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The paper presents convergence proof of the finite-difference approximations to parabolic free
boundary value problems, introduced in part I. Numerical results are given.

Intreduction

In part I of the paper [8] we have presented a finite-difference method for solving
one-dimensional parabolic free boundary value problems suggested by the equations
modelling flow of gas and water in an underground gas reservoir. The method is
based on some preparatory transformation of the problem into another nonlinear
parabolic problem in a domain with fixed boundary. Finite-difference scheme is of
conservative type, expressing on the grid law of continuity of flow.

In Section 6 of the present paper we prove convergence of the finite-difference
scheme described in [8].

We propose also a direct finite-difference method for solving free boundary
value problems (Section 7). In this method preparatory transformation of the problem
is not used.

In Section 8 numerical results and comparison of efficiency of both methods are
presented.

In the paper we use the notations introduced in part 1 [8].

6. Convergence of the Finite-difference Scheme Based on
Preparatory Transformation ¢f Free Boundary Value Problem

In this section we are going to prove convergence of the finite-difference scheme
(1) described in [8]. In the proof we will make use of some results of Kamynin [4, 5]
relating to the continuous dependence of the solution of linear parabolic equa-
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192 I. PAWLOW

tion with discontinuous coefficients upon the boundary. In Appendix B we recall
the main result of [5]. Some a priori-estimates for solution of two-layer parabolic
problem associated with a given boundary I” (Problems (b,), k=1, 2, see Sec. 3)
will be also useful.

Due to the maximum principle for two-layer parabolic free boundary value prob-
lems (see Theorem 6.2 [7]) the solution of Problem (b;) corresponding to
ye C?[0,T] can be a priori estimated as follows

M<u; (x,)<M, (x,t)eclD,, i=1,2 (6.1)
where

M=min{ min u,(x), min u,, (x), min F, (¢), min F, (¢)},

x€[0, yol x€lyo, 11 te0, T1] tel0, T] (6 2)
M =max { max u,(x), max u,, (x), max F, (¢), max F, (1)}. i
x€[0, ol x€lyos 1] tel0,T] tefo,T]

The following result has been proved in [1, 2] by employing the equivalent
integral representation of Problem (b,), k=1, 2.

Lemma 6.1. Assume that there is given a family of such curves {x=y (#)|0<y () </,
te[0,T]} that

yeC?[0,T] and |y’ (¢)|<c for t€]0, T]

where constant ¢>0 is the same for all y.

Let us consider the family {u,, u,} of solutions to Problem (b,) corresponding
to the given family of curves y. Denote v (£)=Lu, (¥ (t), £)=u, (y(¢), £), t € [0, T].
Then for function @’ the following estimate holds

o' (1)|<c’ for te[0,T]

with constant ¢’ dependent on bounds of y, y’, v and on given data of Problem (by).
Apart from the above facts the following interpolation lemma will be applied
in the proof of convergence of the finite-difference scheme.

LemMMA 6.2. Assume that there are given real numbers a°, a', ..., ak; b°, b', ..., b*
such that |p’|<B, j=0, 1, ..., L where B is a given positive constant and
d l=a'+b), j=0,1,..,L—1, t>0.

Denote #,=0, ¢;=jt, j=1, ..., L, t;,=T. The there exists a function y € C* [0, T]
satisfying the following conditions:

(l) Yy (tj)=aj9
@) y' (¢)=b, j=0,1, .., L,

where B, is a positive constant dependent only on B, i.e. B;=B; (B).
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Proof. To prove this lemma it is sufficient to show that there exists a function
y;€C?[t;_,,t;] such that

@) y; t-)=a""1, y; t)=2’,

(b) y; (t;-)=b""1, ¥, )=V,

(©) J’;' (t-0)=vy] @t)=0,

(@) 1y; (OI<By, telty—q, t;].

It can be verified that the polynomial

=t 4 )5 ( I—tj 1 )4 ( L=ti-1 )3
(=5 | —) + e —T2) o —5) +
y_/() CS( T Ca T ‘s T
t—it g 2 t—f;
+Cz (%) +Cl (—?J'—l')-l- Co, te[tj—h tj] (63)

where ¢s=37 (b'~1—b)), ca=—Tt (B'~ 1 —=b’), cy=47 (b’~1-b)), ¢,=0, ¢, =1H"1,
co=a’"1, satisfies the conditions (a)-(d) with B;=111B. Function y such that
y(@®)=y; @) for te[t;_q, t;], j=1, ..., L satisfies conditions (i)-(iii). Q.E.D.

Now we are ready to formulate and to prove the main result of the paper.

THEOREM 6.1. Assume that for the solution of Problem (b,) associated with a given
function y € C? [0, T], 0<y,<y (1)<yy<I, t€[0, T] the following regularity con-
ditions are fulfilled:
u; e G2 (el By, i=1,2;
au;
ax

satisfies Lipschitz continuity condition in
cl D; with respect to ¢; (6.4)

au;
—— satisfies Lipschitz continuity condition in

Jt :
cl D; with respect to x.

Then the finite-difference scheme (1) without iterations (see Section 5) is con-
vergent on the grid

Q2 8 0 %0, ol L tlt,=r0c, r=0,1,..,K} 6.5)
to the solution of Problem (BY), i.e.

max |U]—u(x;, 1) -0,
(xis tj)EQhQ, hy, =0

max |[¥Y/—y (z;)]—0.

hy, =0

(6.6)
t,€0q

Proof. Following the finite-difference scheme (1) without iterations we obtain the
approximate values

Ui, V2, (Y'Y, YV € Gmy par)s i=0, 1, .., N3 j=0, 1, ..., L, 6.7)

of functions u, v, y’, y at the grid points (x;, #;) € 2y, t; € ©,.




