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The control of multistage processes is considered. Various situations may occur at different 
stages of the process. For every situation another subset of utility functions is given. 

Two cases are considered. In the first case assignement of a utility function to a particular stage 
is random although at each stage ther is only one utility function. The control results from the 
maximization of the expected value of the global utility function. 

In the second case at each stage an appropriate subset of utility functions has to be taken into 
account. In this case the control results from the application of the balanced growth principle. 

1. Introduction 

Many technological batch processes and most of economic processes may be 
treated as multistage processes. 

Theory of control of this type of processes, with its main result - dynamic 
programming [1], was developed under a general assumption that the performance 
of the whole process is measured by a single, strictly given performance index. 

In mathematical economics, where models of economic growth are devoted a lot 
of space, problems of control of individual stages are not considered, while con­
cept of technological sets is used [6], [7]. In these models performance indices are 
assumed in the form of functionals expressing weighted sums of investment goods 
produced by the whole process or consumption aggregated to one component (6], 
(7]. 

This formulation of the problem is closely connected with turnpike theorems 
[2], [9], [10], (11] according to which optimal trajectories have the property that 
significant portions of their total lengths are close to the states of balanced growth. 

Papers (4] and (5] state the problem of control of dynamic multistage processes 
.with different performance indices at individual stages for technological processes. 
The problem was reduced to local optimization at individual stages and to a choice 
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of switching points in the augmented state space (state+time), where a measure 
of discontinuity of control at the switching points was chosen as a utility function. 
Such a utility function, however is meaningful only in certain cases of technological 
processes. 

In the present paper, the following problem is considered. A multistage process 
described by state equations is given. Continuity of state space trajectories is assumed. 
Control of the process is evaluated by means of a set of performance indices charac­
terizing production output, its quality, energy consumption or other technological 
characteristics. There are given linear utility functions, determined on these indices, 
which may be different at different stages and there may be many such functions at 
each stage. 

Two cases are considered. In the first case assignment of a utility function to 
a particular stage is random although at each stage there is only one utility function. 

Such a situation arises when prices or priorities may change from one stage 
to another due to causes which are random from the point of view of the process 
control. 

In the second case at each stage an appropriate set of utility functions is given. 
In this case application of a principle of balanced growth is postulated together 
with using the theory of von Neumann models [2], [6], [8] in order to determin some 
relations connected with the growth rate. 

IT. Problem Formulation 

Consider a multistage, dynamic control process whose stages are described by 
state equations. 

Stage i, i= 1, 2, ... , N, for times rE (T;_ 1, T;] is described by the following 
state trajectory 

where x; ER" - state variables at stage i, 

xw =x; (T;_ 1)- initial condition for stage i, 

u; E V; - control at stage i, 

g;: V; X R" x R1 X R1 ~R". 

Initial condition x0 = (x10 , T0 ) for the first stage is assumed to be given. 

Continuity of the state trajectory for the whole process is assumed 

Xi+l>o=X;(T;), i=1,2, ... ,N-l. 

For each stage a target set is given (Fig. 1). 

[x(T;),T;] = x;ES;cR"+l, i=1,2, ... ,N. 

It is assumed that the sets S; are connected and closed. 

(1) 

(2) 

(3) 
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T 

Figure 1 

It follows from (1), using the notation of (3), tha.t for r = T; 

X; (T;)=g; [u;, X;_ 1 ], i= 1, 2, ... , N, (4) 

g; : V; X R" + 1 4 R" . 

Relation ( 4) expresses the fact that the final state at each stage is a function of 
control and initial conditions at this stage. 

Let Q be a given set of nonnegative functionals - performance indices and let 
it be composed of subsets Qi,j= 1, 2, ... ,M, 

Q={QJ, ... ,QM}, 

Qi={qJ, ... ,q~}, 

q} =q~ (u;, x;_ 1 , x;), j=l, ... ,M, 

q~: V;XR"+ 1 x R"+ 1 4R1
. i=l, ... ,N. 

Substitution ( 4) to ( 5) gives 

q5=4~ (u;, X;-1), 

45: V;XR"+ 1 4R\ 

}=I, ... ,M 

i=l, ... ,N. 

ill. Determination of Switching Points by Maximizing of the 
Global Utility Function 

(5) 

(6) 

Let us assume that, for each stage, there is given a vector of utility functions 
being linear combinations of performance functionals 

(7) 

where 
Ci = { c;j}Rx M 

i=l, ... , N, 
r=l, ... , R, 

(8) 

j=l, ... ,M, 
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Substitution (6) to (7) gives 

;_ Ci 'i( - ) W- q U;,Xi-1 · 

Assignment of a particular utility function to a particular stage is random. 

