Control and Cybernetics

VOL. 8 (1979) No. 3

Closedness of the Attainable Set of the Linear Neutral Control System

by
ZBIGNIEW BARTOSIEWICZ
Technical University of Białystok
Institute of Electrotechnics

The problem of closedness of the attainable set of the linear neutral control system is considered. Algebraic criteria (expressed in terms of coefficients of the system) for closedness of the attainable set in the Sobolev space W_{1}^{p} are derived. The proof of the main result is based on a general theorem about closedness of the image of the integral operator given by B. Jakubczyk.

1. Introduction

In this paper we consider a linear neutral control system described by the equation

$$
\begin{equation*}
\dot{x}(t)=A_{0} x(t)+A_{1} x(t-h)+A_{-1} \dot{x}(t-h)+B_{0} u(t) \tag{1}
\end{equation*}
$$

where $x(t) \in R^{n}, u(t) \in R^{m}, h>0 ; A_{0}, A_{1}, A_{-1}, B_{0}$ are constant matrices of suitable dimensions, $t \in[0, T]$. We assume that a control u belongs to the space $L^{p}\left([0, T] ; R^{m}\right)$, $u(t)=x(t)=0$ if $t \leqslant 0$.

Define by

$$
\begin{equation*}
x_{t}(\tau):=x(t+\tau), t \in[-h, 0], t \geqslant 0 \tag{2}
\end{equation*}
$$

the "complete state" of the system (1) at time t. A natural state space is the Sobolev space $W_{1}^{p}\left([-h, 0] ; R^{n}\right)$. Define the attainable set for (1) at time t by

$$
\begin{align*}
& \mathscr{A}(t):=\left\{x_{t} \in W_{1}^{p}\left([-h, 0] ; R^{n}\right) \mid x_{t}\right. \text { is given by (2) and } \\
& \left.\qquad x \text { is a soluton of (1) for some } u \in L^{p}\right\} . \tag{3}
\end{align*}
$$

The main result presented in this paper is a necessary and sufficient condition for closedness of $\mathscr{A}(T)$ in W_{1}^{p}, where $T=s h, s=1,2, \ldots, n-1$, or $T \geqslant n h$. The corresponding theorem is stated in Sect. 2. The condition has the form

$$
K_{i}\left(\operatorname{ker} Z^{0}\right) \subset \operatorname{im} Z^{0}, \quad i=1,2, \ldots, n s-1
$$

where K_{i} are matrices defined in Sect. 2 expressed in terms of $A_{0}, A_{1}, A_{-1}, B_{0}$ and Z^{0} has the form

$$
\begin{equation*}
Z^{0}:=\left[A_{-1}^{s} B_{0}, \ldots, A_{-1} B_{0}, B_{0}\right] \tag{4}
\end{equation*}
$$

Above "ker" means a kernel and "im" - an image. The related results for a delay system $\left(A_{-1}=0\right)$ were obtained by Kurcyusz and Olbrot in [7]. In Sect. 2 we derive their criteria from our Theorem 1. We give also some sufficient and some necessary conditions for closedness of $\mathscr{A}(T)$ which have a simpler form than the main criterion. The proof of Theorem 1, given in Sect. 3, is based on the results of B. Jakubczyk in [5].

Our interest for closedness of the attainable set of (1) is motivated by optimal control problems for such systems, when a terminal state is infinite dimensional. Closedness of $\mathscr{A}(T)$ is needed in order that some kinds of maximum principle be nontrivial (see [1], [2]).

2. The Main Result

To state the main theorem let us define some classes of matrices (s is fixed).

$$
\begin{align*}
& \Delta_{j}^{0}:=\left\{\begin{array}{ll}
I, & j=0, \\
0, & j=1, \ldots, s
\end{array} \quad(n \times n \text {-matrices }),\right. \\
& \Delta_{j}^{1}:= \begin{cases}A_{0} \\
A_{-1}^{j-1}\left(A_{-1} A_{0}+A_{1}\right), \quad j=1, \ldots, s,\end{cases} \tag{5}\\
& \Delta_{j}^{i}:=\sum_{k=0}^{j} \Delta_{k}^{i-1} \Delta_{j-k}^{1}, \quad i=2, \ldots, n(s+1)-1, \quad j=0, \ldots, s, \\
& Z_{j}^{i}:=\sum_{k=0}^{j} \Delta_{k}^{i} A_{-1}^{j-k} B_{0}, \quad i=0, \ldots, n(s+1)-1, \quad j=0, \ldots, s, \\
& Z^{i}:=\left[Z_{s}^{i}, Z_{s-1}^{i}, \ldots, Z_{0}^{i}\right], \tag{6}\\
& \Omega_{j}^{i}:=Z_{j}^{i}-A_{0} Z_{j}^{i-1}, \quad i=1, \ldots, n(s+1)-1, \quad j=0, \ldots, s, \\
& \Omega^{i}:=\left[\Omega_{s}^{i}, \ldots, \Omega_{0}^{i}\right] . \tag{7}
\end{align*}
$$