14

I. PAWLOW

We can assume without loss of generality that L, =7L. If L, <L then we prove
convergence of the difference scheme in an appropriately smaller time interval,

Where y (t) € [ym: yM]'
According to the algorithm

(Y'Y =(¥)C=D2 for (r—1) Q+1<j<rO~1,

(6.8)
(Fe=pgrre b p=1 K,
Y=Y+ (YY1, j=1,...L,
(6.9)
Yo=Yy =00 L 07 (Y)U=BQ p=1, .., K.
We start with proving the following lemmas.
LemMma 6.3. For 4, t sufficiently small (A</h¥, 1<7)
|P=B, =0, 1, s I (6.10)

where B>0 is a constant independent of 4, 7.

Proof. Let us interpolate the points (Y°,0), (Y, 7), ..., (Y5, Lt) by a curve y.
satisfying the conditions:

ye€C*[0,T], (6.11)
ye@y=Y, y, @)=Y, j=0,1, .., L. (6.11)

In particular we can choose the curve of type (6.3), with a/=Y’, b/=(Y").
One may assume that for sufficiently small 7 (r<7<7¥)

Vi () € [Vms Y] for 1€ [0, T]. (6.12)
Let us denote
D2 {(x, Dix e (0, 3. (1), 1€ (0, T},
D, 2{(x, D)lxe (v (1), 1), te(0,T)},
o, (02, (. (0, )=t (1 (), £), 1€ [0, T,
wr (x, )2y (x, 1) for €, H)ecl Dy, i=1,2

where {u;, .} is a solution of Problem (b,) corresponding to the function y;.
Note that according to the transformation (4.2)

uy (x, )=t (&, 1), (x,1)ecl Dy, (€, tyecD, i=1,2 (6.13)

where {#i,;, #i,,} is a solution of Problem (4.3)-(4.6) associated with the function
yi. By i@, and 9, we denote

ﬁL (é) Z‘)"é:ﬁiL (éa t) fOr (Cj, f)EClﬁiy i:]72’

; i
ﬁL(z)Aﬁw<~2~,r)= gz,‘(j,t), tel0,T]. (6.14)
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Note also that in view of (4.2)
9, (t)=2g (¢) for t=[0, T1. (6.15)

By assumption (6.4) and conditions (6.11), (6.12) function #, satisfies (H10)
(see Sec. 5). Consequently, for problem (4.3)-(4.6), associated with the function y,,
assumptions of Theorem 5.1 [8] are satisfied. It follows from this theorem that
for sufficiently small £ and 7 (A<h*, t<7%)

1 1
max jUij—aL(fi,fj)l<M(h1n5~h—+fln" ) (6.16)

(& t))Eope T
where M >0 is a constant independent of 4 and t; 62-1+¢, ¢ is any given
positive constant. Since Vj=U1{./2, j=0,1,...,L, by (6.16) we get the estimate

1 1
max |[V/—93, (;)l= max \Vf—er(tj)léM(lzln"—h—-!-rln"-‘[—)-(6.17)

FELO L auase L) JE{0s15..05 L}

Now observe that by (6.1) we have a priori-estimates for the functions u;,
]:uiL (xa ,)‘<M15 (X, t)ECIDiL9 i=1>2 (618)

where M, =max {|M|, |M|}; M, M are defined by (6.2). Here M, is independent
of y,, i.e. independent of # and 7. By (6.13) and (6.18) we get
|

ldi, (&, D)< M, for (&, 1)eclD,. (6.19)

Hence, in particular
19, (1)< M, for tel0, T]. (6.20)

Combining the ineqdalities (6.17) and (6.20) we get
1 1
!Vf}<M1+M</1 In® ~/;+ 7 In? 7), J=05 s s
/

Therefore, if A<h*<e™?, 1<i<e™? then the estimate (6.10) holds with the
‘constant B=M,+ M (h* In® i/h*+7 In° 1/r). Thus we have shown that the constant

B is independent of 4 and 7. Q.E.D.
Note that by (6.8), (6.10)
I(Y'Y|< BB for j=0,1, ..., L. (6.21)

It follows from Lemma 6.2 that
U”L (1)|<B,; for te0,T] (6.21")

where B; is a positive constant dependent only on SB.
LEMMA 6.4. For A, 7 sufficiently small (h<h*, t<7)
: ; 1 1
[Vi—Vi-l <M, hln"~h*+ Tln‘57+ 7 (6.22)

where AM,>0 is a constant independent of 74, 7.
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Proof. Observe that
[VI— VIV~ ()| +log (- )=V Flop () —v (-l (6.23)

For the first and the second term on the right-hand side of (6.23) the estimate
(6.17) holds. The third term can be estimated according to Lemma 6.1 as follows

lop () —oL (1= DI<c' T (6.24)

where ¢’>0 depends on bounds of y;, y;, v, and on given data of Problem (b,).
Thus, in view of (6.12), (6.21') and (6.20) ¢’ is independent of % and 7. Combining
(6.23), (6.17) and (6.24) we obtain (6.22). Q.E.D.

LemMA 6.5. For h, t sufficiently small (A<h*, t<7)
gy (Fhe-ue
Ot

where C>0 is a constant independent of 4, 7.

