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The note contains resu lts concerning observations and optimal observations based on finite 

numbers of measurements. There are given properties of the sets U, and U, of a ll functionals obser­
vable and optimal observable resprectively by s measurements. A modification of Krasovskii's 
minimax rule is given. Jnfluences of the time interval of the observa tion on the quality and the 
number of measurements are investigated. Un iversa l points fo r the observation are described. 

1. Introduction 

Consider a linear lumped parameter system 

x=K(t) x, 

y =G (t) x, O~t~T, 
(1.1) 

where K (t) is an integrable n by n matrix and G (t) is a continuous m by n one. 
Jn praclice the output .Y (t) is obtained by a measurement, which has an error 
L1 (t) : y (t) = G (t) x (t) + Ll (t) . Supposing that Ll (t) satisfies the condition Ll (.) E S6 , 

So being the ball of rad ius b in the output space Y, Krasovskii [5] introduced an 
optimal observation problem with the optimality in the minimum norm sense. 
Kolmanovskii [4], Chernousko [2] an d Solanik [1 3] considered an optimal obser­
vation problem in which the error Ll (t) is a swchastic variable having the normal 
distribution with the zero expectation and a known correlation matrix. The opti­
mality is understood in the sense of minimum of an integral functional characte­
rizing the quality of the observation process. Krasovskii's problem was generalized 
by Kurgianskii [6] as follows. The measurement of the output haf" now an error 
of the type y(t)=G (t)x(t) +F(t) l;(t), F (t) being a continuous m by r matrix 
and ( (t) being a unknown function restrited by the condition ( (.) E Z cL; [0, T ], 
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where Z is convex, closed and bounded. The system is also disturbed: .X= f (t) x+ 
+ C (t) v, where C (t) is a continuous n by s matrix and vis a disturbance sari~fying the 
condition v (.) E VeL; [0, T], where V is convex, closed and bounded. Ihe opti­
mality of observations is understood in the minimP.x sense, which is a direJt genera-
lization of the minimum norm sense. · 

Rolewicz [12] extended Krasovskii's problem to infinite dimensiona~ systems 
consisting of operators acting on Banach spaces. In particular, the systen (1.1) is, 
following Rolewicz, expressed in the form 

(1.2) 

where continuous linear operators A and B are defined by 

(Ax) (t) = q; (t, t0 ) x, O~t~T, xE X, 

(Bx(·))(t)=G(t)x(t), O~t~T, x(·)EO, 

(q; (t, t0 ) is the transition matrix of (1.1)), X=Rn is the space of all initifl values, 
0 =en [0, T] is the space of trajectories, y = CE [0, T ], E being an m-dimensional 
space, is the output space. Functional jE X* is said to be observable if there is 
q; E Y* such that f(x) = q; (BAx) for all x EX, or in terms of adjoint operators, 
f=A*B':'q; . q; is called an observation for f Observation rp 0 such that llq;oll = 
= inf {l lq;ll:f= A':'B':'q;} is called an optimal observation for f Rolewicz obtained the 
following fundamental theorem 

THEOREM (Rolewicz [12]) . If jE X* is observable, then there is an optimal obser­
vation q; of the form 

n 

q;(y(·)) = }; (~k,y(tk)) (1.3) 
k=l 

where c;k E E '\, tk E _ [0, T], (., .) denotes the scalar product in R"'. 
Formula (1.3) means that q; is based on n =dim X measurements. 
The aim of this note is trying to answer the questions: "When can one reduce 

the number of measurements in observations and optimal observations?", "How 
can one define tk> ~kin formula (1.3)?", "Are there common points of the measu­
rement for all observable functionals?" 

A majority of results of the note was announced in [I 1]. 

2. Some Elementary Facts 

Let P be the set of all observable functionals. Since dim BAX =dim A *B':' P' = 
=dim P, Pis a r-dimensional subspace of X':' if and only if the number oflinearly 
independent vector functions among n columns of matrix G ( ·) q; ( ·, t0 ) is equal tor. 
Moreover, P= A *B':'Y':' = ((Ker BA) (as X is finite dimensional). Hence, as a trivial, 
consequence of Rolewicz's theorem we obtain 
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CoROLLARY 2.1. If the number of linearly independent functions within n columns 
of matrix G ( ·) rp (., t0 ) is equal to r, then every observable functional can be 
optimally observable by r measurements. 

