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The proble1n of closedness of the attainable set of the linear neutral control system is considered . 
Algebraic criteria (expressed in terms of coefficients of the system) for closedness of the attainable 
set in the Sobolev space W f are derived . The proof of the main result is based on a general theorem 
about closedness of the image of the integral operator given by B. Jakubczyk. 

1. Introduction 

In this paper we consider a linear neutral control system described by the equation 

x (t) =A 0 x(t)+ A 1 x(t -h)+ A_ 1 x (t- h)+B0 u(t) (1) 

where x (t) E R", u (t) ER"', h > 0 ; A 0 , A 1> A _ 1 , B0 are constant matrices of suitable 
dimensions, t E [0, T]. We assume that a cont1 ol u belongs to the space LP ([0, T]; R"'), 
u (t)=x (t)=O if t::;:O. 

Define by 

x,(r): =x(t+r), t E[-h, 0], t~O, (2) 

the "complete state" of the system (1) at time t. A natural state space is the Sobolev 
space Wi([ -h, 0]; R"). Define the attainable set for (1) at time t by 

d(t): ={x, E Wi_ ([ -h, 0]; R") lx, is given by (2) and 

xis a soluton of (J) for some u E U} . (3) 

The main result presented iJl this paper is a necessary and sufficient condition for 
closedness of d(T) in W';, where T=sh, s=1,2, ... ,n-1, or T~nh. The corres
ponding theorem is stated in Sect. 2. The condition has the form 

Ki (ker Z 0 ) c im zo, i=l, 2, .. . , ns-1, 
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where K1 are matrices defined in Sect. 2 expressed in terms of A 0 , A1, A_ 1, B0 and 
zo has the form 

(4) 

Above "ker" means a kernel and "im" - an image. The related results for 
a delay system (A_ 1 =0) were obtained by Kurcyusz and Olbrot in [7]. In Sect. 2 
we derive their criteria from our Theorem 1. We give also some sufficient and some 
necessary conditions for closedness of d (T) which have a simpler form than the 
main criterion. The proof of Theorem 1, given in Sect. 3, is based on the results 
of B. Jakubczyk in [5]. 

Our interest for closedness of the attainable set of (1) is motivated by optimal 
control problems for such systems, when a terminal state is infinite dimensional. 
Closedness of d (T) is needed in order that some kinds of maximum principle be 
nontrivial (see [1], [2]). 

2. The Main Result 

To state the main theorem let us define some classes of matrices (s is fixed). 

{
I' 

11~ := 0, 
j=O, 

(nxn- matrices), 
j=l, ... ,s 

j 

11~:= .2; 11~- 1 11j_k, 
k= 0 

j 

Z i._ '\' AiAj-kB 
j·- LJ LJk -1 o, 

k=O 

Q~:=ZJ-Aoz~- 1 , 

Qi:= [D!, ... , Q~] . 

j=O, 

j=l, ... , s, 

i=2, ... ,n(s+l)-1, j=O, ... ,s, 

i=O, ... ,n(s+I)-1, j=O, ... ,s, 

i=l, ... ,n(s+I)-1, j=O, ... ,s, 

From the definition of Zj it is clear that it has the form 

ZJ:=L.A~.\ (A-1 A 0 +A 1)P' A~' A~1 (A_ 1 A 0 +A 1 )P> A~2 
••• 

(5) 

(6) 

(7) 

... A~ 1 (A-1Ao+A1)P·A~·A~ 1 B0 (8) 

where the sum is taken for all kl> ... , k., P1> ... ,p., rl> ... , r., bEN u {0}, such that 
s s 

}; (p,+rt)=i, b+ .2; (kt+Pt)=j. If kt=Pt=O or p1=r1=0 or r1_} =k1=0 then 
1=1 1=1 
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km= Pm= rm = 0 for m> l. It means that in the above sum there are the compositions 
of the matrices A -I> A0 , A 1 , B0 such that the number of A 0 in the composition 
is i and the number of A _ 1 is j. In .Q~ there are no components which have A 0 at the 
begining (from the definition of .Q~) so we may express .Q~ also by (8) putting the addi
tional condition p 1 ;60. 