<C, r=1,.,K (6.25)

Proof. Note that

(Y/)rQ_(Y/)(r—l)Q’ ’VrQ—l___V(r—l)Q-ll |VrQ—1_,vL (trQ—l)I
2 N TR b

Ot
9 (fg-1y0-1) =¥~V
+ | -
ﬁ’ Or l
+ﬁivL(t,Q_l)—‘Z,T(t(r—l)Q—JlléWI_i_WZ_i_Ws_ (6.26)

Applying (6.17) and taking into account that

Qr>max {h' %, 71752}

we can estimate the first and the second term on the right-hand side of (6.26) in the
following way

h In? ! In? L
Ty T 1 1
W, < M =F =pM h"‘lln"—}7+ T 11157 s =1,2.

h1—31 Tl—ez

Therefore, if A<h*<e %%, 1<T<e™%% then
1 1
wW,< M [(h e 1n® Z*'*' (@)% In® —%-] . =12, (6.27)

By Lemma 6.1 we get
Wi< e’ (6.28)

where ¢’>0 is a constant independent of A, 7. From (6.26), (6.27) and (6.28) it
follows (6.25). Q.E.D.




Finite-difference approximations 197

Now we are going to show that there may be constructed a sequence of functions
vk and corresponding to it sequence of solutions of Problem (b;) converging to
the solution of Problem (BY).

Making use of the construction described in the proof of Lemma 6.2 let us
interpolate the points (¥°,0), (Y9, 07), ..., (Y52, KQ1) by a curve yy satisfying
the conditions

yx€C' [0, T], yx (ta)=Y"% Yg (t.0)=(Y'Y?, r=0,1,.., K. (6.29)

One can verify that if yx is the curve of type (6.3), then in view of (6.21), (6.25)
there exist constants B;=1115B, B,=168C, independent of %4 and 7, such that

vk ()< By, l)}}é (DI<B, for 1[0, T]. (6.30)
Observe that for sufficiently small ¢

Yk (t) € [yms yM]: re [O, T] (631)

Now let us denote by &; and &, the following sets of functions:

&y & {yx | k=12, ..}=C]0, T],
&8 {yp | K=1,2,..}=C[0, T).

From (6.30), (6.31) it follows immediately that functions being elements of the
sets &, and &, are equi-bounded and equi-continuous. By the Ascoli-Arzela Theor-
em we conclude that the sets &, &, are compact in the space of continuous func-

tions C [0, T] with the norm |[[f]l,2- sup |f(¢)|. Consequently there exist sub-
tel0, T]
sequences {yx jx,_,> {y,'(v},‘}"v=1 uniformly convergent in the interval [0, 7] to

some functions ye€ C [0, 7] and ge C [0, T], respectively. Since

e, )=yo+ [ yg, () dL,
o

we get
yD=vo+ [ dL.
0

Therefore g (¢)=y’ (t) for te[0, T).
Now we will make use of Theorem B (see Appendix B). It follows from this
theorem that
lim sup luik, (x, 1) —u; (x, )| =0, i=1,2 (6.32)

llyg, =11, T»0 (x,t)es! Gk, v:T)

where {u;,u,} is the solution of Problem (b,) corresponding to the function y.
Taking into account definition of the norm |[ -], r (see Appendix B) we get

lyg,~¥li,7< sup |yk, (1)—y (®)|+ sup ly;v(t)~y’(t)lK—:;0. (6.33)

tef0, T] tel0, T]
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Next we shall show that

lim sup [uiKv (yKv (’)’ [) —U; (y (t)n t)i :09 i=] > 29 (634)
i

Iiy1<v~vll1- 70 ¢e[0, T
1.e.
Iim sup |k, (1)—v (£)|=0. (6.35)

lvg, =¥l 70 t€l0, T]
Indeed, observe that
o, (=2 (DI< |ug, (vk, 0), ) —u (yg, @), )| +lu (yx, (), 1) —u (y (1), 1) (6.36)

It follows from (6.32) that the first term on the right-hand side of (6.36)
tends to zero when [[yx —y|l; 7—0. The second term tends also to zero since u is
continuous in cl D. Therefore (6.35) is actually satisfied.

It remains to show that

y(O)=yo+p [ v Q) dl for 1€[0,T]. (6.37)
0

To this end first we are going to show that

Vre—oy ()| <KWy (1), r=0,1, ..., K, (6.38)

1 1 1 1 )
s e gl et LR 9
where W, (h, 1) M(h In 5 In . ) 2M (h In P +QOtln o1 | Indeed, ob

serve that
]U.:_Q— ﬁkv (é:i’ trQ)! = 1 U:Q - ﬁL (é’i) trQ)‘ + | (]:Q == ﬁL (é"’ f:Q)‘ +

+10;°— g, (Ei to)l - (6.39)

where U2, i=0, 1, ..., N; r=0, 1, ..., K, is a solution of the following finite-difference

scheme

UirQ"Ui(rhl)Q 1 [ Uir+Q-1‘UirQ ‘ U{Q—Uir?l]
Bi_’Q = S Ar_Q ____,____A':Q SO
i QT }Z T4 1, h i /’I
,Q[ o TR o 0;0_0;9,]_
—C% | kA5 B . (I ~x) A % _— >

i=1,.,N—=1; r=1,..,K,, (6.40)
TO=F, el BBy (s = o B (6.41)
00=i, (&), i=0,1, ..., N; (6.42)

A7°, B¢, C!? are defined by (5.11), (5.28).
For the first term on the right-hand side of (6.39) the estimate (6.16) holds.
According to Theorem 5.1 [8]

1 1
‘0{Q—ﬁK‘, (éis trQ)!) i{]:Q—-ﬁL (éi: lrQ)‘SM(h 1n671"+ QT ]nﬁ _'Q7>’

120, 1, s N; F=0, 1, iy Ko ' (6.43)
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From (6.39), (6.16) and (6.43) it follows that
Uity (bl S Wy (h7),  i=0,1,..,N; r=0,1,.,K,. (6.44)

Since V’Q=U;J?2 and vg (1)=3, (), we get by (6.44) the estimate (6.38). Now
observe that
=1L

Yk, (TI'Q):.VK‘, (t(r—l) Q+0t (Y)Y Ce=p,401 2 (Y())SQZ

s=0

r=1

:yo+ﬁQr[V°+Z I/SQ‘l], r=1,..K,. (6.45)
Noting that i
[P0t —vg (S|P =V O+ |V C—vy (10, s=1,..,K, (6.46)
and taking into consideration (6.22) as well as (6.38) we get

[P0ty (EIEW T, s5=1, .5 (6.47)
1 1
where W (1, )= W, (h, 1)+ M, (h 1n‘77+ Tln57+ r).

