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The control of multistage processes is considered. Various situations may occur at different
stages of the process. For every situation another subset of utility functions is given.

Two cases are considered. In the first case assignement of a utility function to a particular stage
is random although at each stage ther is only one utility function. The control results from the
maximization of the expected value of the global utility function.

In the second case at each stage an appropriate subset of utility functions has to be taken into
account. In this case the control results from the application of the balanced growth principle.

1. Introduction

Many technological batch processes and most of economic processes may be
treated as multistage processes.

Theory of control of this type of processes, with its main result — dynamic
programming [1], was developed under a general assumption that the performance
of the whole process is measured by a single, strictly given performance index.

In mathematical economics, where models of economic growth are devoted a lot
of space, problems of control of individual stages are not considered, while con-
cept of technological sets is used [6], [7]. In these models performance indices are
assumed in the form of functionals expressing weighted sums of investment goods
produced by the whole process or consumption aggregated to one component [6],
[7].

This formulation of the problem is closely connected with turnpike theorems
[2], [9], [10], [11] according to which optimal trajectories have the property that
significant portions of their total lengths are close to the states of balanced growth.

Papers [4] and [5] state the problem of control of dynamic multistage processes
.with different performance indices at individual stages for technological processes.
The problem was reduced to local optimization at individual stages and to a choice
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of switching points in the augmented state space (state+time), where a measure
of discontinuity of control at the switching points was chosen as a utility function.
Such a utility function, however is meaningful only in certain cases of technological
processes.

In the present paper, the following problem is considered. A multistage process
described by state equations is given. Continuity of state space trajectories is assumed.
Control of the process is evaluated by means of a set of performance indices charac-
terizing production output, its quality, energy consumption or other technological
characteristics. There are given linear utility functions, determined on these indices,
which may be different at different stages and there may be many such functions at
each stage.

Two cases are considered. In the first case assighment of a utility function to
a particular stage is random although at each stage there is only one utility function.

Such a situation arises when prices or priorities may change from one stage
to another due to causes which are random from the point of view of the process
control.

In the second case at each stage an appropriate set of utility functions is given.
In this case application of a principle of balanced growth is postulated together
with using the theory of von Neumann models [2], [6], [8] in order to determin some
relations connected with the growth rate.

II. Problem Formulation

Consider a multistage, dynamic control process whose stages are described by
state equations.
Stage i, i=1,2, ..., N, for times 7e(T;_y, T;] is described by the following
state trajectory
X; (1) =g; (Us> X105 Ty— 1, T) )]

where x; € R" — state variables at stage i,

X;0=2x; (T;_,) — initial condition for stage 7,
u; € V; — control at stage 7,
2l Vix REX R* X RV RY.

Initial condition X,=(xy0, 7o) for the first stage is assumed to be given.
Continuity of the state trajectory for the whole process is assumed
Bpnty o= (D,  d=1,2, .. N—L @)
For each stage a target set is given (Fig. 1).
[x(T) ., T}=%€8,<R*, i=1,2,..N. 3)

It is assumed that the sets S; are connected and closed.
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Figure 1

It follows from (1), using the notation of (3), that for t=T;
S (T=0 [ %l =052, @)
F VK RS R
Relation (4) expresses the fact that the final state at each stage is a function of
control and initial conditions at this stage.

Let O be a given set of nonnegative functionals — performance indices and let
it be composed of subsets Q;,j=1, 2, ..., M,

QZ{QD cees QM}:
QI:{q;: Saey q{;},

bt 5 : (5)
q9;=4; (ui, X1, X1), j=1,... M,
g VX R R e, e .
Substitution (4) to (5) gives
qlc"l ui7 A_:i— 9 .:]:“'aM
i=4; ( 1) | ©)

gi: Vix R 1R, =150

III. Determination of Switching Points by Maximizing of the
Global Utility Function

Let us assume that, for each stage, there is given a vector of utility functions
being linear combinations of performance functionals

wi=Ci g @)
where
Ci:{cij}Rxb{
it o
¢,>0, r=1,..,R, ®
ji=1, ... M,
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'=1s s G
wi=wh, ..., wh)T.
Substitution (6) to (7) gives
wh=C" ¢’ (us, %i_ ). ©)

Assignment of a particular utility function to a particular stage is random.