(9) 

It is assumed that the probability of assigning one of R utility functions to stage 
i is a function of such assignments at proceeding stages. It is assumed that these 
probabilities are known. 

Formally this problem may be sta•ed as follows. 
The assignment is treated as a discrete stochastic process Q (i), i= 1, 2, ... ,N. 

The process is a sequence of random variables whose realizations are nu..-nbers of 
utility functions. 

Q (i)={r; E {1, 2, ... , R}}. (10) 

Let p; (rt!J; - 1
) denote a conditional probability of the event that a utility function 

number r; is assigned to stage i, provided that the assignments at the proceding 
stages formed the sequence 

J;- 1 =(r" r2 , ••. , r;-J)., i=2, 3, ... ,N. (11) 

It is assumed tkt the utility function assigned to the first stage has been ascribed 
index 1. Thus 1;- 1 is a (i-1)-element sequence that is constructed of elements of 
R-element set {1, 2, ... , R} in such a way that each sequence has 1 as the first element. 

I 

The number of possible such sequences is equal to the number of variations with 
repetitions of i -1 elements selected from R elements wi.:h the first term fixed. 

s= 1, 2, ... , si-1, 

Si-L =(R) i-z, i~2. 
(12) 

Moreover 

Pi (rt!J;- 1)~0, · Vi, r;, s, 
R 

}; Pi (rt!J!- 1
) = 1, Vi, s. 

r;=l 

Probability of generating the sequence 

CJ!- 1
, ri)=J;, i= I, 2, ... , N, s= I, 2, ... , S;, (13) 

i~ given by a product of conditional probabilities 

i-1 

p;(Ji)=p;(rt!J!- 1) n Pk(rksfJ~- 1 ) (14) 
k=l 

where 
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The probability of the event that the utility function r will be assigned to stage i 
(no matter what the preceding assignments J!- 1

, s= 1, 2, .. . , S;_ 1) is given by the 
following expression: 

Si-1 

p;(r;)=}; p;(J!- 1 ,r;) . (15) 
s= 1 

Subs1ituting (14) to (15) gives 
Si-1 i-1 

P;(r;)=}; p;(r;!J!- 1
) n Pk(rk,IJ~- 1 ) . (16) 

s=1 k=1 

Let us consider the optimization problem now. 

At each stage i local optimization can be carried on with respect to u; E V;. 
The local optimization problem consists in determining ufr, for all i and r, that 
satisfies the following relation: 

For fixed X;-1 E si-1• X; E S; 

arg max w~ = u~r (.X;-1, .XJ (17) 
UtEVt 

Using (17) in, (9) oue can get 

(18) 

whe.e 

The mean value of the utility function at each etage i is given by the expresiou 

R 

wi=}; P; (r;) w~. (19) 
ri = 1 

The global utility function W for all stages is equal to 

N 

W=}; w; 
i = l 

or after substitution of (19) and (18) 

N R M 

W=};}; P;(ri)}; c~A~j(x; - 1,x;). (20) 
i=1 r 1=1 j=l 

Maximization of the global utility function with respect to the initial conditions 
.X;_ 1 ES;_ 1 and .X;ES; gives the switching points x;ES;, i = l,2, ... ,N-I, and 
the final point .x; E SN 

N R M 

arg max ~ ~ p;(r;) ~ c~iqj(x;_ 1 , .X;)=(x~ , ... ,xz). (21) 
Xi E Si i'=l ri=l j=l 

i=l •... N 
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Having assigned an appropriate utility function to the first stage, one can deter­
min, by performing operation t21), all switching points. 

Sliding optimization can also be applied which makes possible using at the 
k-th stage information about the current (k-th) and p1eceding assignmenL. 

The idea of the method i.; that at time Tk_ 1, that is at the beginning of k-th stage, 
when the sequence J'' is known, switching poinLS x:, .x;+ 1 , ... , .x;_ 1 , .x; are deter­
mined b_y means of maximizing the utility function at stages k, k+ I, ... , N 

N R M 

arg max ~ ~ Pt (r;JJk- 1
) ~ c;A;i(xt- l>xt)=(x;, ... , x;). (22) 

x;ESi i=k ri=l j= 1 
i=k, ... ,N 

The result of operation (22) is .X~ for i=k, ... , N, but only .x: is used. When the 
process gets to the point .x;., a propp~r utility function is assigned w the stage k+ I 
and optimization is performed again in order to determin .x;+l' ... , .x;. 

