krein’s method of moments [1] and noting that the finite dimensional
space H has the separable extension property [7] if and only of it is (isometric and
isomorphic to) a space with the norm

H,(h]a Cer) hq)Hz max ‘hij (71)
1<i<gq
(see [7] [9]) we get the following extension of a realtionship obtained by Krasovskii
[5]: For each operator F: Y- H the following relation is valid

_ , 1
inf {|lyl: F )=y (Bdx)}=—5,
where p°=inf {||y|: y=BAx, |F (x)||ly=1}, if A has the norm (7.1). Conversely, if
for given space H we have the mentioned relation for each linear system (1.2) and
each operator F, then (by the universality of Cy [0, T]) H has the norm (7.1).
We easily prove the following

ProrosiTioN 7.1. Let H have the norm (7.1) and let y° be a minimal element of the
problem for F (i.e. y°=BAx, |F (x)llz=1, [)°|=p°). The observation y:y (y (-))=
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= > Viy (), VieB(E~H), t,€[0, T], is optimal if and only if for k=1, ..., s we
k=1 .

have:

@ e Dy={te [0, T: > OIl=I"II};
(b) Vi and y° (#,) are collinear, i.e. [V y* (@lla=IVil I* @5

© 13 Yy @lla= ' 17y 1l
k=1 k=1

RuLe 7.2 (of the determination of optimal observations when H has the norm (7.1))
(1) Find a minimal element y° given by definition

[y°ll=inf {|ly]l: y=BAx, |F (x)g=1}=p°.
1
There exist optimal observations v if and only if p°>0 and then ||y||= ;ﬂ—

(2) Define D,, and g by m matrices ¥} with ||[V||=1 collinear with »° (#,) for
t; € D,,. Operator y: Y—H defined by

()= D bV y(#), b>0, #eD,,
k=1

is an optimal observation for F if and only if

F= Z bk V,f G (tk) @ (tk: tO):
k=1

“ZS: b V2 y° (tk)”H = j 16 V¢ y° @l -
k=1 k=1

The author whishes to acknowledge his gratitude to Professor S. Rolewicz,
without whose guidance this work would not have been possible.
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O pomiarach wykonywanych na podstawie obserwacji lub optymalnych
obserwacji ukladow liniowych o parametrach skupionych

Podano wyniki dotyczace obserwacji i optymalnych obserwacji, ktérych podstawe stanowi
skorczona liczba pomiaréw. Podano wlasnosci zbiorow U i [J; wszastkich funkcji obserwowalnych
odnoszacych sie¢ do s pomiarow. Przedstawiono modyfikacje minimaksowej zasady Krasowskiego.
Przeanalizowano wplyw dlugosci przedzialu obserwacji na jako$¢ i liczbe pomiaréw. Okreslono
punkty ukiadu dogodne dla dokonywania obserwacji.

O0 u3Mepenuax BHIMOIHAEMBIX HA OCHOBE HAG/IIOJIEHHH H ONTHMAJBHBIX
HA0IoMeHHil JTMHEHHBIX CHCTEM C COCPEe0TOYEHHBIMH HApaMeTpaMHu

Pabora COmepXHT pe3ynbTaThl Kacaroliuecs HAOIFONEHHMN W OMIMMAJBHBIX HAOIFOICHMIA,
OCHOBO# KO1OpBIX SBJIACTCS KOHEUHOE umCio Habmopemmit. Jlamsr ceoiicrBa MHOXecTB U, 7 s
BCcexX HabOmomaeMbIx QYHKLMM W ONTHMAIBHO HAOIFOmaeMBIX (QYHKIMI OTHOCSAINMXCS K § U3MeEpe-
musiv.  Ilpencrasiena Momdbukanus MUHEMAKCHOTO npmHImna KpaccBckoro. AHAIM3HPYETCS
BIIMSHUE BeJIMYWHBI WHTEPBAJIa HAOIIOMECHNN Ha Ka4eCTBO M YMCIIO H3MepeHmii. Ompemnenesl TOYKA
CHCTEMBI, YIOOHBIE IUIS MPOBEIEHMS HaOIIONCHMIA.