To formulate the theorem we need also matrices K 1 

i-1 

K;:=.Q1
- _2 Q 1-1(Z0 )+ Ki> i=l, ... , n (s+1)-1, (9) 

1=1 

where (Z0)+ is a fixed right inverse of Z 0
, i.e. Z 0 (Z0 )+1imzo=l. 

THEOREM 1. The set d (T), T= (s+ 1) h, is closed in Wf iff 

K 1 (ker Z 0)cim Z 0
, i= 1, ... , n(s+ 1)-1. (10) 

If T>nh then we may put s=n in (10). 

COROLLARY 1. If d(T), T=(s+1)h, is closed in Wf then 

.Q1 (ker Z 0)cim Z 0 +( +~:i im Ql), i= 1, ... , n(s+1)-1. (11) 

Proof. The proof follows from Theorem 1 and the definition of K; • 
CoROLLARY 2. Each of the conditions given below is sufficient for closedness of 
d (T) in Wf 

im.Q1cimZ0 , i=1, ... ,n(s+1)-1, 

rank Z 0 =n, 

rank B0 =n. 

(12) 

(13) 

(14) 

Proof. The condition (12) implies that im K;cim Z 0 which implies (10). The condi
tion (13) implies (12) and (14) implies (13). Hence Corollary follows from 
Theorem 1. • 
REMARK 1. The condition (13) implies a stronger fact. Namely, it is equivalent to 
closedness and finite codimensionality of d (T) in Wf (see [8] and [4]). Thus, the 
condition rank [A:. 1 B0 , ... , B0 ] =n is necessary for function space controllability 
on [0, T] (i.e. d (T)= Wf) for the system (1). 

Example . Let us consider the scalar n-th order control system 

x<n) (t)=bnx(n) (t-h)+an-1 x<n- 1) (t)+bn-1 x<"-,1 ) (t-h)+ 

+ ... +a0 x(t)+b0 x(t-h)+cu(t)', b11 #0. 
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Jt can be transformed in a standard way into the neutral system (1), where 

L, ~u ~J A, ~r: 
0 

0 l 
ho ht bn - J 

0 1 ... 0 0 

B,~t n 0 0 

Ao: =;= 
0 0 0 0 1 

ao at a2 an-2 an - I 

It is easy to verify that rankZ0 =rank [A:_ 1 B0 , . .. ,B0 ]=l, so the condition (13) 
is not satisfied. On the other hand, im Z 0 =im [0, ... ,IV an~ from the form of Q~ 
given by (8) it is clear that im Qjcim [0, ... , IY .Hence, 'the condition (12) holds. 
·Thus, the attainable set for this system is closed in Wf but its codimension is infinite. 

CoROLLARY 3 (Kurcyusz and Olbrot [7]). If A _ 1 =0 then d (T) is closed in Wf iff 

im A1 A~B0 cim B0 , i=O, ... ,n-1. (15) 

Proof. If A _ 1 =0 then Z 0 = [0, ... , B 0 ]. Notice that Q~ =0 (for every neutral system). 
This implies that· Qi (ker Z 0) = im Qi, so the condition (11) is equivalent to (12) and 
they both are equivalent to closedness of d (T). We will prove that (12) is equiva
lent to the condition given by Olbrot and Kurcyusz. Indeed, notice that Qi = 
=A 1 A~-

1 B0 and im Z 0 = im B 0 which proves that (15) follows from (12). On the 
other hand, (15) implies that im A1 B 0 c im B0 so im A~ B0 c im B 0 and im A1 A~ B0 c 
c im B0 which gives the proof of second implication (see the form of Q~) . • 

REMARK 2. Above we considered the <:.ttainable set d(T) only for T=(s+ 1) h, 
s=O, 1, .... Jacobs and Langenhop [3] proved that d (T) is constant for T>nh. 
Thus our conditions for closedness are valid for all T>nh if we put s=n in the main 
theorem. 