Functionals in X* are often considered as n-dimensional vectors. Then from the 
definition of the observability it follows that functional rp of the form (1.3) based 
on s measurements is an observation for f EX':' if and only if 

s 

f = }; q;':' (t," to) G* (tk) ~k. (2.1) 
k=l 

Example 2.1. Consider the system 

.X 1 - 0 1 0 ... 0- -x
1 

0 0 1...0 

0 0 0 ... 1 Xzn-1 

0 0 0 .. . 0_ _Xz 11 
(2.2) 

y=[l,O, ... ,o][~1 ]=x1 , a~t~b. 
Xzn 

Equation (2.1) in this case has the form 

(2.3) 

If f has an observation rp 0 of the form (1.3) based on p measurements with ~~ ~ 0, 
k = 1, ... ,p, then rp 0 is optimal. Indeed, by (2.3) we have for every observation rp of 
the form (1.3) (for f) 

s s p 

llq; ll = _2; l~kl~ _2; t,k=ft =}; t,~ = l l ffJ0 II · 
k=l k=l k= 1 

Now consider the integral functional J E Y* 

b 

f(x 1 (·))= J x 1 (t)p(t)dt, (2.4) 
a 

p (t) being a nonnegative integrable function vanishing only in a set of measure zero. 
J corresponds to f E X':': 

[ 

b b (t-to)Zn-1 ] 
f= J p(t)dt, ... , J p(t) (2n-l) dt . (2.5) 

a 
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x 1 (t) satisfying (2.2) is a polynomial of degree 2n- I. Hence we have the Gauss 

type quadrature formula 

b 11 

J x 1 (t)p(t)dt=}; (kx 1 (tk), tkE[a,b],(k>O. 
k=l 

Since ("k > 0 the formula defines an optimal observation for functional (2.5), 
i.e. for integral functional (2.4). This optimality was proved in another way in [10]. 

3. Sets of Functionals Whose Observations or Optimal 
Observations can be Based on the Same Number of Measu­
rements 

By u. (Us) we denote the set of all/EX':' whose observations (optimal observa­
tions resp.) may be based on s measurements (U0 = U0 = {0}). 

THEOREM 3.1 : 

(a) 

(b) 

u 0 ~ u L ~ •• • ~ u., 
1 
= us 

1 
+ 1 ":" • • • = ull = p , 

Do~D~~ ... ~D.,=Ds, +r= ... =U~~=U~~=P, 

where s 1 and s2 depend on the linear system. 

The proof is based on the following 

LEMMA 3.2: 

(a) 

(b) 

Proof.. (a) Clear, by (2.1). 

Us+r= Us+ Ur, 

(b) LetjE Us+r· Its optimal observation (/Js+r is defined by tk,(k,k=l, ... ,s+r, 
as follows 

s s + r 

f= .2 rp':'(tk>to)G':'(t,J(k+ .2 rp':'(tk,to)G':'(tk)(ki.fJs+fr. 
k=l k =s+ 1 

s 

The first sum defines an optimal observation rp. for j~. Indeed, if llrp. ll = "''' " 11 > 
k= 1 

inf {lilf! ii :fs =A *B':' If!}, then by Rolewicz's theorem there are Yfk, eko k = I , ... , n, 

such that 

11 11 s 

.fs= .2 <p''' ceb to) G':' cek) Ilk and .2 11 17kll < .2 li(k il -
k = l k=1 k=l 

This contradicts the, optimality of ((Js+n since !l rps+r ll = 11 rps l1 + 11 9rll . Similarly, 
the second sum defines an optimal observation if!r for fr. Q. E. D. 
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Proof of the theorem. (a) follows f1 om the fact that if V;_ 1 =V;, then V;+ 1 = 
=V;+ V 1 = V;_ 1 + V 1 =V;. Now we shall show (b). For this purpose we shall 

prove that if U;-t=U;, then U;=Ui+L· Let .1;+ 1 E U;+ 1 and let rp; +1 defined by 
tk, c';b k= l , ... , i+l , be its optimal ob8ervation: 

i + l 

.1;+ t = 1,?* (t" to) G':' (tt) c';t +}; rp':' (tk, to) G':' (tk) ~k df ft +.k 
k= 2 