From the definition of Z_{j}^{i} it is clear that it has the form

$$
\begin{align*}
Z_{j}^{i}:=\Sigma A_{-1}^{k_{1}}\left(A_{-1} A_{0}+A_{1}\right)^{p_{1}} A_{0}^{r_{1}} A_{-1}^{k_{2}}(& \left.A_{-1} A_{0}+A_{1}\right)^{p_{2}} A_{0}^{r_{2}} \ldots \\
& \ldots A_{-1}^{k_{s}}\left(A_{-1} A_{0}+A_{1}\right)^{p_{s}} A_{0}^{r_{s}} A_{-1}^{b} B_{0} \tag{8}
\end{align*}
$$

where the sum is taken for all $k_{1}, \ldots, k_{s}, p_{1}, \ldots, p_{s}, r_{1}, \ldots, r_{s}, b \in N \cup\{0\}$, such that $\sum_{i=1}^{s}\left(p_{l}+r_{l}\right)=i, b+\sum_{l=1}^{s}\left(k_{l}+p_{l}\right)=j$. If $k_{l}=p_{l}=0$ or $p_{l}=r_{l}=0$ or $r_{l-1}=k_{l}=0$ then
$k_{m}=p_{m}=r_{m}=0$ for $m \geqslant l$. It means that in the above sum there are the compositions of the matrices $A_{-1}, A_{0}, A_{1}, B_{0}$ such that the number of A_{0} in the composition is i and the number of A_{-1} is j. In Ω_{j}^{i} there are no components which have A_{0} at the begining (from the definition of Ω_{j}^{i}) so we may express Ω_{j}^{i} also by (8) putting the additional condition $p_{1} \neq 0$.

To formulate the theorem we need also matrices K_{i}

$$
\begin{align*}
& K_{1}:=\Omega^{1}, \\
& K_{i}:=\Omega^{i}-\sum_{j=1}^{i-1} \Omega^{i-j}\left(Z^{0}\right)^{+} K_{j}, \quad i=1, \ldots, n(s+1)-1, \tag{9}
\end{align*}
$$

where $\left(Z^{0}\right)^{+}$is a fixed right inverse of Z^{0}, i.e. $\left.Z^{0}\left(Z^{0}\right)^{+}\right|_{i m Z^{0}}=I$.
Theorem 1. The set $\mathscr{A}(T), T=(s+1) h$, is closed in W_{1}^{p} iff

$$
\begin{equation*}
K_{i}\left(\operatorname{ker} Z^{0}\right) \subset \operatorname{im} Z^{0}, \quad i=1, \ldots, n(s+1)-1 \tag{10}
\end{equation*}
$$

If $T>n h$ then we may put $s=n$ in (10).
Corollary 1. If $\mathscr{A}(T), T=(s+1) h$, is closed in W_{1}^{p} then

$$
\begin{equation*}
\Omega^{i}\left(\operatorname{ker} Z^{0}\right) \subset \operatorname{im} Z^{0}+\left(+_{j=1}^{i-1} \operatorname{im} \Omega^{j}\right), \quad i=1, \ldots, n(s+1)-1 . \tag{11}
\end{equation*}
$$

Proof. The proof follows from Theorem 1 and the definition of K_{i}
Corollary 2. Each of the conditions given below is sufficient for closedness of $\mathscr{A}(T)$ in W_{1}^{p}

$$
\begin{gather*}
\operatorname{im} \Omega^{i} \subset \operatorname{im} Z^{0}, \quad i=1, \ldots, n(s+1)-1, \tag{12}\\
\operatorname{rank} Z^{0}=n, \tag{13}\\
\operatorname{rank} B_{0}=n . \tag{14}
\end{gather*}
$$

Proof. The condition (12) implies that im $K_{i} \subset$ im Z^{0} which implies (10). The condition (13) implies (12) and (14) implies (13). Hence Corollary follows from Theorem 1.

