# Control and Cybernetics 

VOL. 8 (1979) No. 3

Finite-difference Approximations to Paralbolic Free Boundary Value Problems Arising in Modelling of Underground Gas Reservoir. Part II. Convergence Proof. Numerical Results<br>by<br>IRENA PAWEOW<br>Polish Academy of Sciences<br>Systems Research Institute<br>Warszawa, Poland


#### Abstract

The paper presents convergence proof of the finite-difference approximations to parabolic free boundary value problems, introduced in part I. Numerical results are given.


## Introduction

In part I of the paper [8] we have presented a finite-difference method for solving one-dimensional parabolic free boundary value problems suggested by the equations modelling flow of gas and water in an underground gas reservoir. The method is based on some preparatory transformation of the problem into another nonlinear parabolic problem in a domain with fixed boundary. Finite-difference scheme is of conservative type, expressing on the grid law of continuity of flow.

In Section 6 of the present paper we prove convergence of the finite-difference scheme described in [8].

We propose also a direct finite-difference method for solving free boundary value problems (Section 7). In this method preparatory transformation of the problem is not used.

In Section 8 numerical results and comparison of efficiency of both methods are presented.

In the paper we use the notations introduced in part II [8].
6. Convergence of the Finite-difference Scheme Based on Preparatory Transformation of Free Boundary Value Problem

In this section we are going to prove convergence of the finite-difference scheme (1) described in [8]. In the proof we will make use of some results of Kamynin [4, 5] relating to the continuous dependence of the solution of linear parabolic equa-
tion with discontinuous coefficients upon the boundary. In Appendix B we recall the main result of [5]. Some a priori-estimates for solution of two-layer parabolic problem associated with a given boundary $\Gamma$ (Problems $\left(b_{k}\right), k=1,2$, see Sec. 3) will be also useful.

Due to the maximum principle for two-layer parabolic free boundary value problems (see Theorem 6.2 [7]) the solution of Problem $\left(b_{1}\right)$ corresponding to $y \in C^{2}[0, T]$ can be a priori estimated as follows

$$
\begin{equation*}
\bar{M} \leqslant u_{i}(x, t) \leqslant \bar{M},(x, t) \in \operatorname{cl} D_{i}, i=1,2 \tag{6.1}
\end{equation*}
$$

where

$$
\begin{gather*}
\bar{M}=\min \left\{\min _{x \in\left[0, y_{0}\right]} u_{10}(x), \min _{x \in\left[y_{0}, l\right]} u_{20}(x), \min _{t \in[0, T]} F_{1}(t), \min _{t \in[0, T]} F_{2}(t)\right\}, \\
\bar{M}=\max \left\{\max _{x \in\left[0, y_{0}\right]} u_{10}(x), \max _{x \in\left[y_{0}, l\right]} u_{20}(x), \max _{t \in[0, T]} F_{1}(t), \max _{t \in[0, T]} F_{2}(t)\right\} . \tag{6.2}
\end{gather*}
$$

The following result has been proved in [1, 2] by employing the equivalent integral representation of Problem $\left(b_{k}\right), k=1,2$.

Lemma 6.1. Assume that there is given a family of such curves $\{x=y(t) \mid 0<y(t)<l$, $t \in[0, T]\}$ that

$$
y \in C^{2}[0, T] \text { and }\left|y^{\prime}(t)\right| \leqslant c \text { for } t \in[0, T]
$$

where constant $c>0$ is the same for all $y$.
Let us consider the family $\left\{u_{1}, u_{2}\right\}$ of solutions to Problem ( $\mathrm{b}_{k}$ ) corresponding to the given family of curves $y$. Denote $v(t) \triangleq u_{1}(y(t), t)=u_{2}(y(t), t), t \in[0, T]$. Then for function $v^{\prime}$ the following estimate holds

$$
\left|v^{\prime}(t)\right| \leqslant c^{\prime} \text { for } t \in[0, T]
$$

with constant $c^{\prime}$ dependent on bounds of $y, y^{\prime}, v$ and on given data of Problem $\left(\mathrm{b}_{k}\right)$.
Apart from the above facts the following interpolation lemma will be applied in the proof of convergence of the finite-difference scheme.