Clearly rp 1 defined by t 1, c'; 1 and ((J; based on tk, ~b k=2, ... , i+l,areoptimal 
observations for / 1 and /; respectively. On the other hand, since .1; E !7; = U; - 1 , 

there is (/J; - 1 which is an optimal observation for .J;. Thus jj rp 1 ii+ Ji rp;_ 1 jj = ll rp 1 jl + 
+ li rp; jJ = II rp;+ t ll , i.e. fi+l E U;. Q. E. D . 

From equation (2.1) it follows that 

V= s u 
t:1, . . . , t$ E (0 , T] 

where Lin [ ] indicates the space spanned by the columns of the matrix. Furthermo­
re, Us and Ds are cones and they are symmetrical with respect to the origin. 

Since X is finite dimensional and so A *B':' Y':' is closed, by the Banach theorem 
on inverse operators we trivially get 

LEMMA 3.3. If f"->/ 0 as n--+ oo, then 

In the majority of practical cases, the time interval [0, T] is bounded and closed . 
In this case we have 

THEOREM 3.4. Ds is closed for all s:;;,O. 

Proof. Let/,, E Ds and /,,--+./~. Of course foE A''' B':' Y':'. Hence fo is observable. 
By the definition of Ds there are optimal observations rp" for j;, of the form 

rpll (y (·)) =.I; (~~' y (t~)) . 

~e norms of rp 11 are, in view of Le;~~ 3.3 , uniformly bounded. It implies that 
the norms of~~ are also uniformly bounded. Using the compactness argument we 
can extract a subsequence rpn, such that ~~ ' and t~' are convergent to ~k and tk corre­
spondently. Thus 

(/Jo (y ( · )) =}; ( c';," Y (tk)) 
k=l 

defines an optimal observation for j 0. Therefore fo E 0 8 • Q.E. D . 

PROPOSITION 3.5. If for all t E [0, T] rank G (t) =m, then U1 is closed. 
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Proof. Letf"= rp':' (t", t0 ) G':' (t")~" andf"__,.fo . Since rank G (t)=m for all tE [0, T] 

there is a constant M such that ll~" ll ::s;MIJ/" 11 for all. n. Using the compactness argu­
ment we can chose converging subsequences ~"' and t"'. Then/0 = rp ':' (t 0

, t0 ) G':' (t 0
) ~0, 

where t 0 =lim t'" and ~0 =lim ~" ' . Q. E. D. 
If the time interval is unbounded, then U1 may not be closed as is shown by the 

following 

Example 3.1. Consider the system 

Jx, = ),1 x1 
1 A. 2 < A. 1 <0, 
tXz= AzXz 

y=x1 +x2 , O=::;t<+ oo , t0 =0. 

Since A. 1 < 0, ),2 < 0 all solutions of the differential equations are continuous and 
bounded and so they are elements of the Banach space C [O,+oo). Let us observe 

functionals f" = (I,+). It is easily verified that rp" based on one measurement t" = 

1 _ ;_., _ 
= ----Inn, ~"=n;. 2 - ;., is an observation forf". On the other hand, f''__,.fo= 

}, , - ).z 

= (J, 0), which is not observable by one measurement. Thus U1 is not closed. 
Two examples below give answers to the quaestion: whether Ds= Us? 

Example 3.2. Consider a stationary two-dimensional system whose matrix has 
complex eigenvalues a ±ifJ ({J=PO) : 

fx 1 =ax1 -{Jx2 , 

[x 2 = {Jx 1 + ax2 , 

y=x1 +gx2 , O=::;t=::;T, 

(taking G=(l, g) does not lose generality). It is not hard to see, by equation (2.1), 
that U1 =X* if T?:- n/ fJ. Furthermore, if ex =0, then solving equation (2.1) for the , . 
considered ~ystem relatively ~k and comparing the norms of all observations rp 2 

(consisting of two measurements) with the norm of rp 1 show that 0 1 = U 1 = X*. 