Remark 1. The condition (13) implies a stronger fact. Namely, it is equivalent to closedness and finite codimensionality of $\mathscr{A}(T)$ in W_{1}^{p} (see [8] and [4]). Thus, the condition rank $\left[A_{-1}^{s} B_{0}, \ldots, B_{0}\right]=n$ is necessary for function space controllability on $[0, T]$ (i.e. $\mathscr{A}(T)=W_{1}^{p}$) for the system (1).

Example. Let us consider the scalar n-th order control system

$$
\begin{aligned}
x^{(n)}(t)=b_{n} x^{(n)}(t-h)+a_{n-1} x^{(n-1)}(t) & +b_{n-1} x^{(n-1)}(t-h)+ \\
& +\ldots+a_{0} x(t)+b_{0} x(t-h)+c u(t)^{\prime}, \quad b_{n} \neq 0 .
\end{aligned}
$$

It can be transformed in a standard way into the neutral system (1), where

$$
\begin{aligned}
A_{-1} & :=\left[\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & b_{n}
\end{array}\right], \quad A_{1}:=\left[\begin{array}{cccc}
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & & 0 \\
b_{0} & b_{1} & \ldots & b_{n-1}
\end{array}\right], \\
A_{0} & :=\left[\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & & & \\
\vdots & & & & \vdots \\
0 & 0 & 0 & & 0 \\
a_{0} & a_{1} & a_{2} & \ldots & a_{n-2} \\
a_{n-1}
\end{array}\right], \quad B_{0}:=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
c
\end{array}\right] .
\end{aligned}
$$

It is easy to verify that $\operatorname{rank} Z^{0}=\operatorname{rank}\left[A_{-1}^{s} B_{0}, \ldots, B_{0}\right]=1$, so the condition (13) is not satisfied. On the other hand, im $Z^{0}=\operatorname{im}[0, \ldots, 1]^{T}$ and from the form of Ω_{j}^{i} given by (8) it is clear that $\operatorname{im} \Omega_{j}^{i} \subset \operatorname{im}[0, \ldots, 1]^{T}$. Hence, the condition (12) holds. Thus, the attainable set for this system is closed in W_{1}^{p} but its codimension is infinite.

Corollary 3 (Kurcyusz and Olbrot [7]). If $A_{-1}=0$ then $\mathscr{A}(T)$ is closed in W_{1}^{p} iff

$$
\begin{equation*}
\operatorname{im} A_{1} A_{0}^{i} B_{0} \subset \operatorname{im} B_{0}, \quad i=0, \ldots, n-1 \tag{15}
\end{equation*}
$$

Proof. If $A_{-1}=0$ then $Z^{0}=\left[0, \ldots, B_{0}\right]$. Notice that $\Omega_{0}^{i}=0$ (for every neutral system). This implies that $\Omega^{i}\left(\operatorname{ker} Z^{0}\right)=\operatorname{im} \Omega^{i}$, so the condition (11) is equivalent to (12) and they both are equivalent to closedness of $\mathscr{A}(T)$. We will prove that (12) is equivalent to the condition given by Olbrot and Kurcyusz. Indeed, notice that $\Omega_{1}^{i}=$ $=A_{1} A_{0}^{i-1} B_{0}$ and im $Z^{0}=\operatorname{im} B_{0}$ which proves that (15) follows from (12). On the other hand, (15) implies that im $A_{1} B_{0} \subset \operatorname{im} B_{0}$ so $\operatorname{im} A_{1}^{k} B_{0} \subset \operatorname{im} B_{0}$ and $\operatorname{im} A_{1}^{k} A_{0}^{i} B_{0} \subset$ $\subset \operatorname{im} B_{0}$ which gives the proof of second implication (see the form of Ω_{j}^{i}).

Remark 2. Above we considered the attainable set $\mathscr{A}(T)$ only for $T=(s+1) h$, $s=0,1, \ldots$. Jacobs and Langenhop [3] proved that $\mathscr{A}(T)$ is constant for $T>n h$. Thus our conditions for closedness are valid for all $T>n h$ if we put $s=n$ in the main theorem.