3. Proof of Theorem 1 

Let us consider the control system with an output 

t '= [ -h, 0], h>O, x( -h)=O, 
(16) 

y =Cx+Du, XER
1
', 

A , B, C, D - constant matrices. 

The input-output operator corresponding to this system 

L: U ([ -h, 0]; Rq)--)> Wf ([- h, 0]; R') 
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has the form 
t 

y(t)=(Lu) (t)=Du (t)+ J CeAit:...d Bu(r)dr. 
_,, 

The following theorem is basic for the proof. 

THEOREM 2 '[5]. If D=O then 
im L is closed in Vi iff rank Lk = k · rank CB where 

and Vf ={.fE Wfl f( -h)=O}. 

0 
CB 

CAk- 2 B 

183 

(17} 

(18} 

Now we shall transform our neutral system (1) into the system (16). Let T= 
=(s+l) h. We put 

X;(t):=x(t+hi), U;(t):=u(t+hi), tE[-h,O], i=l, ... ,s+l 

x·= : [ x, ] 
_ · ~s+l ' 

u·- . [ u, ] 
_ .- ~s+1 ' 

Ao 0 ... 0 0 

Al Ao 
A:= 0 AI 

Ao 0 
0 0 AI Ao 

0 0 ... 0 
0 -1 

A_I 0 
A:= 0 A_] 

0 0 A-1 0 (19) 

0 ... 0 0 
I 0 

}:= 0 I 

0 ... I 0 

n (s+ l) x n (s+ 1)- matrices 

[ 

8 0 0 ... 0 ] 
- 0 B 0 
B:= . . . . . . 

0 0 ... 8 0 

n (s+ l) x m (s+l) - matrix. 



184 Z. BARTOSIEWICZ 

With this notation we can write (I) as 

~ (t)=Ax (t)+A~ (t)+B~ (t), t E [ -h, 0]. 

Since the matrix I- A is invertible we can define 

A:=(l-A)- 1 4_, B:=(I-A)- 1 B, 

C:=[O, ... ,O,J] -n x n(s+1) matrix, D=O. 
(20) 

We must write also the continuity condition for the function x. It has the form 

1~(0)=~(-h). (21) 

If we define 
0 

M0 (~):= J e-A<Bu (r) dr 
-I• 

then one can compute x (-h) 

Now we have 

Xs+l (t)=y (t)=(L!!) (t)+(Lf!!) (t) 

where L is defined by (17) and Lf is finite dimensional operator (Lfu) (t)= 
= CeA(t+ll) (I-JeAh)- 1 JM0 0:!:_) (we ·must put k=n (s+ 1), q=m (s+ 1), r=n)-: 

We may omit the operator Lf in our considerations because of the following 
theorem. 

THEOREM 3. Let , A, B:X~Y be linear bounded operators; X, Y-Banach 
spaces, B is finite dimensional operator. Then 

im (A+ B) is closed in Y iff im A is closed in Y. 

This is a trivial consequence from the known theorem about operators which 
have the closed image with finite codimension. 

THEOREM 4. [6]. Let im A be closed in Y and codim im A<oo. Assume that B is 
finite dimensional operator. Then 

im (A+B) is closed and codim im (A+ B)<oo . • 
In order to use Theorem 2 to solve the problem of closedness of the attainable 

set we need some lemmas. 

LEMMA 1. Let A, B, C be such as in (20) and z; as in (6). Then 
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Proof. It is easy to see that 

A = 

Ao 
A _tAo + A1 
A_ 1 (A_l Ao+ Al) 

and 

According to (5) we may write A as 

[ 

Ll6 0 ... 
Lf~ Ll6 

Lll 
s 

185 

0 

Now the conclusion follows from the rules of multiplication of matrices of such 
a form (Toeplitz's matrices) and the form of C. • 

Next lemmas are elementary facts f10m linear algebra, but we include the proofs 
for completness. 