Lemma 6.2. Assume that there are given real numbers $a^{0}, a^{1}, \ldots, a^{L} ; b^{0}, b^{1}, \ldots, b^{L}$ such that $\left|b^{j}\right| \leqslant B, j=0,1, \ldots, L$ where $B$ is a given positive constant and

$$
a^{j+1}=a^{j}+\tau b^{j}, j=0,1, \ldots, L-1, \tau>0
$$

Denote $t_{0}=0, t_{j}=j \tau, j=1, \ldots, L, t_{L}=T$. The there exists a function $y \in C^{2}[0, T]$ satisfying the following conditions:
(i) $y\left(t_{j}\right)=a^{j}$,
(ii) $y^{\prime}\left(t_{j}\right)=b^{j}, j=0,1, \ldots, L$,
(iii) $\left|y^{\prime}(t)\right| \leqslant B_{1}, t \in[0, T]$
where $B_{1}$ is a positive constant dependent only on $B$, i.e. $B_{1}=B_{1}(B)$.

Proof. To prove this lemma it is sufficient to show that there exists a function $y_{j} \in C^{2}\left[t_{j-1}, t_{j}\right]$ such that
(a) $y_{j}\left(t_{j-1}\right)=a^{j-1}, y_{j}\left(t_{j}\right)=a^{j}$,
(b) $y_{j}^{\prime}\left(t_{j-1}\right)=b^{j-1}, y_{j}^{\prime}\left(t_{j}\right)=b^{j}$,
(c) $y_{j}^{\prime \prime}\left(t_{j-1}\right)=y_{j}^{\prime \prime}\left(t_{j}\right)=0$,
(d) $\left|y_{j}^{\prime}(t)\right| \leqslant B_{1}, t \in\left[t_{j-1}, t_{j}\right]$.

It can be verified that the polynomial

$$
\begin{align*}
& y_{j}(t)=c_{5}\left(\frac{t-t_{j-1}}{\tau}\right)^{5}+c_{4}\left(\frac{t-t_{j-1}}{\tau}\right)^{4}+c_{3}\left(\frac{t-t_{j-1}}{\tau}\right)^{3}+ \\
&+c_{2}\left(\frac{t-t_{j-1}}{\tau}\right)^{2}+c_{1}\left(\frac{t-t_{j-1}}{\tau}\right)+c_{0}, t \in\left[t_{j-1}, t_{j}\right] \tag{6.3}
\end{align*}
$$

where $c_{5}=3 \tau\left(b^{j-1}-b^{j}\right), c_{4}=-7 \tau\left(b^{j-1}-b^{j}\right), c_{3}=4 \tau\left(b^{j-1}-b^{j}\right), c_{2}=0, c_{1}=\tau b^{j-1}$, $c_{0}=a^{j-1}$, satisfies the conditions (a)-(d) with $B_{1}=111 B$. Function $y$ such that $y(t)=y_{j}(t)$ for $t \in\left[t_{j-1}, t_{j}\right], j=1, \ldots, L$ satisfies conditions (i)-(iii). Q.E.D.

Now we are ready to formulate and to prove the main result of the paper.
Theorem 6.1. Assume that for the solution of Problem $\left(b_{1}\right)$ associated with a given function $y \in C^{2}[0, T], 0<y_{m} \leqslant y(t) \leqslant y_{M}<l, t \in[0, T]$ the following regularity conditions are fulfilled:

$$
\begin{align*}
& u_{i} \in C^{2,1}\left(\mathrm{cl} D_{i}\right), i=1,2 \\
& \frac{\partial u_{i}}{\partial x} \text { satisfies Lipschitz continuity condition in } \\
& \mathrm{cl} D_{i} \text { with respect to } t ;  \tag{6.4}\\
& \frac{\partial u_{i}}{\partial t} \text { satisfies Lipschitz continuity condition in } \\
& \mathrm{cl} D_{i} \text { with respect to } x .
\end{align*}
$$