Moreover, let us note that
Vo=uy (to). : (6.48)
From (6.45), (6.47) and (6.48) we obtain the following estimates

Tl

Yot BOT Y vk ()= Ot (r—1) W (h, D)<y, (tr)<
<yo+ Ot D vk (1) +BOT =W (h, 1),  r=1,...K,. (649

Now let A, t—>0 (consequently K,—c0, Q->c0). Passing to the limit in (6.49)
and taking into consideration that

sup |yx, )=y @)|=0,  sup |og ()= ()]0

te[0,T] te[0,T]
as well as that Qr—0, W (4, ©)~»0 when h, 70, we get (6.37).

It follows from the above considerations that there exist the limit functions
uy, U, y satisfying all the conditions of Problem (B}). Due to uniqueness of
the solution to this problem [7] we can claim that the entire sequences {yx}p_;,
e s oo {mk}E_y, i=1,2 are convergent.

So we have constructed the sequence {u;x, Ux}g_, of solutions to Problem
(b,) associated with the sequence of functions {yx}%_, and we have proved that the
limit functions

y=1lm ye, w=lm e =1,2

K- K- o
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are the solution of Problem (B}). To complete the proof let us note that
U7 —u (x4, 1| < U —ug (x4, t)l+ |ug (X1, tro) — 1 (X1 o)l
]YrQ—J’ (trQ)|<|YrQ_—yK (trQ)l+IyK (trQ)_y (trQ)|a IZO’ 15 ~--;N, I"=0, 1: sery K

Hence by (6.44), (6.32), (6.29) and (6.33) we get the assertion of Theorem 6.1.
Q.E.D.

7. The Direct Finite-difference Scheme

Apart from the method employing the preparatory transformation of the problem
we propose a direct method. The direct method is applicable to solving free boundary
value problems without any preparatory stages. In case of the Problem (B}) (see
Section 3) one can prove convergence of this method in much the same manner as
in Section 6 for the method with preparatory transformation.

In [7] apart from Problems (B}) we have introduced free boundary value problems,
denoted by (A,), which differ from (Bf) in form of the ordinary differential equation
describing dynamics of the free boundary. In the case of Problems (A,) we have
not got proof of convergence neither of the method with preparatory transformation
nor the direct method, but we have obtained computational results, suggesting effi-
ciency of both algorithms. In the next section we will present these 1esults and discuss
them.

Now we recall Problems (A,). Find functions {py, p,, y} satisfying the following
conditions:

p; 7 p; .

aI; _“i?;=0 m. D, i=1,2, (7.1)
y®=yo, pi(x,0)=py(x)in Z;, (7.2)
P1 (y (t)s t)=P2 (y (t), t)’ (73)

ap, op>
al—é;'(y (t)’ t)=a2_g(y (t)3 t)’ tG(O, T]5 (74)
for Problem (A,): p; (I, )=f; (), te(0,T], (1.5)

op:
for Problem (As): ai—;;—l (1, )=F,(t), te(,TI, (7.5
—O==fa, (v ®,1), 1@, 7. 7.6)

Here «;, a;, B, yo €(0, 1) are given positive constants and p;,, f;, F; are_given
functions. The above problems form mathematical model of a controlled underground
gas reservoir, expressed in terms of pressure distribution [3, 6]. The boundary con-
ditions depend on the type of control.
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As in [8] we will perform the process of constructing the direct finite-diffe-
rence scheme in two stages. Note that in Problems (A,) there occurs an additional

ap
difficulty associated with approximation of _c')xi at the free boundary. On account

of this we restrict ourselves to the version of the direct finite-difference scheme related
to Problems (Aj).

Stage 1. First we approximate the auxiliary problems (7.1)—(7.5") associated with
a given function y e C? [0, T]. We will assume boundary conditions in the form
more general than (7.5) and (7.5'):

ap; .
a;_apx‘ U, )+ (=Do, (O p, U )=g; (), t€(0,T], i=1,2 (1.7)

where o; satisfy condition (H9) (see Section 5). We introduce the regular grid wy,
(see Section 2). Using the integral-interpolation method [9] we obtain the follow-
ing system of implicit finite-difference \equations for P/, (x;, #,) € w,, (P] denote
approximate values of a solution to problem (7.1)-(7.4), (7.7)):

. Pi—pi~t 1 [  pi_ _pl  pi_pi
%[P{]:A..—Bg i ’ i+1 Ly i-1l_
T

h h g
=1L Nl =l (7.8)
. . PP | aih Py—Py
% [P ]1= 44 /1*‘—0-1 () Po— 205 2 =g (L),
o PPl  a,h Pi—pit (7.9)
%[PiléA{v——};—*+Gz(tj)va+—2&? - =g (t),
j=13'-‘sL,
#, [P1AP)=po (x), i=0,1,..,N (7.10)
where
A’_[l e ]“1 B = xm/zb d. 7.11
o il rrerys B el BRI L
Xi—1 Xi—1/2
a1 for (x,t)eclD\cl I,
T a for (x,2)eclD,, (S
for (x,t)eclD\cl T,
bi(x, 1) 2
for (x,t)ecl D,, (7.12)

PlO (X) for x € [0, yo)

Po ()& p 20 (x)  for x € [yo, ]-
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From the maximum principle for implicit schemes [9] it follows that there exists.
a unique solution of (7.8)~(7.10). The following result is valid (see [6] for the proof).