Formal description cf such a procedure may be the following: The sequence 
J!- 1 is broken into two sequences 

where 
(23) 

After k- 1 stages the sequence J~- 1 is a realization whose terms are known 

J:-1 =]~- 1. 
s 

Thus the probability of occurrence of sequence Ji after k- 1 stages is given by 
the following formula 

i-l 

Pk1(Ji)=p;(l;- 1 )Pt (r;JJ!- 1
) n Pz(rzslf!- 1

) • (24) 
l=k 

SubstiLUtion of (24) to (J 5) yields a probability of assigning r-th utility function 
to stage i for the realized sequence J~- 1 

s 

Sj-1 i-1 

p~(r1)=p1 (1;- 1 )}; p 1 (rJJ!- 1
) ]] Pz(rzsll! - 1

) . (25) 
s= 1 l=k 

Global value of tht" overall utility function, which is maximized at stage k in 
order to determin .x;, ... , .x;, is the following 

k-1 M 

W 0 (k) ~ i ( ) ~ i -i ( -* -'') + . = ~ p 1 r 1 L.i c,i q,_; x 1_1' x 1 

i=l i=1 

+ max 
Xi ESt 

i = k, ·:·,N 

N R M 

}; }.; Pt (r;JJk - 1
) }.; c;it;i (xt -1' x;). 

i=k rt=l j=l 

(26) 
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Formula (26) expresses the optimality principle for the case considered: the 
final stages of the optimal trajectory form the optimal trajectory, no matter what 
the preceding switching points are. 

Numerical algorithmization of the methods proposed requires specification of 
assumptions on performance indices (linear or quadratic), of target set~ and of 
a character of the stochastic process (Markov processes). 

IV. Determination of Switching Points Applying Balanced 
Growth Principle of Utility Function 

Let us consider a situation in which every stage is characterized by a set of utility 
functions being linear combinations of performance functionals 

where: 
q=(ql, ... , qM)T ER~, 
qi EQ/:::_R~, 
Ci={c;jhxM, 

c;i~O, 

(27) 

for i= 1, 2, ... , N, 
r=1,2, ... ,R, 
j=1,2, ... ,M. 

Having R utility functions simultaneously at each stage, it seams reasonable to 
require that each of these functions grows from one stage to the next and that their 
growth should be possibly uniform. 

Let us make a formal statement of the above problem. 
Requirement of growth of each of the utility functions from one stage to ano­

ther has a form of a set of inequalities 

(28) 

Let us define the growth rate Cf.; (q) at stage i as the smallest of the quotients 
of r-th utility function at stage i+ I to r-th utility function at stage i 

M 

'\' ci+l q. 
L,; rJ J 
j= 1 

rL.; (q)= min --:M-:-----

l.;;r.;;R "' Ci.q. 
~ rJ J 
j=l 

i=l, 2, ... ,N-1. (29) 

The growth rate of the whole process rL. (q) is the minimum value of rL.; (q) over 
i=l, 2, ... ,N-1. 

(f. (q)= m in rt.l (q)= mm min (30) 
l~i~N-1 l~i::;;;N-ll~r~R 
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Maximum growth rate of an N-stage process is called a quantity 

IX* = max IX (q)=IX (A.q*) V A.>O 
q;.O 

(31) 

where A. is a coefficient that appears because of uniformness of IX; (q), rx (q), IX* with 
respect to q'~ 

q''=(q;, ... , q~y 

where q;;;,o is a direction in RA_{_ in which the growth rate is maximum. 
For q=A.q*, for VA.>O and for ViE [1, ... , N - 1] the following inequality holds 

(32) 
For the whole proce"SS 

(33) 
where 

S = (N-1) R~. 

Symbol ~ means that at least one of the inequalities (33) is satisfied as equality. 
Matrices P 0 and P1 transform subspace RA_{_ into a convex plyhedral cone (pyra­

mid) spanned on columns of these matrices. Direction A.q* lies in this cone (Fig. 2.) 

Figure 2 

To summarize, the problem of determining a pair (rx*, q*) is a problem of sol­
ving the following operation 

(34) 

where IX* is attained along the direction q* for vectors A.q*, A.>O. 
The above problem is well known in mathematical econpmics [2], [6], [7]. In the 

problems of mathematical economics, the model described by a system of linear 
inequalities of type (33) is known as the von Neumann model. Let us write the 
von Neumann model in the form 

Ax~Bx 

A = {adsxM• B = {bu}sxM• (35) 
ail;;,o, bij;;,o, x;;,O. 
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Economic interpretation of this model is the following. The economy is com­
posed of M technological processes which make S goods. Each good produced is 
used in the production process. 