3. Proof of Theorem 1

Let us consider the control system with an output

$$
\begin{align*}
& \dot{x}=A x+B u, \quad t \in[-h, 0], \quad h>0, \quad x(-h)=0, \tag{16}\\
& \dot{y}=C x+D u, \quad x \in R^{k}, \quad u \in R^{q}, \quad y \in R^{r},
\end{align*}
$$

A, B, C, D - constant matrices.
The input-output operator corresponding to this system

$$
L: L^{p}\left([-h, 0] ; R^{q}\right) \rightarrow W_{1}^{p}\left([-h, 0] ; R^{r}\right)
$$

has the form

$$
\begin{equation*}
y(t)=(L u)(t)=D u(t)+\int_{-h}^{t} C \mathrm{e}^{A(t-\tau)} B u(\tau) d \tau \tag{17}
\end{equation*}
$$

The following theorem is basic for the proof.
Theorem 2 [5]. If $D=0$ then
$\operatorname{im} L$ is closed in V_{1}^{p} iff $\operatorname{rank} L_{k}=k \cdot \operatorname{rank} C B$ where

$$
L_{k}:=\left[\begin{array}{llll}
C B & 0 & \ldots & 0 \tag{18}\\
C A B & C B & & 0 \\
\vdots & & & \vdots \\
C A^{k-1} B & C A^{k-2} B & \ldots & C B
\end{array}\right]
$$

and $V_{1}^{p}=\left\{f \in W_{1}^{p} \mid f(-h)=0\right\}$.
Now we shall transform our neutral system (1) into the system (16). Let $T=$ $=(s+1) h$. We put

$$
\begin{align*}
& x_{i}(t):=x(t+h i), \quad u_{i}(t):=u(t+h i), \quad t \in[-h, 0], \quad i=1, \ldots, s+1 \\
& \underline{x}:=\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{s+1}
\end{array}\right], \quad \underline{u}:=\left[\begin{array}{l}
u_{1} \\
\vdots \\
u_{s+1}
\end{array}\right] \text {, } \\
& A:=\left[\begin{array}{lllll}
A_{0} & 0 & \ldots & 0 & 0 \\
A_{1} & A_{0} & & & \vdots \\
0 & A_{1} & & & \\
\vdots & & & A_{0} & 0 \\
0 & 0 & \ldots & A_{1} & A_{0}
\end{array}\right] \\
& \bar{A}:=\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & 0 \\
A_{-1} & 0 & & & \\
0 & A_{-1} & & & \vdots \\
\vdots & & & & \\
0 & 0 & \ldots & A_{-1} & 0
\end{array}\right] \tag{19}\\
& J:=\left[\begin{array}{cccc}
0 & \ldots & 0 & 0 \\
I & 0 & & \\
0 & I & & \\
\vdots & & & \\
0 & \ldots & I & 0
\end{array}\right] \\
& n(s+1) \times n(s+1) \text { - matrices } \\
& \bar{B}:=\left[\begin{array}{llll}
B_{0} & 0 & \ldots & 0 \\
0 & B_{0} & & \\
\vdots & & & \vdots \\
0 & 0 & \ldots & B_{0}
\end{array}\right] \\
& n(s+1) \times m(s+1)-\text { matrix. }
\end{align*}
$$

With this notation we can write (1) as

$$
\underline{\dot{x}}(t)=\underline{A x}(t)+\bar{A} \dot{\underline{x}}(t)+\bar{B} \underline{u}(t), \quad t \in[-h, 0] .
$$

Since the matrix $I-\bar{A}$ is invertible we can define

$$
\begin{align*}
& A:=(I-\bar{A})^{-1} \underline{A}, \quad B:=(I-\bar{A})^{-1} \bar{B} \tag{20}\\
& C:=[0, \ldots, 0, I]-n \times n(s+1) \text { matrix }, \quad D=0 .
\end{align*}
$$

We must write also the continuity condition for the function x. It has the form

$$
\begin{equation*}
J \underline{x}(0)=\underline{x}(-h) . \tag{21}
\end{equation*}
$$

If we define

$$
M_{0}(\underline{u}):=\int_{-h}^{0} \mathrm{e}^{-A \tau} B u(\tau) d \tau
$$

then one can compute $x(-h)$

$$
\underline{x}(-h)=\left(I-J \mathrm{e}^{A h}\right)^{-1} J M_{0}(\underline{u}) .
$$

Now we have

$$
x_{s+1}(t)=y(t)=(L \underline{u})(t)+\left(L_{f} \underline{u}\right)(t)
$$

where L is defined by (17) and L_{f} is finite dimensional operator $\left(L_{f} \underline{u}\right)(t)=$ $=C \mathrm{e}^{A(t+h)}\left(I-J \mathrm{e}^{A h}\right)^{-1} J M_{0}(u)$ (we must put $\left.k=n(s+1), q=m(s+1), r=n\right)$.