Then the finite-difference scheme (1) without iterations (see Section 5) is convergent on the grid

$$
\begin{equation*}
\Omega_{h \tau}^{Q} \triangleq \Omega_{h} \times \omega_{\tau}^{Q}, \omega_{\tau}^{Q} \triangleq\left\{t_{r} \mid t_{r}=r Q \tau, r=0,1, \ldots, K\right\} \tag{6.5}
\end{equation*}
$$

to the solution of Problem $\left(B_{1}^{S}\right)$, i.e.

$$
\begin{align*}
& \max _{\left(x_{i}, t_{j} \in \Omega_{h \tau}^{\Omega}\right.}\left|U_{i}^{j}-u\left(x_{i}, t_{j}\right)\right| \rightarrow 0, \\
& \max _{h, \tau \rightarrow 0}\left|Y^{j}-y\left(t_{j}\right)\right| \rightarrow 0 .  \tag{6.6}\\
& t_{j} \in \omega_{\imath}^{Q}
\end{align*}
$$

Proof. Following the finite-difference scheme (1) without iterations we obtain the approximate values

$$
\begin{equation*}
U_{i}^{j}, V^{j},\left(Y^{\prime}\right)^{j}, Y^{j} \in\left(y_{m}, y_{M}\right), i=0,1, \ldots, N ; j=0,1, \ldots, L_{1} \tag{6.7}
\end{equation*}
$$

of functions $u, v, y^{\prime}, y$ at the grid points $\left(x_{i}, t_{j}\right) \in \Omega_{h \tau}, t_{j} \in \omega_{\tau}$.

We can assume without loss of generality that $L_{1}=L$. If $L_{1}<L$ then we prove convergence of the difference scheme in an appropriately smaller time interval, where $y(t) \in\left[y_{m}, y_{M}\right]$.

According to the algorithm

$$
\begin{align*}
\left(Y^{\prime}\right)^{j} & =\left(Y^{\prime}\right)^{(r-1) Q} \text { for }(r-1) Q+1 \leqslant j \leqslant r Q-1 \\
\left(Y^{\prime}\right)^{r Q} & =\beta V^{r Q-1}, r=1, \ldots, K  \tag{6.8}\\
Y^{j} & =Y^{j-1}+\tau\left(Y^{\prime}\right)^{j-1}, j=1, \ldots, L  \tag{6.9}\\
Y^{r Q} & =Y^{(r-1) Q}+Q \tau\left(Y^{\prime}\right)^{(r-1) Q}, r=1, \ldots, K .
\end{align*}
$$

We start with proving the following lemmas.
Lemma 6.3. For $h, \tau$ sufficiently small $\left(h \leqslant h^{*}, \tau \leqslant \bar{\tau}\right)$

$$
\begin{equation*}
\left|V^{j}\right| \leqslant B, j=0,1, \ldots, L \tag{6.10}
\end{equation*}
$$

where $B>0$ is a constant independent of $h, \tau$.
Proof. Let us interpolate the points $\left(Y^{0}, 0\right),\left(Y^{1}, \tau\right), \ldots,\left(Y^{L}, L \tau\right)$ by a curve $y_{L}$ satisfying the conditions:

$$
\begin{gather*}
y_{L} \in C^{2}[0, T]  \tag{6.11}\\
y_{L}\left(t_{j}\right)=Y^{j}, y_{L}^{\prime}\left(t_{j}\right)=\left(Y^{\prime}\right)^{j}, j=0,1, \ldots, L
\end{gather*}
$$

In particular we can choose the curve of type (6.3), with $a^{j}=Y^{j}, b^{j}=\left(Y^{\prime}\right)^{j}$. One may assume that for sufficiently small $\tau\left(\tau \leqslant \bar{\tau} \leqslant \tau^{*}\right)$

$$
\begin{equation*}
y_{L}(t) \in\left[y_{m}, y_{M}\right] \text { for } t \in[0, T] \tag{6.12}
\end{equation*}
$$