Example 3.3. Consider the above system. Let cx<O. Then one easily sees that all 
functionals satisfying the condition gj1 = j 2 belong to 0 1 , i.e. {0} ~ 0 1 • Now suppose 

cx=-10, fJ=l, g=l .f=(lO,O). The only rp 1 based on t 1 =n/4, 
10 

has the norm 1J rp , j1 = v2 e1 
On /

4 > l! rpz ll . where ({Jz is based on -two measurements 

at 1/ 10 and 1/9. T hus {0}~ 0, ~ U,. 
Example 3.2 has the following extension 

PROPOSITION 3.6 . Consider a 2n-dimensional stationary system with one dimen­
sional output (g =P O) 

x= Kx, 
y=gx, O:::;t:::; T , t0 =0. 
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If matrix K has 2n single complex eigenvalues cxk±if3k and T?:::n//3 (f3=minj3k> 
fJk>O), then U11 =X*. 

Proof. Basing on the form of rp (t, 0) we obtain 

y (t)=grp (t, 0) x= ea,t (61 cos /31 t+u1 sin /31 t)+ ... + 
+eant (611 COS /311 +u11 sin /311 t) df Y1 (t)+ ... +Yn (t), 

and y (t) = y 1 (t) if x=(x 1
, x 2

, 0, ... , 0) ctr x 1 . Then we have a corresponding decom­
position X=X1 ® ... ®X,. Applying Example 3.2 to two-dimensional system 

we obtain an observation rpk E Y*, based on one measurement, for fk E Xk* induced 
by f EX':' by the formula h (xk) = f (xk). Now we can trivially prove that functional 

11 

.rp= .2; rpk is a desired observation for f Q. E. D. 
k= 1 

Now we deal with universality of the optimal observation problem with output 
space Ce [0, T]. Consider a linear system x = K (t) x, y 1 = G 1 (t) x, or 

(I) 

where Y is a separable Banach space. There exists, by the unive-rsality of Ce [0, T], 
an isometric embedding D of Y into CE [0, T]: 

(II) 

By the Hahn-Banach theorem we get the 

PROPOSITION 3.7 . If rp~ is an optimal observation in system II (II-observation) for f, 
then rp~ =D':' rp~ is an optimal !-observation. Conversely, if rp~ is an optimal !-obser­
vation, then there is an optimal II-observation rp~ satisfying llrp~ l l=inf{l l rp 2 / l: rp~ = 
=D* ~z}. 

PROPOSITION 3.8. If Y':' in problem I is strictly convex, then in problem li we have 

U1 =Vt=P. 

Proof. If/Ex:' is observable, then its optimal observation rp~ is unique by the strict 
convexity b f Y"' and rp~ is an extremal point of the ball Ka 1 c Y* of radius a 1 = 
=inf{IIIP 1II:f=A':'B*rpJ}. Taking into account that for all rp2 E (C£ [0, T])* we have 

IID':'rp2 II :::; JJ q;z /l and Gz=inf{l/q; 2 1/ :f=A*B':'D*q;2 }=a1 , we see that q;~ is an extremal 
point of D':' Ka,• where Ka, is the ball of radius a2 in ( C£ [0, T]Y. Therefore we can 
find q;; E Ka, n D':'- 1 rp~ such that rp~ is an extremal point of Ka, and then q;~ is 
a required optimal observation. Q. E. D. 