We may omit the operator L_{f} in our considerations because of the following theorem.

Theorem 3. Let $A, B: X \rightarrow Y$ be linear bounded operators; X, Y - Banach spaces, B is finite dimensional operator. Then

$$
\operatorname{im}(A+B) \text { is closed in } Y \text { iff } \operatorname{im} A \text { is closed in } Y
$$

This is a trivial consequence from the known theorem about operators which have the closed image with finite codimension.

Theorem 4. [6]. Let im A be closed in Y and codim im $A<\infty$. Assume that B is finite dimensional operator. Then

$$
\operatorname{im}(A+B) \text { is closed and codim im }(A+B)<\infty .
$$

In order to use Theorem 2 to solve the problem of closedness of the attainable set we need some lemmas.

Lemma 1. Let A, B, C be such as in (20) and Z_{j}^{i} as in (6). Then

$$
C A^{i} B=\left[Z_{s}^{i}, Z_{s-1}^{i}, \ldots, Z_{0}^{i}\right]
$$

Proof. It is easy to see that

$$
\begin{aligned}
(I-\bar{A})^{-1} & =\left[\begin{array}{llll}
I & 0 & \ldots & 0 \\
A_{-1} & I & & \vdots \\
\vdots & & & \\
A_{-1}^{s} & A_{-1}^{s-1} & \ldots & I
\end{array}\right] \text { and } \\
A & =\left[\begin{array}{lllll}
A_{0} & & 0 & & \\
A_{-1} A_{0}+A_{1} & A_{0} & & \vdots \\
A_{-1}\left(A_{-1} A_{0}+A_{1}\right) & A_{-1} A_{0}+A_{1} & & \vdots \\
\vdots & & \vdots & A_{0} & 0 \\
A_{-1}^{s-1}\left(A_{-1} A_{0}+A_{1}\right) & \ldots & A_{-1} A_{0}+A_{1} & A_{0}
\end{array}\right] \\
B & =\left[\begin{array}{llll}
B_{0} & 0 & \ldots & 0 \\
A_{-1} B_{0} & B_{0} & \vdots \\
\vdots & & \\
A_{-1}^{s} B_{0} & \ldots & B_{0}
\end{array}\right] .
\end{aligned}
$$

According to (5) we may write A as

$$
\left[\begin{array}{lllll}
\Delta_{0}^{1} & 0 & \ldots & 0 & 0 \\
\Delta_{1}^{1} & \Delta_{0}^{1} & & & \vdots \\
\vdots & & & \Delta_{0}^{1} & 0 \\
\Delta_{s}^{1} & & \ldots & \Delta_{1}^{1} & \Delta_{0}^{1}
\end{array}\right] .
$$

Now the conclusion follows from the rules of multiplication of matrices of such a form (Toeplitz's matrices) and the form of C.

Next lemmas are elementary facts fiom linear algebra, but we include the proofs for completness.

Lemma 2. Let A, B, C be matrices of dimensions $k \times l, m \times l, m \times r$ respectively. Then

$$
\begin{gather*}
\operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
B & C
\end{array}\right]=\operatorname{rank} A+\operatorname{rank} C \text { iff } \tag{22}\\
B(\operatorname{ker} A) \subset \operatorname{im} C . \tag{23}
\end{gather*}
$$

Proof. Let $A=\left[a_{1}, \ldots, a_{p}, 0, \ldots, 0\right]$ where a_{i} - linearly independent vectors, $B=$ $=\left[b_{1}, \ldots, b_{l}\right], C=\left[c_{1}, \ldots, c_{r}\right]$. Then (22) is equivalent to the condition that b_{p+1}, \ldots, b_{l} are the linear combinations of c_{1}, \ldots, c_{r} so im $\left[b_{p+1}, \ldots, b_{l}\right] \subset$ im C; but im $\left[b_{p+1}, \ldots, b_{l}\right]=B(\operatorname{ker} A)$ so (22) is equivalent to (23).