Let us denote

$$
\begin{gathered}
D_{1 L} \Delta\left\{(x, t) \mid x \in\left(0, y_{L}(t)\right), t \in(0, T)\right\}, \\
D_{2 L} \Delta\left\{(x, t) \mid x \in\left(y_{L}(t), l\right), t \in(0, T)\right\}, \\
v_{L}(t) \triangleq u_{1 L}\left(y_{L}(t), t\right)=u_{2 L}\left(y_{L}(t), t\right), t \in[0, T], \\
u_{L}(x, t) \triangleq u_{i L}(x, t) \text { for }(x, t) \in \mathrm{cl} D_{i L}, i=1,2
\end{gathered}
$$

where $\left\{u_{1 L}, u_{2 L}\right\}$ is a solution of Problem $\left(b_{1}\right)$ corresponding to the function $y_{L}$. Note that according to the transformation (4.2)

$$
\begin{equation*}
u_{i L}(x, t)=\tilde{u}_{i L}(\xi, t),(x, t) \in \operatorname{cl} D_{i L},(\xi, t) \in \mathrm{cl} \tilde{D}_{i}, i=1,2 \tag{6.13}
\end{equation*}
$$

where $\left\{\tilde{u}_{1 L}, \tilde{u}_{2 L}\right\}$ is a solution of Problem (4.3)-(4.6) associated with the function $y_{L}$. By $\tilde{u}_{L}$ and $\tilde{v}_{L}$ we denote

$$
\begin{align*}
& \tilde{u}_{L}(\xi, t) \triangleq \tilde{u}_{i L}(\xi, t) \text { for }(\xi, t) \in \mathrm{cl} \widetilde{D}_{i}, i=1,2 \\
& \qquad \tilde{v}_{L}(t) \triangleq \tilde{u}_{1 L}\left(\frac{l}{2}, t\right)=\tilde{u}_{2 L}\left(\frac{l}{2}, t\right), t \in[0, T] \tag{6.14}
\end{align*}
$$

Note also that in view of (4.2)

$$
\begin{equation*}
\tilde{v}_{L}(t)=v_{L}(t) \text { for } t \leqslant[0, T] . \tag{6.15}
\end{equation*}
$$

By assumption (6.4) and conditions (6.11), (6.12) function $\tilde{u}_{L}$ satisfies (H10) (see Sec. 5). Consequently, for problem (4.3)-(4.6), associated with the function $y_{L}$, assumptions of Theorem 5.1 [8] are satisfied. It follows from this theorem that for sufficiently small $h$ and $\tau\left(h \leqslant h^{*}, \tau \leqslant \tau^{*}\right)$

$$
\begin{equation*}
\max _{\left(\xi_{i}, t_{j}\right) \in \omega_{h \tau}}\left|U_{i}^{j}-\tilde{u}_{L}\left(\xi_{i}, t_{j}\right)\right| \leqslant M\left(h \ln ^{\delta} \frac{1}{h}+\tau \ln \delta \frac{1}{\tau}\right), \tag{6.16}
\end{equation*}
$$

where $M>0$ is a constant independent of $h$ and $\tau ; \delta \triangleq 1+\varepsilon, \varepsilon$ is any given positive constant. Since $V^{j}=U_{N / 2}^{j}, j=0,1, \ldots, L$, by (6.16) we get the estimate

$$
\begin{equation*}
\max _{j \lessdot\{0,1, \ldots, L\}}\left|V^{j}-\tilde{v}_{L}\left(t_{j}\right)\right| \equiv \max _{j \in\{0,1, \ldots, L\}}\left|V^{j}-v_{L}\left(t_{j}\right)\right| \leqslant M\left(h \ln ^{\delta} \frac{1}{h}+\tau \ln ^{\delta} \frac{1}{\tau}\right) \tag{6.17}
\end{equation*}
$$