REMARK. Proposition 3.8 has the following noteworthy consequence: There exists an 
output for the given process x = K (t) x such that U1 = X *. Indeed, first we take 
space Y such that Y"' is strictly convex and a matrix G1 (t) such that dim BAX = n. 
Next, we find an isometric embedding D of Y into CE [0, T]. Then operator DB is 
a desired output (but this output is not given by a matrix of the form (1 .1)). 
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4. An Explicit Solution of the Optimal Observation Problem 

Another proof of Rolewicz's therem. Let J 0 be a minimal element, i.e. liYo ll= 
=inf{lly li :y=BAx, f(x)= l } ~l p0 • Then every optimal observation rp 0 satisfies the 
maximum property [5] 

rpo (yo) max (yo) = 11 rpo iiiiYo ll . 
li <PII= 1/o0 

This means that rp0 is collinear with yo (in the sense of Luenberger [8].) By analogy 

with equation (2. J ), in virtue of the collinearity we see tha t rp 0 is an optimal obser­
vation for f if and only if 

f= J rp':' (t , t0 ) G':' (t) ( 0 (t) b (t) dt , 
Dyo 

where Dyo = {t E [0, T]: !IY0 (t) 11 = ljyo ll }, .;o (t) is a unit vector collinear with J 0 (t) 
and b (t):;::,O. 

Let dim Lin { rp':' (t, t0 ) G':' (t) ( 0 (t), t E DY" }=d. Of course d~n. One can now 
choose d linearly independent vectors within the vectors rp ':' (t, t0 ) G':' (t) .;a (t), 

t E Dyo, say the vectors with t=tl> ... , td such that 

d 

f= 2 rp':' (tk> to) G':' (t") ( o (t") b (t,J, b (t,J :;::, O. (4.1) 
k = l 

The obtained formula defines an optimal observation based on d~ n measurements . 
Q.E.D. 

From this proof we deduce: 

RuLE 4.1 (of the determination of optimal observations). 
1. Define a minimal element yo of the problem . 
2. Find Dyo· Calculate m-dimensional unit vectors .;o (t) collinear with y" (t). 

for t E D yo · Functional rp E Y';' defined by the formula 

"' 
rp ( y (·)) = 2 (b" ( 0 (t,J,y(t")), b":;::, O, tk E Dyo, 

k=1 

is an optimal observation for f if and only if 

s 

.f= 2 rp':' (tk, to) G':' (t,J <!; 0 (t,J bk. 
k = l 

If the linear system is stationary and the unit ball in the space E is a polyhedron 
in a dual general position with respect to the system, then D,,o contain s only a finite 
number of points [ 12]. Thus Rule 4.1 becomes more pratical. 

The following example yields an extension of the result in Example 3.2. 

Example 4.1. Consider a four-dimensional system with one dimensional output: 
x=K4 x , y= gx, O~ t~T, t0 =0. Suppose that K4 has single pure imaginary eigen-
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fJ y f . k p· values ± fJi, ± yi such that k+ 
1 

= k or some mteger and IS near to y so that 

the phenomenon of beats happens ([3] pp. 5-7) and assume that T~2nKf y. Then 
every f EX':' can be optimally observable by two measurements. In fact, for all 
x EX the output takes the form 

y (t) has amplitude a (t) which varies periodically between a 1 +a2 and la 1 -a2 1 

2n 2nk 
with period -/]-- = -- equal to the period of y (t) ([3] pp. 5- 7). Then IY (t)l takes 

- y y 

the maximum being the maximal value in the whole time axis once or ·twice in 

l 2nk) · 
_ 0, - y- for each x E X. Now using Rule 4.1 concludes the proof. 

5. Influence of the Time Interval of the Observation on the 
Quality and the Number of Measurements of Observations 

In this section we shall examine different intervals of time assuming that the 
conditions on K (t) and G (t) in Section 1 are always satisfied. It is obvious that 
observability in [T,, T 1 ] implies observability in [T1 , T 2 ] => [T1 , T2 ]. The following 
proposition whose proof i~ simple precises the situation in which a converse sta­
tement is true. 

PROPOSITION 5.1. Every functional observable in [T1 , T2 ] is also observable in 
a sub interval [7\ , T1 ] if and only if the number of linearly independent functions 
among n columns of the matrix G ( ·) rp ( ·, t0 ) for the subinterval is the same as 
for [T1 , T1 ]. In particular, for stationary systems from the observability (for f) 
in a certain interval it follows the observability in every interval. 

In [!4] it was introduced a concept of differential observability and there was 
proved a fact similar to Proposition 5.1 for complete observability. 