If A has an arbitrary form we may change the coordinate system in such a way that A will have the torm as above and the equivalence will hold.

Let P_{0}, \ldots, P_{k-1} be the matrices of dimension $n \times m$. Let

$$
D_{k}:=\left[\begin{array}{llll}
P_{0} & 0 & \ldots & 0 \tag{24}\\
P_{1} & P_{0} & & 0 \\
\vdots & & & \vdots \\
P_{k-1} & P_{k-2} & \ldots & P_{0}
\end{array}\right]
$$

Lemma 3. The following conditions are equivalent

$$
\begin{gather*}
\operatorname{rank} D_{k}=k \cdot \operatorname{rank} P_{0}, \tag{25}\\
{\left[\begin{array}{c}
P_{1} \\
\vdots \\
P_{k-1}
\end{array}\right]\left(\operatorname{ker} P_{0}\right) \subset \operatorname{im} D_{k-1},} \tag{26}\\
\forall x \in \operatorname{ker} P_{0} \exists x_{1}, \ldots, x_{k-1}: \\
P_{1} x=P_{0} x_{1} \\
P_{2} x=P_{1} x_{1}+P_{0} x_{2} \tag{27}\\
\vdots \\
P_{k-1} x=P_{k-2} x_{1}+\ldots+P_{0} x_{k-1}
\end{gather*}
$$

Proof. The equivalence of (25) and (26) follows from Lemma 2. The equivalence of (26) and (27) is evident.

Now we shall try to give the conditions for the solvability of the system $\left(R_{k-1}\right)$. in (27). Let

$$
\begin{align*}
K_{1} & :=P_{1}, \\
K_{i} & :=P_{i}-\sum_{l=1}^{i-1} P_{i-l} P_{0}^{+} K_{l}, \quad i=1, \ldots, k-1 \tag{28}
\end{align*}
$$

where P_{0}^{+}is some fixed right inverse of P_{0}, i.e.

$$
\begin{gather*}
\left.P_{0} P_{0}^{+}\right|_{\text {im } P_{0}}=I \text { and let } \\
\tilde{x}_{i}:=P_{0}^{+} K_{i} x, \quad x \in \operatorname{ker} P_{0}, \quad i=1, \ldots, k-1 . \tag{29}
\end{gather*}
$$

Lemma 4. \tilde{x}_{i} given by (29), $i=1, \ldots, k-1$, are the solution of (R_{k-1}) (for every $x \in \operatorname{ker} P_{0}$) iff

$$
\begin{equation*}
K_{i}\left(\operatorname{ker} P_{0}\right) \subset \operatorname{im} P_{0}, \quad i=1, \ldots, k-1 . \tag{30}
\end{equation*}
$$

Proof. Suppose that \tilde{x}_{i} are given by (29); then by (30) we get

$$
\begin{aligned}
& P_{0} \tilde{x}_{1}=P_{0} P_{0}^{+} P_{1} x=P_{1} x, \\
& P_{0} \tilde{x}_{2}=P_{0} P_{0}^{+} K_{2} x=K_{2} x=P_{2} x-P_{1} \tilde{x}_{1}, \\
& \vdots \quad \vdots \\
& P_{0} \tilde{x}_{k-1}=\ldots=K_{k-1} x=P_{k-1} x-\sum_{i=1}^{k-2} P_{k-1-i} \tilde{x}_{i} .
\end{aligned}
$$

Thus \tilde{x}_{i} are the solution of $\left(R_{k-1}\right)$.
Suppose that (30) is not satisfied for some i. Then there is $x \in \operatorname{ker} P_{0}$ such that the equation $P_{0} x_{i}=K_{i} x$ has no solution. This contradicts the assumption.

The next Lemma gives more information about solutions of the system (R_{k-1}).