LEMMA 2. Let A, B, C be matrices of dimensions k x J, m x J, m x r respectively. Then 

rank [ ~ ~] = rank A+ rank C iff (22) 

B (ker A)cim C. (23) 

Pro of. Let A = [a1 , •.. , aP, 0, ... , 0] where a; -linearly independent vectors, B= 
= [b 1 , •• . , b;], C= [ c1 , •.• , er]. Then (22) is equivalent to the condition that bp+ 1o • • • , b1 

are the linear combinations of c1 , ... ,er so im [bv+l• ... , b;]c im C; but im 
[bv+ I> •.. , b1] =B (ker A) so (22) is equivalent to (23). 

If A has an arbitrary form we may change the coordinate system in such a way 
that A will have the torm as above and the equivalence will hold. • 

Let P 0 , ••• , P"_ 1 be the matrices of dimension n X m. Let 

(24) 
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LEMMA 3. The following conditions are equivalent 

(25) 
u 

[ 
~1 

J (ker P 0 )cimDk- 1 , 

pk-l 

(26) 

V xEker P0 3x 1, • •• , xk-1: 

P 1 x=P0 x 1 

(Rk-1) ~zx=P1x1 +PoXz 
(27} 

Proof. The equivalence of (25) and (26) follows from Lemma 2. The equivalence 
of (26) and (27) is evident. • 

Now we shall try to give the conditions for the solvability of the system (Rk _1 ) 

in (27). Let 

i-1 

K;:=P,- _.2; P1 _ 1 P~ K 1 , i=l, ... ,k-1 
(28) 

! = 1 

where P~ is some fixed right inverse of P 0 , i.e. 

x Eker P0 , i=l, ... ,k-1. (29) 

LEMMA 4. x1 given by (29), i= I, ... , k-l, are the solution ot (Rk_ 1 ) (for every 
x E ker P0 ) iff 

K; (ker P 0) c im P0 , i=l , ... ,k-1. 

Proof. Suppose that X; are given by (29); then by (30) we get 

P0 x 1 = P0 P~ PL x=P1 x, 
P0 x 2 =P0 P~ K 2 x =K2 x=P2 x-P1 x 1 , 

k-2 

Poxk-1 = ... =Kk-tx=Pk - t x- .2,; Pk-t-ixi. 
i = 1 

Thus x1 are the solution of (Rk _1 ). 

(30) ' 

Suppose that (30) is not satisfied for some i. Then there is x E ker P0 such that _ 
the equation P 0 xi=Ki x has no solution. This contradicts the assumption. • 

The next Lemma gives more information about solutions of the system _ 

(Rk-l). 
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LEMMA 5. The .following conditions are equivalent 

there are x 1 , . . . ,xk_ 1_ satisfying (Rk_ 1) (for xEkerP0), (31) 

X; defined by (29) satisfy (Rk _ 1). (32) 

Proof. The implication (32) ~ (31) is trivial. 
To see the opposite implication let X;, i =I, .. . , k -1, be the solution of (Rk_ 1 ). 

We shall prove that for every i = 1, ... , k- 1 

x ~> ... , X; satisfy (R;) and (33) 

there are z1, ... , z ; E ker P 0 such that 

j -1 

X- 1
-=X

1
·-Z

1
·- '\1 Upi+1 -p, j·-1 I. L.; - ' ... , ' (34) 

p= 1 

where u~=Pij Ki zP . "---

Let i= 1; (R 1 ) has the form P 1 x=P0 x 1 . From the existence of the solution x1 

it follows thatP1. (ker P 0 )cim P0 so x1 satisfies (R1) (from Lemma 4) and x1 =x1 +z 1 

for some z l E ker Po (because xl -x1 E ker Po) . 

Let us assume now that (33) and (34) are satisfied for some i , 1 ~ i<k-l. We 
will show that they are satisfied for i + 1. 

P; + 1 x =P;x 1 + ... +P0 x; +1 = L P;+J-ixi+P0 x; + 1 -

j=l 
i i p - l 

- L P; + 1 - i z i + .2,; P; + 1 - P 2) u~ + 
1 

- i . 
j=l p=2 j =1 

Notice that from the definition of Ki it follows that 

i i i-1 i-j 

}; P; + 1 - i zj=}; Ki+1-izi+ 2) l, P; +z- p-jr:; Kpzj= 
j= l j=1 j=l p=2 

(K1 (ker P 0 ) c im P0 for l= 1, _.. , i from the induction assumption and Lemma 4). 
Now consider a sum 

p-l 
'\1 p '\1 p+l - j LJ i+l-v L.; uP . 

p= .Z i=1 

Let s=p+1-j. Then p=s+j-1, p~i, s=2, ... , i. 