LEMMA 7.1. Assume that:

(i) there exists a unique solution of problem (7.1)-(7.4), (7.7) corresponding
to a given function y € C? {0, 7] and this solution satisfies the regularity condition
(6.4);

(i) t<h;

(iii) oy @y =015 ay;

(iv) o, i=1, 2 satisfy condition (H9) (see Sec. 5).

Then for sufficiently smail 2 (h<h**)

max |P]{—p (x;, t;)|<Mh'/? (7.14)
(X1, 1) € ope

where M is a positive constant independent of #, t; p (x, ) 2 p, (x, t) for (x, t)ecl D,
i=1; 2.

Before we pass on to the description of finite-difference schemes corresponding
op
g™ at a node (x;, ;) € wy,
on the basis of values P{. Observe that in view of (7.14) neither the forward difference

to Problems (A,) we will show how one can approximate

: . L4 » ap
(P{.—P})/h nor the backward one (P/—Pj_,)/h do -approximate E{(X“ t;)-

But there may be chosen an integer y, dependent on /4 and 7, such that
Py —P op

Imie—r b
ARV Ox i, 1)

‘ J

=0. , (7.15)

To show this note that

}P{+u —P{ ap
= e Tj)
h dx

Bl i 1)
uh

uh |

<‘ +~p—(xlt")_m+

/4 (XH-;U tj)_p (Xia tj) 5}) } A
ok _57(3}', tj)! Wi+ W,+Ws.

|

If ph=h'?"% where

[ 1
& e\o, 3) (7.16)

then by (7.14) W, < Mh*5-5~0. By the same arguments W,;,—5~0. To satisfy
condition (7.16) we choose

p=E (h=12=ey4 1 . (7.17)

For such u, ph<h?>~*+4h—5-0 and W;3=5~0.
Thus (7.15) is actually satisfied.
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Stage II. Now we will present a direct finite-difference scheme for solving Problems
(Ag) on the grid w,, satisfying condition (7.13). For given £, T we define

Q=E 2741 (7.18)
where 6, £ min {¢;, 1/2—¢,}, &, €(0, d,); &, is defined by (7.16). Let us introduce
KAL/D. (7.19)

Observe that J-»c0, K->c0, -0 when A, 0.

Finite-difference scheme (2). Algorithm without iterations
Given:

ht,0; Y°=y,, PP=po(x), i=0,1,..,N; setj=1, r=1.

Step 1.
(a) Set :
B-a 7 e
j~1: . _0-1 “e6-1-w . +r 6
V. Ka, h (1—x)a, 7
where
@Lmin {ie{0,1,.., N} Y/ ~1<ih}, (7.20)

it A<k
HEV1 i ks he,

u is defined by (7.17), x €[0, 1].

(b) If j=1 then set (Y')'~'=p¥’/~! and go to 1 (d), otherwise go to 1 (c).

(¢) If j—1<rQ then set (Y’)f“z(Y’)““”a, otherwise set (Y')~1=pV7~1 and
rer+1.

(d) Set Yi=Y/~t4(Y')~1.

(e) If 0<Y/<I then go to Step 2, otherwise STOP.
Step 2.

(a) Compute 4%, B}, i=1, ..., N—1 on the basis of expressions (7.11), (7.12) with
v (t;) replaced by Y~/

(b) Compute P{, i=0, 1, ..., N by solving the system of difference equations

F,[P]=0, i=1,.,N—1
with conditions:
— for Problem (A,): Pj=f; (), Px=/> (1),
— for Problem (A,): conditions (7.9) where
o, (t)=0, g (t)=Fc(tp), k=1,2.

(c) If j<L then go to Step 3, otherwise STOP.
Step 3. j«<j+1 and return to Step 1.

ReEMARK 7.1. The above algorithm may be used in an iterative version, similarly
as the finite-difference scheme (1) (see Section 5).
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REMARK 7.2. One can easily modify the finite-difference scheme (2) to make it
applicable for solving Problems (Bf) (see [6] for details). Convergence of the finite-
difference scheme (2) to the solution of Problem (BY) can be proved in the way
similar to that presented in Section 6.

8. Numerical Results

In this section we present the results of numerical experiments which have
been performed to test the methods suggested in the previous sections. We have
applied the method with preparatory transformation and the direct method for
solving Problems (A;). For Problems (A;) there are available nontrivial analytical
solutions so a comparison of efficiency of both methods is possible.

We have solved Problems (A;) in domain

D (To, T)2{(x, t)|]x€(0,1), te(To, T)} where 0<To<T.
Functions y, p defined in the following way
y(t)=2]/t_9 tE[TOa T]>

lpl (x:» f)=d1 erf(é)'l_db (xs t) € ClDl (T07 T)
2]/0(,1 t

p(x )= (8.1)
%

le (x, £)=b, erf(m) s (e t)eclD, (To, T)

wheile

2 x
er‘f(x)éﬁ f exp (—1%) dt,

Vo (1) _ Vo, (1)
a;= - exp\—>s b= — CXp\—//,

a o a o
pa, 1 pa, 2 (8.2)
1 _ 1
d2= —dl el‘f(—)+b1 erf<-) )
oxq 53
Dl (TOs T)={(xa t)Ix € (O: y (t)): te (T()s T)},
D2 (TOs T)={(x: t)]xE(y(t), l)a ZE(T'O:v T)}
satisfy Problem (A,) with the initial conditions
»(To)=2V Ty,
1 f( - )+ /] [0, y (T)]
a, etf| ———|+4d,,. x€]0,
1 21/% T, 2 Yo
8.3)

i %
b, erf(———), x€[y(To), 1]
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and with the Dirichlet boundary conditions
; 1
p©,0)=a,, p(l,t)=b1erf(——r__), te[T,, T]. (8.4)
2 ]/oc2 t