Lemma 5. The following conditions are equivalent

$$
\begin{gather*}
\text { there are } \left.x_{1}, \ldots, x_{k-1} \text { satisfying }\left(R_{k-1}\right) \text { (for } x \in \operatorname{ker} P_{0}\right), \tag{31}\\
\tilde{x}_{i} \text { defined by (29) satisfy }\left(R_{k-1}\right) . \tag{32}
\end{gather*}
$$

Proof. The implication $(32) \Rightarrow(31)$ is trivial.
To see the opposite implication let $x_{i}, i=1, \ldots, k-1$, be the solution of $\left(R_{k-1}\right)$. We shall prove that for every $i=1, \ldots, k-1$

$$
\begin{equation*}
\tilde{x}_{1}, \ldots, \tilde{x}_{i} \text { satisfy }\left(R_{i}\right) \text { and } \tag{33}
\end{equation*}
$$

there are $z_{1}, \ldots, z_{i} \in \operatorname{ker} P_{0}$ such that

$$
\begin{equation*}
\tilde{x}_{j}=x_{j}-z_{j}-\sum_{p=1}^{j-1} u_{p}^{j+1-p}, \quad j=1, \ldots, i, \tag{34}
\end{equation*}
$$

where $u_{p}^{j}=P_{0}^{+} K_{j} z_{p}$.
Let $i=1 ;\left(R_{1}\right)$ has the form $P_{1} x=P_{0} x_{1}$. From the existence of the solution x_{1} it follows that $P_{1}\left(\operatorname{ker} P_{0}\right) \subset i m P_{0}$ so \tilde{x}_{1} satisfies $\left(R_{1}\right)$ (from Lemma 4) and $\tilde{x}_{1}=x_{1}+z_{1}$ for some $z_{1} \in \operatorname{ker} P_{0}$ (because $\tilde{x}_{1}-x_{1} \in \operatorname{ker} P_{0}$).

Let us assume now that (33) and (34) are satisfied for some $i, 1 \leqslant i<k-1$. We will show that they are satisfied for $i+1$.

$$
\begin{aligned}
P_{i+1} x=P_{i} x_{1}+\ldots+P_{0} x_{i+1}=\sum_{j=1}^{i} & P_{i+1-j} \tilde{x}_{j}+P_{0} x_{i+1}- \\
& -\sum_{j=1}^{i} P_{i+1-j} z_{j}+\sum_{p=2}^{i} P_{i+1-p} \sum_{j=1}^{p-1} u_{p}^{p+1-j} .
\end{aligned}
$$

Notice that from the definition of K_{j} it follows that

$$
\begin{aligned}
\sum_{j=1}^{i} P_{i+1-j} z_{j}=\sum_{j=1}^{i} K_{i+1-j} z_{j}+\sum_{j=1}^{i-1} \sum_{p=2}^{i-j} & P_{i+2-p-j} P_{0}^{+} K_{p} z_{j}= \\
& =\sum_{j=1}^{i} P_{0} u_{j}^{i+1-j}+\sum_{j=1}^{i-1} \sum_{p=2}^{i-j} P_{i+2-p-j} u_{j}^{p}
\end{aligned}
$$

$\left(K_{l}\left(\operatorname{ker} P_{0}\right) \subset \operatorname{im} P_{0}\right.$ for $l=1, \ldots, i$ from the induction assumption and Lemma 4). Now consider a sum

$$
\sum_{p=2}^{i} P_{i+1-p} \sum_{j=1}^{p-1} u_{p}^{p+1-j}
$$

Let $s=p+1-j$. Then $p=s+j-1, p \leqslant i, s=2, \ldots, i$.
After the transformation the sum is equal to

$$
\sum_{s=2}^{i} \sum_{j=1}^{i-1} P_{i+2-s-j} u_{j}^{s}
$$

with the condition $s+j-1 \leqslant i$ which gives

$$
\sum_{j=1}^{i-1} \sum_{p=2}^{i-j} P_{i+2-p-j} u_{j}^{p}
$$

Finally we have

$$
P_{i+1} x=\sum_{j=1}^{i} P_{i+1-j} \tilde{x}_{j}+P_{0}\left(x_{i+1}-\sum_{j=1}^{i} u_{j}^{i+1=j}\right)
$$

so $\tilde{x}_{1}, \ldots, \tilde{x}_{i}$ and $\tilde{x}_{i+1}:=x_{i+1}+z_{i+1}-\sum_{j=1}^{i} u_{j}^{i+1-j}\left(z_{i+1} \in \operatorname{ker} P_{0}\right)$ satisfy $\quad\left(R_{i+1}\right)$. For some z_{i+1} we have that $\tilde{x}_{i+1}=P_{0}^{+} K_{i+1} x$ by the latter equation and the definition of K_{i+1}. This proves the lemma.