PROPOSJTION 5.2. Let rp and ip be optimal observations for fin [T1 , T 2 ] and [1\ , T2 ] 

respectively. If [f1 , f 2 ] c [T1 , T1 ] , then llfP II ~ 11 rp jj (i.e. shortening the time interval 
decreases the accuracy of optimal observations). 

Proof. Let yo (t) and ji 0 (t ) be minimal elements in [T~> T 2 ] and [T 1 , T2 ] resp. Then 

jj 0 = max i!Y" (t) IJ:( max IIY0 (t) IJ:( max i[JI0 (t)l[=p0
• 

[T, , T 2 ] 

Hence 

I 1 
llfPII = -_ ~-= llrpll -

po po 
Q.E.D. 
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We say that observation rp 0 defined in [1\, T2 ] is a globally optimal observation 
if we have I! 'Po ll~ Jlrp ll for any observation rp in any interval. One easily proves, by an 
argument similar to that in the above proof, that there exists a globally optimal 
observation in [1'1 , T2 ] if and only if there is a globally minimal element yo (t) (i.e. 
a function yo (t) which is a minimal element for the problem in any interval [T1 , T 2 ] :J 

:J [1\, T2 ]) and max JJyo (t) JJ = max i[Y0 (t) JJ for any [T1 , T 2 ] :J [fl> T2 ]. Furthermore, 
[T,,Tz] [T,,Tz] 

if all y (t) are periodical with the same period, then every observable functional 
has a globally optimal observation in any interval with the length equal to the period. 
As a trivial example of such systems we can take a stationary system in which matrix 
K has single pure imaginary eigenvalues ± i{Jk such that {Jk are commensurable. 

Now we deal with a dependency of the number of measurements on the length 
of time interval. One easily sees that lengthening the interval does not increase the 
number of measurements in observations. The situation with optimal observations 
is more complicated. Two examples below show that we may reduce the number 
of measurements in certain cases by lengthening the interval and in oth~ cases 
by shortening it. 

Example 5.1. Consider functional f=(j/3, 1) in the system 

fx~ = -xz, 
[xz =x1, 

y=xt. 

There is the unique observation consisting of one measurement (at t= 5nj6) 
and it is globally optimal. On the contrary, if we permit to observe the output in 
[0, n/2], then to optimally observe f we have to make two measurements. 

Example 5.2. Given the functionalf=(l /10
, 10) and the system 

{~1 = - 10x1 +xz, 
x 2 = - l0x2 , 

O=t~~T, T>lOO. 

It is not hard to show that the only observation based on one point, namely 
elOOO 

t 1 = 100, possessing the norm JJrp 1 JI =lOO is not optimal. If we are able to observe 

the output only in [lOO, T], then the observation rp 1 is optimal. To verify this compare 
J[rp 1 J[ with J[rp 2 J[ for all rp 2 based on two measurements. (It should be pointed out 
that the optimality in [100, T] is worse than that in [0, T].) 

6. Universal Points for the Observation 

A set of points {t ~o ... , ts} = r, tk E [0, T], is called a universal set (of points of the 
measurement) for the linear system, provided that every observable functional has 
observations based only on measurements at 's· 
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THEOREM 6.1. If there is t 1 E [0, T] such that rank G (t 1)=m and if dim P = r, then 
there exists a universal set consisting of r- m+ 1 points. Without the assumption 
about G (t) we shall have a universal set consisting of r points. 

Proof. Since rank rp':' (t~> t0 ) G* (t1)=m among n rows there are m linearly inde­
pendent rows, say m first ones. Then n- m remained rows are linear combinations 
of them: 

l ~~~. ~~.~.? ~.~~:~~~ ~:. ::·:. ~~:.~.1? row n =(IX~, ... , IX~,) 

(6.1) 

where, for simplicity, in the right sides we write only the coefficients of the combi­
nations. Assume that r >m (if r =m, then the following procedure of the proof will 
be finished after the first step). Since dim P = r the number of linearly independent 
functions among n columns of matrix G ( ·) rp ( ·, t0 ) is equal to r and one can 
choose t2 E [0, T] such that for the matrix rp* (t2 , t0 ) G':' (t2 ) there is at least one 
equality in (6.1), which becomes an inequality, say row (m+l)# (IX'~'+i, ... , IX;~+ 1 ). 