It is assumed that the probability of assigning one of R utility functions to stage
i is a function of such assignments at proceeding stages. It is assumed that these
probabilities are known.

Formally this problem may be staied as follows.

The assignment is treated as a discrete stochastic process 2 (i), i=1, 2, Al
The process is a sequence of random variables whose realizations are numbers of
utility functions.

Q@()={r.e{l,2, .., R}}. (10)

Let p; (r;/J:~*) denote a conditional probability of the event that a utility function
number r; is assigned to stage i, provided that the assignments at the proceding
stages formed the sequence

Jsimlz(r], Py ey "i—J)ss i=2, 3, ..s N, (11)

It is assumed thet the utility function assigned to the first stage has been ascribed
index 1. Thus J!™! is a (i—1)-element sequence that is constructed of elements of
R-element set {1, 2, ..., R} in such a way that each sequence has 1 as the first element.

The number of possible such sequences is equal to the number of variations with
repetitions of i—1 elements selected from R elements wich the first term fixed.

S=l, 2, vony Si—l’

. (12)
Si—l.:(R)l—29 i22.
Moreover
pi (ril‘]:—l)>03 VI, ri’ S,
R
Zpi ("il'];_l)=1: Vi, 5.
ri=1
Probability of generating the sequence
=t el ws Ny Sl s B (13)
is given by a product of conditional probabilities
i—1
P =p (I [ [ el (14)
k=1

where

py (ry=D=L
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The probability of the event that the utility function » will be assigned to stage i
(no matter what ihe preceding assignments J:™!, s=1,2, ..., S;_,) is given by the
following expression:

Si—1
Pi ("i)=ZPi(Jsi—la ry). (15)
s=1
Substituting (14) to (15) gives
Si—1
D (r) Zpl(rll‘]l 1)H pk(’ksl']k 1)~ (16)

Let us consider the optimization problem now.

At each stage i local optimization can be carried on with respect to u; € V.
The local optimization problem consists in determining u}., for all i and r, that
satisfies the following relation:

FOI‘ ﬁXed xi_]_ = Si-—ly xi € Si

ir>

arg max wi=u?, (%;_y, X,). (17)
eV

Using (17) in (9) oue can get

M

W= el (i, %) (18)
J=1
whe. e

(i.l:j (xi—l; 331)=4; [ug, (X1, %), iz

The mean value of the utility function at each etage i is given by the expresiou

= 2 pi(r) Wy (19)

ri=1

The global utility function W for all stages is equal to

N
WZZ Wi
i=1

or after substitution of (19) and (18)

W= Z Z pi (1) Z ¢tydty (Fims . (20)

i=1 r;=1
Maximization of the global utility function with respect to the initial conditions
%_.€8;,_; and X;,€S; gives the switching points %; € S;, i=1,2, .., N—1, and
the final point &y € Sy

arg max 2 ypl (r) 2 & ol g B =105, v B 21

xLES, i=1 r,—-l
i=1,...N
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Having assigned an appropriate utility function to the first stage, one can deter-
min, by performing operation (21), all switching points.

Sliding optimization can also be applied which makes possible using at the
k-th stage information about the current (k-th) and pieceding assignment..

The idea of the method i that at time 7;_,, that is at the beginning of k-th stage,
when the sequence J* is known, switching points %y, Xp, 1, ..., Xy_;, Xy are deter-
mined by means of maximizing the utility function at stages &, k+1, ..., N

N R M
o " \" i ~i o= = = -
arg max 2 Zpi (=0 2 By e (R iy By vy Bog) - (22)
x;€S; i=k ri=1 i=1
i=k,....N

The result of operation (22) is %; for i=k, ..., N, but only %} is used. When the
process gets to the point X;, a propp.r utility function is assigned 10 the stage k+1
and optimization is performed again in order to deietmin X, ,, ..., Xy.