Now observe that by (6.1) we have a priori-stimates for the functions $u_{i L}$

$$
\begin{equation*}
\left|u_{i L}(x, t)\right| \leqslant M_{1},(x, t) \in \mathrm{cl} D_{i L}, i=1,2 \tag{6.18}
\end{equation*}
$$

where $M_{1}=\max \{|\bar{M}|,|\bar{M}|\} ; \bar{M}, \bar{M}$ are defined by (6.2). Here $M_{1}$ is independent of $y_{L}$, i.e. independent of $h$ and $\tau$. By (6.13) and (6.18) we get

$$
\begin{equation*}
\left|\tilde{u}_{i L}(\xi, t)\right| \leqslant M_{1} \text { for }(\zeta, t) \in \mathrm{cl} \tilde{D}_{i} \text {. } \tag{6.19}
\end{equation*}
$$

Hence, in particular

$$
\begin{equation*}
\left|\tilde{v}_{L}(t)\right| \leqslant M_{1} \text { for } t \in[0, T] . \tag{6.20}
\end{equation*}
$$

Combining the inequalities (6.17) and (6.20) we get

$$
\left|V^{j}\right| \leqslant M_{1}+M\left(h \ln ^{\delta} \frac{1}{h}+\tau \ln ^{\delta} \frac{1}{\tau}\right), j=0,1, \ldots, L .
$$

Therefore, if $h \leqslant h^{*} \leqslant \mathrm{e}^{-\delta}, \tau \leqslant \tau \leqslant \mathrm{e}^{-\delta}$, then the estimate (6.10) holds with the constant $B=M_{1}+M\left(h^{*} \ln ^{\delta} 1 / h^{*}+\bar{\tau} \ln ^{\delta} 1 / \tau\right)$. Thus we have shown that the constant $B$ is independent of $h$ and $\tau$.
Q.E.D.

Note that by (6.8), (6.10)

$$
\begin{equation*}
\left|\left(Y^{\prime}\right)^{j}\right| \leqslant \beta B \text { for } j=0,1, \ldots, L . \tag{6.21}
\end{equation*}
$$

It follows from Lemma 6.2 that

$$
\left|y_{L}^{\prime}(t)\right| \leqslant B_{1} \text { for } t \in[0, T]
$$

where $B_{1}$ is a positive constant dependent only on $\beta B$.
Lemma 6.4. For $h, \tau$ sufficiently small ( $h \leqslant h^{*}, \tau \leqslant \bar{\tau}$ )

$$
\begin{equation*}
\left|V^{j}-V^{j-1}\right| \leqslant M_{2}\left(h \ln ^{\delta} \frac{1}{h}+\tau \ln ^{\delta} \frac{1}{\tau}+\tau\right) \tag{6.22}
\end{equation*}
$$

where $M_{2}>0$ is a constant independent of $h, \tau$.

Proof. Observe that

$$
\begin{equation*}
\left|V^{j}-V^{j-1}\right| \leqslant\left|V^{j}-v_{L}\left(t_{j}\right)\right|+\left|v_{L}\left(t_{j-1}\right)-V^{j-1}\right|+\left|v_{L}\left(t_{j}\right)-v_{L}\left(t_{j-1}\right)\right| \tag{6.23}
\end{equation*}
$$

For the first and the second term on the right-hand side of (6.23) the estimate (6.17) holds. The third term can be estimated according to Lemma 6.1 as follows

$$
\begin{equation*}
\left|v_{L}\left(t_{j}\right)-v_{L}\left(t_{j-1}\right)\right| \leqslant c^{\prime} \tau \tag{6.24}
\end{equation*}
$$

where $c^{\prime}>0$ depends on bounds of $y_{L}, y_{L}^{\prime}, v_{L}$ and on given data of Problem $\left(b_{1}\right)$. Thus, in view of (6.12), (6.21') and (6.20) $c^{\prime}$ is independent of $h$ and $\tau$. Combining (6.23), (6.17) and (6.24) we obtain (6.22).
Q.E.D.