A is called an input matrix while B is called an output matrix. Elements of vector x 
are interpreted as activity levels the production processes. Scalar product of the 
i-th row of matrix A and vector x, af x, expresses the quantity of good i that is used 
in the production processes of the economy. Scalar product of the i-th row of ma­
trix B and vector x, bf x, is the quantity of good i produced. Inequality (35) says that 
quantities of all goods should grow in the process of production. 

In the references concerning mathematical economics, given above, it is proved 
that provided that the following assumptions are met: 

(i) for each j there exists an i such that a;j>O (each production process uses 
at leas one good), 

(ii) for each i there exists anj suchthatbii>O (each good is made by at least 
one production process), 

a solution (o:'-', x*) of the problem 

o:*=max [y>O: yAx<Bx, x;?:O] (36) 

exists. There may be more than one direction x*. Number o:':' is called maximum 
technological efficiency of the economy and vector ..tx*, },>0, is called technolo­
gically optimal vector of production levels. 

Moreover, there exists a vector of prices 

(37) 
such that 

o.:* (p*Y Ax;?:(p*) T Bx, 'v'x;?:O, (38) 

(p*Y Bx>O. 

Economic interpretation of vector p* is the following. When the economy is 
controlled by means of prices, the prices p':' stimulate the production processes to 
settle their levels at proportions that are technologically optimal and that provide 
maximum technological efficiency of the economy. 

The tripple (o: *, x*, p*) is called an equilibrium state of the von Neumann model. 
Let us note that if x':' > 0 then the equilibrium state is unique. In that case the 

direction determined by x':' is called the von Neumann ray. 
The von Neumann models are also used to describe processes of economic 

growth. In such cases vector x i:> devided into groups, each of which represents 
activity levels in different periods of growth. 

In this situation different tenninology is used. o:* is called a technological rate 
of growth, the von Neumann ray is called a turnpike. The latter comes from the 
fact that when the optimization goal is maximization of linear, or even under certain 
assumptions- nonlinear [8], functionals of the final state, considerable portions 
of optimal trajectories are in a neighbourhood of the turnpike. There are many so 
called turnpike theorems, which under differing assumptions give proofs of the 
above :>tatement (see [2], [3], [9], [10], [11]). 
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It follows from the above considerations that the problem of determining IX':' 

satysfying (33) is similar to the problem of determining the turnpike in the von 
Neumann model, although the model considered falls into a different class of pro­
blems and interpretation of the quantities involved is different. 

In the problem discussed in this paper assumption (i) says that each performance 
index qi should appear at least in one of the utihty functions taken into consideration 
at the first N- 1 stages. 

Assumption (ii), on the other hand, requires that there should be no stage, be­
ginning from stage 2, such that any of the utility functions taken into consideration 
would be identically zero. 

Considering the natme of the problems discussed it can be as&umed that both 
assumptions are satisfied. This allows for stating the existence of a solution of pro­
blem (34) 

(39) 

To complete the above discussion let us describe shortly a method of deter­
mining IX*. 

The problem is to find a pair (IX, q), IX>O, q E Rt:{. such that among all pairs 
satisfying the following constraints 

IX PO q~p1 q, (40) 

(41) 

it contains the largest IX. The equality constraint (41) determines one point of the 
direction required. 

In order to solve this problem let us solve the following linear programming 

subproblem. Find a minimum value of function Z in R 1 subject to the constraints 

Ze+P 1 q-yP0 q~O, 

M 

}; qj= 1, q~O, 
j= 1 

where y~O is a given parameter, e is a unit vector, e= [1, 1, ... , l]T. 

The constraints (42) may be written in the following form 

M 

Z+}; (nii- yn~) qi~O , k= 1, ... , S, 
j= 1 

M 

_2;qj=l, qj~o. j=1, ... ,M 
j=l 

where n2i' nti are elements of matrices P 0 and P 1 respectively. 

(42) 

(43) 
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Let V (y) denote a solution of the linear programming subproblem. It is given 
by the following expression 

M 

V(y)=min min }; [- (n~i - yn~J] qi 
q E fF l .; k .; S j =l 

(44) 

where 
M 

ff={q=(ql, ... , qM)Y:}; qj=I , qj~o} . 
j=l 

As ff if> a bounded closed set and the function 

M 

. min .J; [-(n;i-ynZ)qi] = q:~(y,q) 
l .; k .; S j=l 

(45) 

is continuous with respect to q, the minimum in (44) is attainable and a solution 
of the linear programming subproblem exists. 