Formal description ¢f such a procedure may be the following: The sequence
Ji~1! is broken into two sequences

Jt=@s LI
where
Jsk_1=(1, Fas ooy rk—l)s’ (23)

']si_k = (rk: ey Py 1)s “
After k—1 stages the sequence J*~' is a realization whose terms are known
] é 4,

Thus the probability of occurrence of sequence J* after k—1 stages is given by
the following formula

i—1
PN =R 2l [ ] i ™). 24
1=k

Substitution of (24) to (15) yields a probability of assigning r-th utility function
to stage i for the realized sequence JX™*

Sy 1

i—1
PEed=p ) Y ol [ [ 2 il (25)
s=1 =k

Global value of the overall utility function, which is maximized at stage k in
order to determin £, ..., ¥y, is the following

k=1 M
welk= X' pir) Y ek a Gy, )+
i=1 Jj=1

N R M
+ max > M p @l Y ehd (R ®). (26)
Jj=1

X;€8; i=k ri=1
i=k, ..., N
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Formula (26) expresses the optimality principle for the case comsidered: the
final stages of the optimal trajectory form the optimal trajectory, no matter what
the preceding switching points are.

Numerical algorithmization of the methods proposed requires specification of
assumptions on performance indices (linear or quadratic), of target sets and of
a character of the stochastic process (Markov processes).

IV. Determination of Switching Points Applying Balanced
Growth Principle of Utility Function

Let us consider a situation in which every stage is characierized by a set of wility
functions being linear combinations of performance functionals

wi=Cl g 27
where:
g=q1s s )" € RY,
q;€ Q;< R},
Ci={cpl:j}RxM 5

cr"j>0, for i=1,2, ..., N,
r=12;....R;
=12 M.

Having R utility functions simultaneously at each stage, it seams reasonable to
require that each of these functions grows from one stage to the next and that their
growth should be possibly uniform.

Let us make a formal statement of the above problem.

Requirement of growth of each of the utility functions from one stage to ano-
ther has a form of a set of inequalities

Cig<Ci*tlg, i=1,2,..,N—1, ¢=0 (28)

Let us define the growth raie «, (¢) at stage i as the smallest of the quotients
of r-th utility function at siage i+1 to r-th utility function at stage i

M

i+1
2 Crj 4y
j=1

gl min ey i=1,2, N1 (29)

1<r<R i
Z crj qj
j=1

The growth rate of the whole process « (g) is the minimum value of e; (g) over
i=1,2,..,N-1.

M r
2 a4
. . 5 j=1
a(g)= min ¢;(g)= min  min = (30)
1<isN-1 1<isN—11<r<R v ci
e

rj q;
i=1
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Maximum growth rate of an N-stage process is called a quantity
a*=max o (g)=o (4g*) V 1>0 31D
q=0
where 1 is a coefficient that appeacs because of uniformness of o; (¢), « (g), «* with
respect to g*
q*=(q:‘9 ooy q;)T

where qf;O is a direction in RY in which the growth rate is maximum.

For g=Aq*, for VA>0 and for Vie [, ..., N—1] the following inequality holds

¥ Ci q*éci+1 q* (32)
For the whole process
OC*PO q>:= §P1 q* (33)
where
Cct @2
P°= ....... ] P1= , S=(N— 1) R
CN—.I SxM C'N SxM

Symbol < means that at least one of the inequalities (33) is satisfied as equality.
Matrices P° and P! transform subspace RY into a convex plyhedral cone (pyra-
mid) spanned on columns of these matrices. Direction Ag* lies in this cone (Fig. 2.) -

Figure 2

To summarize, the problem of determining a pair (a*, g*) is a problem of sol-
ving the following operation

o*=max {y=0: y P’ g<P'q; ¢=0} (34)

where o* is attained along the direction ¢* for vectors Ag*, A>0.

The above problem is well known in mathematical economics [2], [6], [7]. In the
problems of mathematical economics, the model described by a system of linear
inequalities of type (33) is known as the von Neumann model. Let us write the
von Neumann model in the form

Ax<Bx

Az{aij}SxMa B={bij}SxM) (35)
aij>0, bij>09 x>0.
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Economic interpretation of this model is the following. The economy is com-
posed of M technological processes which make S goods. Each good produced is
used in the production process.

A is called an input matrix while B is called an output matrix. Elements of vector x
are interpreted as activity levels the production processes. Scalar product of the
i-th row of matrix 4 and vector x, a’x, expresses the quantity of good i that is used
in the production processes of the economy. Scalar product of the i~th row of ma-
trix B and vector x, b x, is the quantity of good i produced. Inequality (35) says that
quantities of all goods should grow in the process of production.