Functions y, p defined by (8.1) satisfy also Problem (A,) with initial condition
(8.3) and with the Neumann boundary conditions

%) 1 1Y) b
2 0,0)= “—t, —i(l,z>=—‘~exp(— ) te(To,T. (8.5

ax ]/ﬂOCZ t
The finite-difference schemes (1) and (2) in noniterative as well as in iterative
versions were applied for solving Problem (A;) with conditions (8.3), (8.4) and for
solving Problem (A,) with conditions (8.3), (8.5).
The following values of parameters were assumed:

40(2 t

To=8‘10_3, T=33'10—3, a1=100, a2=1, a1=1, 0!.2=100, ﬂ=5,

0=1, 0=1.

In the domain D (T,, T) the regular grid w,, with A=1/N, t=(T—T,)/L was
introduced.

We present the result of computations which have been performed on computer
Odra-1325.

Table 1 lists errors of approximation to Problem (A;) by using the finite-differ-
ence scheme (1) in noniterative as well as in iterative versions (Euler-Cauchy,
Milne and Hamming predictor-corrector routines were used). The discrete values
of solution to Problem (A,;) were obtained on the grid @, (see Section 5). The
computations were performed for 2=0.05 and 7=0.001 (N=20, L=25).

The errors listed in Table 1 are the following:

— error of approximation to y (¢) for t=¢;, j=0,1, ..., L

(y ()— Yj)
err [y ()14 ol

— error of approximation to p (y (¢), t) for t=t¢;, j=0, 1, ..., L

(2 (y @), 1;)—P¥ys)
p(y @), t)

The maximal absolute value of the relative error of approximation to function
p in t=t; was achieved at the node (xy,,, ;) (i.e. at the free boundary) for both
versions of the algorithm.

It follows from the results given in Table 1 that the iterative version of the finite-
difference scheme (1) yields only small improvement in the approximation.

Considering the fact that time of computation for iterative version is about
twice longer than for noniterative one, we conclude that if number of time steps
is relatively small then the noniterative version is to be preferred. Employment
of the iterative version becomes profitable when the discretization with respect

100%; (8.6)

ert [p (¥ (1), ;)12 100%;. (8.7)




Finite-difference scheme (1)—Problem (A,); #=0.05, 7=0.001

gl Tt e err [y ()] }
umber of the - —— - Y SO
b step Withour |- . wratvovemions | ynou
i iterations Euler \ Milne | Hamming } iterations
3 —0.159 0.277 0.277 a.277 l —6.825
5 —0.107 0.471 0.474 0.473 —7.33%
7 —0.012 0.658 |  0.665 0.662 ‘ —9.244
9 0.110 0842 | 0850 0848 | —9.833
11 0.248 1.022 1.032 1.028 } —10.227
13 0.394 [ 1197 1.210 1205 | —10.493
15 0.545 ’ 1.369 1.383 1378 | —10.671
17 0.698 1.537 1.554 1.547 | —10.785
19 0.853 | 1701 1.721 1.713 —10.852
2y 1.007 ] 1.862 1.885 1.876 ‘ —10.885
23 1.161 L2021 2.046 2.036 ‘ —10.891
25 1.315 | 2177 2.204 2194 | —10.876
Time of compu- \’
tations [s] 53 90 74 82 |

e bl

Table 1.

Iterative versions

Hamming

—6.363
—17.799
—8.675
—9.307
—9.668
—9.962
| 10173
. —10.307
| —10.390
—10.434
. —10.450
| —10.443

MOIMVd I

90T



Table 2.
Finite-difference scheme (2) — Problem (A,); £#=0,05, t=0,001
‘, - ,7,‘Aw LA e AN s el emal o N e M e s
| Nisisbes | err [p (v (#;)] | err [p (y (1)), 1;)] max err [p (xi, ] [
| 1
of fiel (= T igatg i | ormes | emhevemons | v || Deeie vetem
step J Withouthl = cere Podie s ‘ Without | : ‘ ~ | Without | s R
;iterationsf Euler | Milne |Hamming, iterations Euler | Milne |Hamming| iterations | Euler f Milne | Hamming ‘
T T e e e TR aT T \ \ \ ) ] ] -
3 —0.071 ‘ 0.364 | 0.364 0364  —5.304 —6.105 | —6.105 —6.105, —5.308 @ —6.114 | —6.114 ‘ —6.114 ‘
5 —0.137 0.496 0.478 ‘ 0475 | 3966 @ —4354 4355 4355 —7.391 —7.998 —8.007 —38.006
7 | 0.068 0.826 ‘ 0.817 | 0.820 | —4353 | —4.296| —4.300 ‘ —4.300 | —13.853 | —14.662 | —14.669 ‘ —14.668 ‘
9 0.281 | 1.061 1050 | 1.060 | —9410 —9.614| —9.614| —9.616| —9.419 | —9.631 | —9.631 = —9.634