After the transformation the sum is equal to 

i i -1 

L}) Pi+2 - s - iu~ 
s=2 j=l 
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with the condition s+j-l~i which gives 

i-1 i-j 

,2; ,2; pi+2-p-JU~ · 
j=l p=2 

Finally we have 
i i 

P \.' p - +P ( \.' i+l=J) i+1x = L.J i+l-JxJ o xi+l - L.J u1 
j=l j=l 

i 

so xl> ... , X; and X;+t:=x;+ 1 +z; +1.-}; u~+ 1 - 1 (z;+r Eker P 0) satisfy (R;+L). 
j=1 

For some z;+r we have that xi+ 1 =Pci Ki+ 1 x by the latter equation and the defini-
tion of K;+ 1 • This proves the lemma. • 

LEMMA 6 

i=l, ... ,k-1. 

Proof. Follows from Lemmas 3,.4 and 5. • 
Lemma 6 gives the proof of Theorem 1. Indeed, from the definition of Qk 

we have 

r 
zo 0 
zr zo 

rank Lk =rank ; 

zk-1 zk-2 

. r zo Ql 

=rank . : 

Qk-l 

0 
zo 

0 
zo 

Assuming that P0 =Z0
, P;=Qi, i= 1, ... , k-1, k=n (s+I) we obtain the con

clusion of Theorem 1 from Theorem 2 and Lemma 6. Notice that d (T)= 
=im (L+Lf)c Wf and from Theorem 3 the fact that d (T) is closed in Wf is 
equivalent to im L to be closed in V~. This completes the proof of Theorem 1. 

REMARK 3. From the proof of Lemma 6 it is clear that in Theorem 1 we may change 
matrices K; into K; expressed in terms of z; 

i-1 

K;=zi_.}; zi- 1 (Z 0)+K1 . 

j=l 
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Domkni~tosc zbioru osil!galnego dla liniowego neutralnego 
ukladu sterowania 

Rozwazono problem domknit(toSci zbioru osiqgalnego dla liniowego neutralnego ukladu ste
rowania. Wyprowadzono algebraiczne kryteria domknit(tosci zbioru osiqgalnego w przestrzeni 
Sobolewa wr. Kryteria S<l wyrazone w terminach wsp61czynnik6w ukladu. Dow6d gl6wnego wyniku 

sformulowano na podstawie og6lnego twierdzenia dotyczqcego domknit(tosci obrazu operatora 
calkowego uzyskanego przez B. Jakubczyka. 

3aMKHyTOCTL )J:OCTII~IIMOrO MHO~CCTBa JIHHeHHOH ueif
Tp3JihHOH CHCTeMLI yilpaBJieHHH 

B pa6ore paccMaTpHBaeTclf Bonpoc 3aMKHytoctrr ):(OCTHlKHMoro MHOJKeCtBa ):(Jlll. mmei1Hoi1: 
Jiei1rpalThHOi1 CHCTeMbi ynpaBJieHfflf. Bb!BO):(liTClf ame6pall'£ecme xprrTepmr 3aMKHyTOCTH ):(OCTH-

JKHMoro MHOlKeCTBa B npocTpaHCTBe Co6oJieBa wf. KprrtepiDI BbipalKeHbi B teplKHHax K03tP<PH
l(HeHTOB CHCTeMbi. .[(oKa3aTeJThCTBO OCHOBHOrO pe3ylThTata OCHOBaHO Ha 09ll(eii TeOpeMe, KaCa
IOll(eHCl! 3aMKHYTOCTH o6pa3a RHTerpalThHOfO onpepatopa, ITOJiy'feHHOM n. Jl:Ky6'iHKOM. 