Clearly in the matrix [rp':' (t1 , t0 ) G* (t1), rp':' (t 2 , t0 ) G* (t2 )] m+ 1 first rows are 
linearly independent. Continuing the procedure we finally obtain 

As dimP=r a glance at the equation (2.1) assures us that the set {t1 , .. . , t,_ 111 + 1 } 

is universal. Q. E. D. 

The following proposition has elementary proof. which is omitted. 

PROPOSITION 6.2: 

(a) The set of all universal sets consisting of s points is open in [0, T]s = [0, T] X ... 

... X [0, T]. 

(b) The mentioned set is everywhere dense in [0, T]s if the number of linearly 
independent functions among n columns of matrix G ( ·) rp ( ·, t0 ) is equal to s in 
each subinterval of [0, T]. If, further, rank G (t) = m for all t E [0, T] ~ then we have 
the same fact but for universal sets consisting of s -m+ 1 points and for [0, T]s-m+ 1

. 

If, moreover, dim P =n, then setting s=n in the above statements we obtain a ne­
cessary and sufficient condition for the density. 

Let us note that for any observable functional f there is a universal set such 
that f is optimally observable only by points of this set. Indeed, by (4.1) f is opti­
mally observable by t 1, ... , td. Of course rank [rp':' Ctu t0) G':' (t1), ... , rp* (td, to) · 

· G':' (td)]::( dim P. If we have the strict inequality, then we can choose points 
td+I> ... , ts so that the inequality for tl> ... , t 5 becomes an equality and we get a 
required universal set. 

Conversely, for given universal set r there is the "worst" functional/* in the 
sense that 

inf llrp{* ll = sup inf llrp{ll 
"' llf ll <; 1 "' 
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where rp{ denotes an observation for f, based on r and the infimum is taken over 
s 

all such observations. Precisely, for (t 1, • .. , ts) = r the formula!=}; rp':' (tk> t 0) G* (tk) (,k 
. k = 1 

defines a linear operator Q from E* x ... x E* onto P. Since the unit ball in 
£':' >< ... x E':' is compact, by a method of Rolewicz ([12] , Theorem V.6.2), we see 

that t he inf ll rp{ ll = inf ll rp ll is attained at an element 0{. By the mentioned Banach 
(/! Q<p=f 

theo rem the linear operator Q- 1 from P onto£':' x ... X£'1'/Ker Q is bounded. The-

refore 11 0{11 = II Q - 1 (f) ll is a continuous function of f. Thus by the compactness of 
the unit ball in P for a certain!':' E P we have: sup 11 0{ 11 = ll0{':' 11 . 

lif ii ,; 1 

We say that universal set r 1 is better than r 2 if 11 0~~ 11 < 11 0[,~ 11 • Unfortunitely, in 
general, the best (optimal!) universal sets do not exist since the set of all universal 

sets is open. 

7. An Extension to the Observation for Systems of Functionals 

Let the linear system (1.2) be given . Consider a system of functionals F= (f~> ... 
... , j ;J F can be regarded as an operator mapping X into a q-dimensional Banach 
space H. System F is said to be observable if there is an operator If/ such that the 
diagram 

is commutative and to be optimally observable if there is such a If/ with minimal 
norm [12] . 

Using Krein's method of moments [l] and noting that the finite dimensional 
space H has the separable extension property [7] if and only of it is (isometric and 
isomorphic to) a space with the norm 

(7.1) 

(see [7] [9]) we get the following extension of a realtionship obtained by Krasovskii 
[5]: For each operator F: Y -7 H the following relation is valid 

1 
inf {l[lf! ll :F(x)=lf/ (BAx)}= 0 , 

p 

where p 0 =ihf{ IIYII : y =BAx, llF(.x) IIH=I}, if H has the norm (7 .1). Conversely, if 
fo r given space H we have the mentioned relation for each linear system (1 .2) and 
each operator F, then (by the universality of CE [0, T]) H has the norm (7.1) . 