! 11 0350 | 1176 | 1165 | 1.174 | —7.515 | —7.633  —7.632 —7.635 ‘ —17.537 ‘ —7.858 | —7.850 | —7.859 |
l 13 0470 1.373 | 1.369 | 1372 | —6.752 | —6.807 | —6.807 | —6.809 | —11.921 ’ —12.695 | —12.687 } —12.696 |
[ 155 0.704 1.640 1.640 | 1.641 —11.782 —8.269  —8.266| —8.166 | 11790 | —14.614 @ —14.609 = —14.617 |
i 17 0844 | 1.820 | 1.817 1.821 ‘ —9.281  —10.266 | —10.261 | —10.267 | —9.299 ‘ —10.410 | —10.397 \ —10.405 |
19 0.948 1.946 1.943 1.947 —8.283 —8.834 —8.829 —8.835 —9.543 ‘ —9.744 —9.737 —9.745" |
| 21 L2 2119 | 2119 | 2.119 —7.784 . —8.130 | —8.125  —8.131 J —12.938 | —13.147 | —13.140 | —13.149 |
\ 28 | L1328 2.343 2.344 2344 ‘ —8.514 | —8.038 ‘ —8.034| —8.039 | —14.655 | —15.431 —15.424 —15.433 |
i 25 1.514 | 2.544 2.547 2.548 —10.673 —11.667 ' —11.678  —11.672| —10.695 | —12.095 —12.108 | —12.102 |

| Time of | ] ‘ ‘ B e -

computa- 54 ‘ 95 ‘ 91 ‘ 92

é tions [s] | |

suoTjewrxordde I0ULIDJIIP-9)TUL ]
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to ¢ is significantly more dense (in that case cumulation of errors following from the
use of Euler-Cauchy extrapolation method of solving ordinary differential equations
plays important role).

For the considered discretizations the process of iterations in iterative versions
of finite-difference scheme (1) was quickly convergent. As a rule after two iterations
difference between two succeeding approximate solutions turned out to be less than
107

Table 2 lists the following results obtained by using scheme (2) both in noniterat-
ive and iterative versions: .

— error of approximation to y (¢) for t=t¢;, defined by (8.6);
— error of approximation to p (y(¢),t) for t=t;, j=0,1, ..., L

(2 (» @), ;)= W)
p(y@)t)
, . - ay (xp—Y7)
S g DI — J =
i S T as (xo— Y)+a, (Y —x,_,)°
Xe=Oh, O= min {i|Y'<ih};

i€{0,1,.., N}

err [p (v (¢), t)12 10094

where

— maximal error of approximation to p (x, t) for t=¢;, j=0,1, ..., L
(p (xma tj)_PyJ;l)
max err [p (x;, £,)]=
i ( i p (xms tj)
p(xi; tj)_Pi
D (xia tj)

100%

where

m=a4arg max
ie{0,1,..,N}

Table 3.

Finite-difference scheme (1) without iterations — Problem (A;), dependance on the discretization
step /; 7=0.001

Number of err [y (¢)] " err [p (» (1), t;)]
time step j | £=0.05 | h=0.025 } h=0.0125 | £=0.05 | h=0.025 | h=0.0125
3 —0.159 —0.297 —0.374 —6.825 —3.661 —1.902
S5 —0.107 —0.356 —0.495 —8.333 —4.477 —2.331
7 —0.012 —0.361 —0.557 —9.244 —4.977 —2.596
9 0.110 —0.334 —0.582 —9.833 | —5.307 —2.773
11 0.248 —0.287 —0.586 —10.277 —5.532 —2.895
13 0.394 —0.227 —0.575 —10.493 —35.689 —2.298
15 0.545 —0.160 —0.555 —10.671 —5.798 —3.043
177 0.698 —0.087 —0.528 —10.785 —5.872 —3.086
19 0.853 —0.012 —0.498 —10.852 —5.921 —3.116
21 1.007 0.066 —0.464 —10.885 —5.951 —3.136
23 1.161 0.145 —0.428 —10.891 —5.965 —3.148
25 1,315 0.225 —0.391 —10.876 —5.968 —3.153
" Time of
computa- 53 102 168
tions [s]




Table 4.
Finite-difference scheme (2) without iterations — Problem (A;), dependence on the discretization step £; v=0.001
Dlimise err [y (£)] err [p (v (1)), 1))] e lp G, 2]
of time
step Jj h=0.05 h=0.025 | h=0.0125 h=0.05 h=0.025 | h=0,0125 h=0.05 | h=0.025 | £=0.0125
3 —0.071 —0.221 —0.364 —5.304 —2.497 —1.736 —5.308 —2.498 —3.674
5 —0.137 —0.272 —0.390 —3.966 —4.648 —3.369 —7.391 —4.646 —3.366
7 0.068 —0.327 —0.460 —4.353 —3.387 —3.027 —13.853 —5.910 —4.373
9 0.281 —0.271 —0.452 —9.410 —4.246 —3.613 —9.419 —4.247 —3.896
11 0.350 —0.218 —0.420 —17.515 —5.538 —3.979 —17.537 —5.536 —3.975
13 0.470 —0.184 —0.379 —6.752 —4.,380 —4.078 —11.921 —6.007 —4.075
15 0.744 —0.062 —0.335 —11.782 —5.933 —4.108 —11.790 —5.934 —4.106
17 0.844 —0.018 —0.289 —9.281 —4.838 —4,108 —9.299 —6.407 —4.105
19 0.948 0.101 —0.239 —8.283 —6.077 —4.125 —9.543 —6.079 —4.123
21 1.112 0.157 —0.185 —7.784 —5.109 —4.175 —12.938 —6.470 —4.174
23 1.328 0.272 -_—0.129 —8.524 —6.250 - —4.236 —14.655 —6.253 —4.235
25 1.514 0.338 —0.072 —10.673 —5.277 —4.263 —10.695 —5.340 —4.263
Time of computa- 54 99 158
tions [s]

suorjyewrxoldde 90USILIIIP-JIULT

60C



210 I. PAWEOW

Computations were carried out for the same discretization as previously, i.e.
N=20, L=25. If follows from the results given in Table 2 that in the case of scheme
(2) its iterative versions yield the errors greater than noniterative one. The results
obtained suggest that maximal absolute values of approximation errors for every
t;, j=0,1, ..., L are attained at one of the nodes neighbouring to x= Y.