Lemma 6

$$
\operatorname{rank} D_{k}=k \cdot \operatorname{rank} P_{0} \text { iff } K_{i}\left(\operatorname{ker} P_{0}\right) \subset \operatorname{im} P_{0}, \quad i=1, \ldots, k-1
$$

Proof. Follows from Lemmas 3,. 4 and 5.
Lemma 6 gives the proof of Theorem. 1. Indeed, from the definition of Ω^{k} we have

$$
\begin{aligned}
\operatorname{rank} L_{k} & =\operatorname{rank}\left[\begin{array}{llll}
Z^{0} & 0 & \ldots & 0 \\
Z^{1} & Z^{0} & & 0 \\
\vdots & & & \vdots \\
Z^{k-1} & Z^{k-2} & \ldots & Z^{0}
\end{array}\right]= \\
& =\operatorname{rank}\left[\begin{array}{lllll}
Z^{0} & & 0 & \ldots & 0 \\
Z^{1}-A_{0} Z^{0} & & Z^{0} & \vdots \\
\vdots & & & \\
Z^{k-1}-A_{0} Z^{k-2} & \ldots & & Z^{0}
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{llll}
Z^{0} & 0 & \ldots & 0 \\
\Omega^{1} & Z^{0} & & \\
\vdots & & & \\
\Omega^{k-1} & \Omega^{k-2} & \ldots & Z^{0}
\end{array}\right]
\end{aligned}
$$

Assuming that $P_{0}=Z^{0}, P_{i}=\Omega^{i}, i=1, \ldots, k-1, k=n(s+1)$ we obtain the conclusion of Theorem 1 from Theorem 2 and Lemma 6. Notice that $\mathscr{A}(T)=$ $=\operatorname{im}\left(L+L_{f}\right) \subset W_{1}^{p}$ and from Theorem 3 the fact that $\mathscr{A}(T)$ is closed in W_{1}^{p} is equivalent to im L to be closed in V_{1}^{p}. This completes the proof of Theorem 1.

Remark 3. From the proof of Lemma 6 it is clear that in Theorem 1 we may change matrices K_{i} into \bar{K}_{i} expressed in terms of Z^{i}

$$
\bar{K}_{i}=Z^{i}-\sum_{j=1}^{i-1} Z^{i-j}\left(Z^{0}\right)^{+} K_{j}
$$

References

1. Rolewicz S.: Analiza funkcjonalna i teoria sterowania. Warszawa 1977.
2. Kurcyusz S.: A local maximum principle for operator constraints and its application to systems with time lag. Control a. Cyber. (Warszawa) 2 1/2 (1973).
3. Banks H. T., Jacobs M. Q., Langenhop C. E.: Characterization of the controlled states in $W_{2}^{(1)}$ of linear hereditary systems. SIAM J. Control 13 (1975) 611-649.
4. Jacobs M. Q., Langenhop C. E.: Criteria for function space controllability of linear neutral systems. SIAM J. Control 14, 6 (1976) 1009-1048
5 Jakubczyk B.: Invariants and input-output classification of linear systems (to appear).
5. Przeworska-Rolewicz D. Rolewicz S.: Equations in linear spaces. Warszawa 1968.
6. Kurcyusz S.. Olbrot A.: On the closure in W_{1}^{q} of the attainable subspace of linear time lag systems. J. Diff. Eqs. 24 (1977) 29-50.
7. Jakubczyk B.: Properties of the range of integral operators and delayed systems (to appear).

Received, December 1978.

Domkniętość zbioru osiagalnego dla liniowego neutralnego ukladu sterowania

Rozważono problem domkniętości zbioru osiągalnego dla liniowego neutralnego układu sterowania. Wyprowadzono algebraiczne kryteria domkniętości zbioru osiągalnego w przestrzeni Sobolewa W_{1}^{P}. Kryteria są wyrażone w terminach wspólczynników układu. Dowód głównego wyniku sformułowano na podstawie ogólnego twierdzenia dotyczącego domkniętości obrazu operatora całkowego uzyskanego przez B. Jakubczyka.

Замкнутость достижимого множества линейной нейтральной системы управления

В работе рассматривается вопрос замкнутости достижимого множества для линейной нейтральной системы управления. Выводятся алгебраические критерии замквутости достижимого множества в пространстве Соболева W_{1}^{P}. Критерии выражены в тержинах коэффициентов системы. Доказательство основного результата основано на общей теореме, касающейся замкнутости образа интегрального опрератора, полученной Б. Якубчиком.