We easily prove the following 

P ROPOSITION 7.1. Let H have the norm (7.1) and let Jl0 be a minimal element of the 

problem for F (i.e. )l0 = BAx, II F (x) llu = 1, I[Y0 ll = p 0
). The observation If/: If/ (y ( · )) = 
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s 

=); Vky (tk), VkEB(E~H), tkE [0, T], is optimal if and only if fork= 1, ... , s we 
k=l 

have: 

(a) tk EDyo={t E (0, T]: IIY0 (t) I[ =Jlyoll}; 
(b) Vk and yo (tk) are collinear, i.e. IJVkY0 (tk)IIH=IJVkllllYo (tk)ll; 

s s 

(c) 11.2; vk Y0 (tk) IIH =); IJVk Y0 (tk)IIH· 
k=l k=l 

RuLE 7.2 (of the determination of optimal observations when H has the norm (7.1)) 

(1) Find a minimal element y 0 given by definition 

IIY0 II =inf {IIYII :y=BAx, IIF(x)IIH= l}=po. 

1 
There exist optimal observations lfl if and only if p0 > 0 and then lllflll = -. PO 

(2) Define Dyo and q by m matrices V~ with 11 V~Jl = 1 collinear with yo (tk) for 
tk E Dyo· Operator lfl: Y ~ H defined by 

s 

lfi(Y(·))=}; bk V~y(tk), bk?;O, ftEDyo, 
k=l 

is an optimal observation for F if and only if 

s 

F = _2; b,, V~ G (tk) q; (t1" t 0 ), 

k=l 
s s 

11}; bk V~ Y0 (tk)I IH = }; llbk VI~ Y0 (tk)llu. 
k=l k=l 

The author whishes to acknowledge his gratitude to Professor S. Rolewicz, 
without whose guidance this work would not have been possible. 
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0 pomiarach wykonywanych na podstawie obserwacji lub optymalnych 

obserwacji ukladow Iiniowych o parametrach skupionych 

Podano wyniki dotyczqce obserwacji i optymalnych obserwacji, kt6rych podstaw~ stanowi 
skonczona liczba pomiar6w. Podano wlasnosci zbior6w Us i Us wszastkich funkcji obserwowalnych 
odnoszqcych si~ do s pomiar6w. Przedstawiono modyfikacj~ minimaksowej zasady Krasowskiego. 
Przeanalizowano wplyw dlugosci przedzialu obserwacji na jakosc i liczb~ pomiar6w. Okreslono 
punkty ukladu dogodne dla dokonywania obserwacji. 

06 li3MepeHIIliX BbiDOJIHHeMbiX Ha OCHOBe HaoJIIo~eHHH H OllTHMaJibHbiX 

HaOJIIO~eHHU JIHHeUHbiX CIICTeM C COCpe~OToqeHHbiMII napaMeTpaMII 

Pa6oTa co.n:ep:iKRT peJylThTaThi Kacawm:~~ec.!! Ha6mo.n:emrn H omHMalThHhrx Ha6rrw.n:emrn, 
OCHOBOH K010pbiX liBJIJieTCJI KOHe~oe q}[CJIO na6mo.n:enHi1:. ,[J:aHbr CBOHCTBa MHO:iKeCTB Us I! Us 
BceX Ha6nlOAaeMbiX <P)'HKI.\HH I! OTITHMaJThHO Ha6mo.n:aeMbiX 4>)'HKI.zy[i1: OTHOCJIII(HXC.!! K S H3Mepe­
IIJIHM. IIpe.n:cTannena MOAH<l>HKai.IIDI MHHHMaKcHoro TIPHHI.II!rra Kpac0BCKoro. AHarrH3HpyeTCll 
nrrnl!HHe neJIH<lliHbi I!HTepnana na6nw.n:emrn Ha Ka'leCTBO n q}[CJIO H3Mepemrn. Onpe.n:enebr TO'IKH 
CI!CTeMhi, y.n:o6Hbre ~JIJI npone.n:eHHJI na6nw.n:eHHi1:. 