Lemma 6.5. For $h, \tau$ sufficiently small $\left(h \leqslant h^{*}, \tau \leqslant \bar{\tau}\right)$

$$
\begin{equation*}
\left|\frac{\left(Y^{\prime}\right)^{r Q}-\left(Y^{\prime}\right)^{(r-1) Q}}{Q \tau}\right| \leqslant C, r=1, \ldots, K \tag{6.25}
\end{equation*}
$$

where $\mathrm{C}>0$ is a constant independent of $h, \tau$.
Proof. Note that

$$
\begin{align*}
\left.\frac{\left(Y^{\prime}\right)^{r Q}-\left(Y^{\prime}\right)^{(r-1) Q}}{Q \tau} \right\rvert\, & =\beta\left|\frac{\left.V^{r Q-1}-V^{(r-1) Q-1}|\leqslant \beta| \frac{V^{r Q-1}-v_{L}\left(t_{r Q-1}\right)}{Q \tau} \right\rvert\,+}{Q \tau}\right|+ \\
& +\beta\left|\frac{v_{L}\left(t_{r Q-1}\right)-v_{L}\left(t_{(r-1) Q-1}\right)}{Q \tau}\right| \Delta W_{1}+W_{2}+W_{3} .
\end{align*}
$$

Applying (6.17) and taking into account that

$$
Q \tau \geqslant \max \left\{h^{1-\varepsilon_{1}}, \tau^{1-\varepsilon_{2}}\right\}
$$

we can estimate the first and the second term on the right-hand side of (6.26) in the following way

$$
W_{v} \leqslant \beta M\left[\frac{h \ln ^{\delta} \frac{1}{h}}{h^{1-\varepsilon_{1}}}+\frac{\tau \ln ^{\delta} \frac{1}{\tau}}{\tau^{1-\varepsilon_{2}}}\right]=\beta M\left(h^{\varepsilon_{1}} \ln ^{\delta} \frac{1}{h}+\tau^{\varepsilon_{2}} \ln ^{\delta} \frac{1}{\tau}\right), v=1,2 .
$$

Therefore, if $h \leqslant h^{*} \leqslant \mathrm{e}^{-\delta / \varepsilon_{1}}, \tau \leqslant \bar{\tau} \leqslant \mathrm{e}^{-\delta / \varepsilon_{2}}$ then

$$
\begin{equation*}
W_{v} \leqslant \beta M\left[\left(h^{*}\right)^{\varepsilon_{1}} \ln ^{\delta} \frac{1}{h^{*}}+(\bar{\tau})^{\varepsilon_{2}} \ln ^{\delta} \frac{1}{\bar{\tau}}\right], v=1,2 . \tag{6.27}
\end{equation*}
$$

By Lemma 6.1 we get

$$
\begin{equation*}
W_{3} \leqslant \beta c^{\prime} \tag{6.28}
\end{equation*}
$$

where $c^{\prime}>0$ is a constant independent of $h, \tau$. From (6.26), (6.27) and (6.28) it follows (6.25).

Now we are going to show that there may be constructed a sequence of functions $y_{K}$ and corresponding to it sequence of solutions of Problem $\left(\mathrm{b}_{1}\right)$ converging to the solution of Problem ( $\mathrm{B}_{1}^{s}$ ).

Making use of the construction described in the proof of Lemma 6.2 let us interpolate the points $\left(Y^{0}, 0\right),\left(Y^{Q}, Q \tau\right), \ldots,\left(Y^{K Q}, K Q \tau\right)$ by a curve $y_{K}$ satisfying the conditions

$$
\begin{equation*}
y_{K} \in C^{\prime}[0, T], y_{K}\left(t_{r Q}\right)=Y^{r Q}, Y_{K}^{\prime}\left(t_{r Q}\right)=\left(Y^{\prime}\right)^{r Q}, r=0,1, \ldots, K . \tag{6.29}
\end{equation*}
$$

One can verify that if $y_{K}$ is the curve of type (6.3), then in view of (6.21), (6.25) there exist constants $B_{1}=111 \beta B, B_{2}=168 C$, independent of $h$ and $\tau$, such that

$$
\begin{equation*}
\left|y_{K}^{\prime}(t)\right| \leqslant B_{1},\left|y_{K}^{\prime \prime}(t)\right| \leqslant B_{2} \text { for } t \in[0, T] . \tag{6.30}
\end{equation*}
$$