Comparing results given in Tables 1, 2 one arrives at the conclusion that in the
case of the method with preparatory transformation errors are smeller from those
obtained by the direct method.

Tables 3, 4 ilustrate influence of the spatial discretization (i.e. value of N) on
accuracy of approximate solutions to Problem (A;), obtained by means of the
finite-difference schemes (1) and (2) in noniterative versions. It follows from these
results that the rate of convergence of the method with preparatory transformation
is greater than the rate of convergence of the direct method.

In summary, we remark that the method with preparatory transformation
seems to be preferred whenever possible, i.e. when it is known that in the problem
considered free boundary I between layers does not touch fixed parts of the boundary
of the domain  D.

In the case when the set cl I'n{(x, #)|]x=1;, t€[0, T]} can be nonempty, one
ought to use the direct method.

APPENDIX B

Denote by £ the family of curves {x=y )|y (#)€(0,1), 1€ [0, T} satisfying Lip-
schitz continuity condition

ly t)—y @)Isclti—t], t,5,€[0,T]
with constant ¢, the same for all ye &.

Let Q< R? and (x, 1) € Q, then H, (Q) where v=1,2, x;=x, x,=¢ will denote
the class of functions Hé&lder continuous in @ with respect to x,, with the Holder
index from the interval (0, 1] and H (Q)2 H, (Q) N H,(Q).

For a given function y € % let us consider the following problem.

Find functions u,, u, satisfying:

— system of parabolic equations
2

a U; aui aui
‘5;—(9\,’)=ai (5 t)“ét—(x, 1)+b; (x, 1) o (x, )+

+o; (x, D) uy (x, )+f; (x, 1) for (x,1)eD;, i=1,2; (B.1)
— initial conditions
u; (x, 0)=u;0 (x) in Z;; (B.2)

— boundary conditions

u .
DD o (D=0 @), 1€(0,T] (8.3)
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or
w (lp )=p (1), 1€(0,T]; (B.3%)
— conditions at the curve y
ug (v (0, 1) —us (y @), )=r (1), (B.4)
duy du,
OO, 0= @O (0, 0)=s), 1€(,T]. (B.5)

Assume that the compatibility conditions are fulfilled, i.e.
U0 (Yo) — 120 (Vo) =1 (0),
71 (0) ty0 (Vo) — 72 (0) U3 (¥o) =5 (0), (B.6)
Uy (L)H+(=D o, 0) uo I)=0;(0)  or u, ()= (0), respectively.
In [4, 5] the following theorem has been proved:

THEOREM B. Assume that the data of problem (B.1)-(B.6) satisfy the following
conditions:

(1) O<ao<a; (x, 1)< A, for (x,t)ecl D where ay, A,

are given constants;

da; da; i

ax > —a—t—*s bi’ Ci: fieH.V (Cl D) or

da; Oda;

T o b;, ¢;, fi € H, (cl D), respectively;

Vay, (v (1), 1) 72 (0+Va, (v (1), 1) 71 (1)#0, 1€[0, T];
(i) u0 € C?(cl Z,), 1, € H(cl Z));
1
(iil) v, 04, @1, s H[O,T] (with Holder indices >7);
Gv) v, f, e H[0, T};

() hote X,

Then
lim sup lu; (x, ) —u} (x,£)|=0
ly=y*ly, 70 (x,1) €S (y, »*; T)
and
£a) ok
I L e e, g
1m sup A o x,t)|=0, 1=
lly—»*ll, 720 (x, 1) €S (p, »*; T) ox Ix i

where

St (3, y*; )2 {(x, Dl0<x<min {y (1), y* (1)}, O<r<1},

8% (y, y*; 2 {(x, )l max {y (z), y* )}<x<l, 0<1<t},

. ly (z2)—y (z1)

I¥li.c= sup [y@|+ sup —————
T€f0, 1] 71,72 €[0,1] 172*711

u; and u;, i=1,2, are solutions of problems (B.1)~(B.6) associated respectively
with y and y*.

2
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Aproksymacje rozmicowe parabolicznych zagadnien brzego-
wych ze swobodna granica episujacych dynamike podziemnego
zbiornika gazu.

Czesé I1. Dowéd zbieznoSci. Wyniki numeryczne.

W artykule przedstawiono dowodd zbieznosci wprowadzonych w czesci I aproksymacji rézni-
cowych dla jednowymiarowych parabolicznych zagadnien brzegowych ze swobodng granica. Podano
wyniki eksperymentéw numerycznych.

Pa3uocTHBIC ANNPOKCHMANNH HAPA0OMMYeCKHX KPaeBhIX 3a-
a4 €O CBOOOIHOIN IpaHHIell BOZHEKAIOMMX HPH MOZeJHpo-
BAHHE WOJ3€MHOI0 Ta30XPaHH/ININA.

Yacrs II. JloxazaTeascTBO CXOMHMOCTH. YUHCICHHbIE pe-
3yJBTATHL.

B craThe moKa3aHA CXOOUMOCTH ONMCAHHBIX B YaCTH I Pa3HOCTHBIX CXEM Ut PEIIeHHs! OJJHO-
MEPHBLIX NapabomyecKux KpaeBbIX 3alJady CO CBOOOIHOM TrpaHmueil. IlpencraBiieHs YHCIICHHBIE
DPEe3yIbTATHL.