It can be easily proved [7] , that function V (y) has the following properties: 
- it is continuous, 
- it is monotonically decreasing, and 

V (y)>O for y>!X* , 
V(y)=:O for y=!X':' , (46) 
V (y) < O for y<a.*. 

Figure 3 shows the graph of function V (y). 

-----

Figure 3 

Q! ={q' (u, , X; _ J, X;): u, E v,, X;_ J E s,_" X; E S,} 
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Thus the problem of determining oc* is reduced to a problem of determining 
the largest root of function V (y ). This can be done by means of any iterative method 
(e.g. Newton method) and it must be remembered that V (y) is to be computed in 
every iteration by means of solving the linear programming subproblem. 

Let us return to the considered control problem. 
On way of determining the controls u; and the switching points .X; is minimiza­

tion of a sum of distances of q} (u;, .X;_ 1 , .X;) (see (5)) from a point on half line A.q* 
determined by a choice of A. (Fig. 3) witch respect to .X; E S;, u; E V;, i= 1, ... ,N. 

So U; and .X; should be determined by means of minimization of the norm of 
a difference of vectors 

N N 

}; !5;=}; [[A.q* -qi (u;, .X;-t. .X;)[[. 
i= 1 i= 1 

The determined values of u; = u7 and .X;= .x; satisfies the following relation 
N 

where 

(u*, .X)=arg min 

XiESi 
l=1,,.,,N 
.1>0 

2: !5;, 
i=l 

u*=(u;, ... , u~V, 

x*=(x;, ... , .x;)r, 

(49) 

(50) 

A problem of defining a norm in RM arises. It seems reasonable to relate this 
norm to the equilibrium prices p':'. 

Taking into account the fact that prices affect q trough matrices Ci (27), the 
following definition of the norm appearing in ( 49) is proposed 

O;=p*T Ci [A.q':' -qi (.X;-t. .X;)[. (51) 

Algorithmization of operation (50) requires specification of functionals qi and 
sets S;. 

Finally, let us note, that also in the case of applying balanced growth principle, 
using sliding optimization procedure is reasonable. This procedure requires repeting 
operation (50) after each stage in order to determin switching points .x;, .x; + 1 , . . . , .X~_ 1 
and the final point .x;, where k denotes number of the currently considered stage. 

Having passed all bottlenecks, i.e. stages at which inequality (33) is satisfied as 
equality, a new value of IX* is determined. 
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Sterowanie procesami wieloetapowymi przy maksymalizacji 
lub zrownowazonym wzroscie funkcji uzytecznosci 

Rozpatrzono sterowanie procesami wieloetapowymi. Na kazdym etapie maze zaistniec inna 
sytuacja. Dla kazdej sytuacji obowi<guje inny zbi6r funkcji uzytecznosci. 

Rozwazono dwa r6zne przypadki. Jeden z nich sprowadza sic:; do maksymalizacji wartosci 
oczekiwanej globalnej funkcji uzytecznosci. W drugim przypadku na kazdym etapie uwzglc:;dnia 
sic:; odpowiedni podzbi6r funkcji uzytecznosci, a sterowanie wyznacza sic:; z zasady zr6wnowazonego 
wzrostu. 

YnpaBJieuue MHoro3TailHhiMH npol(eccaMn npu Mai>:CIIMn3al(Hu 
HJIH DpH ypaBHOBemeHHOM pOCTe lfJyHICI(llll IlOJIC3HOCTH 

PaccMarpnsaercH ynpasneHHe Mitoro:nailllbiMH npo[(eCcaMH. Ha or.n:eJThllbiX 3Tanax Moryr 
B03HMKHYTb pa3JIH'Uible CHTya[(HH. ):(AA Ka)l(IJ:Qll CHTya[(HII o6H3biBaer COOTBeTCTBYIOIIJ;ee ITOil:MHO­
)l(eCTBO l}JyHK[(Hi1: IIOJie3HOCTH. 

PaCCMaTpHBaiOTCH .n:Ba CJiy'laH. Ororn H3 HHX OCHOBaH Ha MaKCllMH3a[(HH Q)l(HIJ:aeMoro 3Ha­
'leHHH rno6aJThHOi1: ijlyHKD;HH IlOJie3HOCTH. Bo BTOpOM cnyqae Ha Ka)l(iJ:OM 3Tarre yqHTbiBaeTCH 
COOTBeTCTBYIOIIJ;ee ITOiJ:MHO)l(eCTBO 4JYHK[(Hi1: IIOJie3HOCTII, a yrrpaBJieHHe O!Ipe.n;emreTCH HCXO)l;H 
H3 rrpror[(HIIa ypaBHOBemeHHoro pocra. 