In the references concerning mathematical economics, given above, it is proved
that provided that the following assumptions are met:

(i) for each j there exists an i such that g;;>0 (each production process uses

at leas one good),

(ii) for each i there exists an j suchthat b;;>0 (each good is made by at least

one production process), ]

a solution (a*, x*) of the problem

a*=max [y>0: yAx<Bx, x=0] . (36)

exists. There may be more than one direction x*. Number o* is called maximum
technological efficiency of the economy and vector Ax*, />0, is called technolo-
gically optimal vector of production levels.

Moreover, there exists a vector of prices

p¥=(pt, ., pH)=0 37
such that
w* (p¥)T Ax=(p*) T Bx, Vx>0, (38)
()T Bx>0.

Economic interpretation of vector p* is the following. When the economy is
controlled by means of prices, the prices p* stimulate the production processes to
settle their levels at proportions that are technologically optimal and that provide
maximum technological efficiency of the economy.

The tripple («*, x*, p*) is called an equilibrium state of the von Neumann model.

Let us note that if x*>0 then the equilibrium state is unique. In that case the
direction determined by x* is called the von Neumann ray.

The von Neumann models are also used to describe processes of economic
growth. In such cases vector x is devided into groups, each of which represents
activity levels in different periods of growth.

In this situation different terminology is used. «* is called a technological rate
of growth, the von Neumann ray is called a turnpike. The latter comes from the
fact that when the optimization goal is maximization of linear, or even under certain
assumptions — nonlinear [8], functionals of the final state, considerable portions
of optimal trajectories are in a neighbourhood of the turnpike. There are many so
called turnpike theorems, which under differing assumptions give proofs of the
above statement (see [2], [3], [9], [10], [11]).
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It follows from the above considerations that the problem of determining o*
satysfying (33) is similar to the problem of determining the turnpike in the von
Neumann model, although the model considered falls into a different class of pro-
blems and interpretation of the quantities involved is different.

In the problem discussed in this paper assumption (i) says that each performance
index ¢; should appear at least in one of the utility functions taken into consideration
at the first N—1 stages.

Assumption (ii), on the other hand, requires that there should be no stage, be-
ginning from stage 2, such that any of the utility functions taken into consideration
would be identically zero.

Considering the natute of the problems discussed it can be assumed that both
assumptions are satisfied. This allows for stating the existence of a solution of pro-
blem (34)

O=<ot=<oo,; ¢*=0. (39)
To complete the above discussion let us describe shortly a method of deter-
mining o*.
The problem is to find a pair («, q), >0, qeR’f such that among all pairs
satisfying the following constraints

@ P° g<P'q, (40)
M

D a=1, (41)
j=1

it contains the largest o. The equality constraint (41) determines one point of the
direction required. »

In order to solve this problem let us solve the following linear programming
subproblem. Find a minimum value of function Z in R! subject to the constraints

Ze+Pt g—yP° q>0,

M
D a=1, ¢>0,
Jj=1

where >0 is a given parameter, e is a unit vector, e=[1, 1, ..., 1]%.

(42)

The constraints (42) may be written in the following form

M
Z+ (mg;—y7e) 4,20, k=1,..,8S,
i=1
- 43)
Y a=1, 420, j=1,..M
j=1

where 7y;, 7;, are elements of matrices P° and P* respectively.
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Let V' (y) denote a solution of the linear programming subproblem. It is given
by the following expression

M

V()=min min > [~ (m},— yal)] 4, (44)
qeF 1<k<S j=i
where

M
3*“={q=(ql, o @0 D) 45=1, q,~>0}.
J=i

As & is a bounded closed set and the function

M
min ¥ [~(x},—y7g) ¢;1= 9 (7, 9) (45)
1<k<S ;I3

is continuous with respect to ¢, the minimum in (44) is attainable and a solution
of the linear programming subproblem exists.

It can be easily proved [7], that function ¥ () has the following properties:
— it is continuous,

— it is monotonically decreasing, and
V(y)>0 for y>a*,

V(=0 for y=a%*, (46)
V(<0 for y<o*.

Figure 3 shows the graph of function V (y).

——————— N
st %
A X
92 2 By
1 * oK % I T
= Sz, %, X5") ///6N(UNfXN—/;XN)
S ///
-~ 4
7
S
¥k S F
405557
7
@
9
Figure 3

i = — - = -
Os={q' (Ui, xi_ 1, x): 0, € Vi, Xi_1€8i_1, X; €51}
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Thus the problem of determining a* is reduced to a problem of determining
the largest root of function ¥ (y). This can be done by means of any iterative method
(e.g. Newton method) and it must be remembered that ¥ () is to be computed in
every iteration by means of solving the linear programming subproblem.

Let us return to the considered control problem.

On way of determining the controls #; and the switching points %; is minimiza-
tion of a sum of distances of 7} (1, X;-1, ;) (see (5)) from a point on half line Ag*
determined by a choice of 4 (Fig. 3) witch respect to X; €S;, u; €V, i=1, ..., N.

So u; and %; should be determined by means of minimization of the norm of
a difference of vectors

N
Z !

The determined values of u;=u; and %;=2%; satisfies the following relation

uMz

“Aq*_qi (g, Xy 1, )N 49)

(u*, X)=arg min 2 J;, (50)
uieV,
X;€S;
i=1,,.sN
A>0

i=

where
W=y, - )7,
FF=(Er, e i)
g5 (up, %1, )Ei)=[€—l§ (s Xy 15 Fo)y ooy Tap (s Xy, X7
A problem of defining a norm in RM arises. It seems reasonable to relate this
norm to the equilibrium prices p*.

Taking into account the fact that prices affect g trough matrices C* (27), the
following definition of the norm appearing in (49) is proposed

0, =p*T C'|Aq*—¢* (Fiz1, X (51)

Algorithmization of operation (50) requires specification of functionals g; and
sets S;.

Finally, let us note, that also in the case of applying balanced growth principle,
using sliding optimization procedure is reasonable. This procedure requires repeting
operation (50) after each stage in order to determin switching points X, X; 4 1, ..., Ta—1
and the final point %, where & denotes number of the currently considered stage.

Having passed all bottlenecks, i.e. stages at which inequality (33) is satisfied as

equality, a new value of «* is determined.
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Sterowanie procesami wicloetapowymi przy maksymalizacji
lub zrownowazonym wzroscie funkcji uzytecznosci

Rozpatrzono sterowanie procesami wieloetapowymi. Na kazdym etapie moze zaistnie¢ inna
sytuacja. Dla kazdej sytuacji obowiazuje inny zbior funkcji uzytecznosci.

Rozwazono dwa rézne przypadki. Jeden z nich sprowadza si¢ do maksymalizacji warto$ci
oczekiwanej globalnej funkcji uzyteczno$ci. W drugim przypadku na kazdym etapie uwzglednia
sie odpowiedni podzbior funkgji uzytecznosei, a sterowanie wyznacza si¢ z zasady zrOwnowazonego
wzrostu.

‘Vnpagenne MHOroITAHBIME IPOHECCAMH HPH MAKCHMU3ANUH
WM 0pu YDABHOBEIIEHHOM pOCTe (YHKIHH IOJIe3HOCTH

PaccMaTpuBaeTcsl ynpaBieHAe MHOTOSTAIHBIMIA MpONEccaMi. Ha OTHeNbHBIX 3TamaX MOTYT
BOZHUKHYTH PA3JIAYHbIe CATYaUud. JJisl Kaskaoi CUTyanun oBA3HIBAET COOTBETCTBYIONIEE TIOIMHO-
KECTBO (YHKUEH MOJIE3HOCTH. ‘

PaccmaTpmBaroTesi nsa cimydas. OIWH W3 HEX OCHOBAH HAa MAaKCHMM3ALIUH OXHIAEGMOIO 3HA-
YyeHus IJI00aibHON (QYHKIMM HOJIE3HOCTH. BO BTOPOM CilyYae HA KajkKIOM OTale yYHTHIBACTCA
COOTBETCTBYIOLIEE IMOIMHOXKECTBO (DYHKIMM HOJIE3HOCTH, 4 YODPABIECHHE ONPENEIAETCS UCXOIS
W3 TNPUHOWNA YPaBHOBELIEHHOTO POCTA. ‘