Observe that for sufficiently small $\tau$

$$
\begin{equation*}
y_{K}(t) \in\left[y_{m}, y_{M}\right], t \in[0, T] . \tag{6.31}
\end{equation*}
$$

Now let us denote by $\mathscr{S}_{1}$ and $\mathscr{S}_{2}$ the following sets of functions:

$$
\begin{aligned}
& \mathscr{S}_{1} \triangleq\left\{y_{K} \mid K=1,2, \ldots\right\} \subset C[0, T] \\
& \mathscr{S}_{2} \triangleq\left\{y_{K}^{\prime} \mid K=1,2, \ldots\right\} \subset C[0, T]
\end{aligned}
$$

From (6.30), (6.31) it follows immediately that functions being elements of the sets $\mathscr{S}_{1}$ and $\mathscr{S}_{2}$ are equi-bounded and equi-continuous. By the Ascoli-Arzelà Theorem we conclude that the sets $\mathscr{S}_{1}, \mathscr{S}_{2}$ are compact in the space of continuous functions $C[0, T]$ with the norm $\|f\|_{0} \triangleq \sup _{t \in[0, T]}|f(t)|$. Consequently there exist subsequences $\left\{y_{K_{v}}\right\}_{K_{v=1}}^{\infty},\left\{y_{K_{v}}^{\prime}\right\}_{K_{v=1}}^{\infty}$ uniformly convergent in the interval $[0, T]$ to some functions $y \in C[0, T]$ and $g \in C[0, T]$, respectively. Since

$$
y_{K_{v}}(t)=y_{0}+\int_{0}^{t} y_{K_{v}}^{\prime}(\zeta) d \zeta,
$$

we get

$$
y(t)=y_{0}+\int_{0}^{t} g(\zeta) d \zeta
$$

Therefore $g(t) \equiv y^{\prime}(t)$ for $t \in[0, T]$.
Now we will make use of Theorem B (see Appendix B). It follows from this theorem that

$$
\begin{equation*}
\lim _{\left\|y_{K_{v}}-y\right\| 1, T \rightarrow 0} \sup _{(x, t) \in S^{i}\left(y_{K_{v}}, y ; T\right)}\left|u_{i K_{v}}(x, t)-u_{i}(x, t)\right|=0, \quad i=1,2 \tag{6.32}
\end{equation*}
$$

where $\left\{u_{1}, u_{2}\right\}$ is the solution of Problem $\left(\mathrm{b}_{1}\right)$ corresponding to the function $y$. Taking into account definition of the norm $\|\cdot\|_{1, T}$ (see Appendix B) we get

$$
\begin{equation*}
\left\|y_{K_{v}}-y\right\|_{1, T} \leqslant \sup _{t \in[0, T]}\left|y_{K_{v}}(t)-y(t)\right|+\sup _{t \in[0, T]}\left|y_{K_{v}}^{\prime}(t)-y^{\prime}(t)\right| \underset{K_{v} \rightarrow \infty}{ } 0 . \tag{6.33}
\end{equation*}
$$

Next we shall show that

$$
\begin{equation*}
\lim _{\left\|y_{K_{v}}-v\right\|_{1}, T \rightarrow 0} \sup _{t \in[0, T]}\left|u_{i \mathbb{K}_{v}}\left(y_{\mathbf{I}_{v}}(t), t\right)-u_{i}(y(t), t)\right|=0, i=1,2, \tag{6.34}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\lim _{,-v \|_{1}, T \rightarrow 0} \sup _{t \in[0, T]}\left|v_{K_{v}}(t)-v(t)\right|=0 . \tag{6.35}
\end{equation*}
$$

Indeed, observe that

$$
\begin{equation*}
\left|v_{K_{v}}(t)-v(t)\right| \leqslant\left|u_{K_{v}}\left(y_{\mathbf{K}_{v}}(t), t\right)-u\left(y_{K_{v}}(t), t\right)\right|+\left|u\left(y_{K_{v}}(t), t\right)-u(y(t), t)\right| . \tag{6.36}
\end{equation*}
$$

It follows from (6.32) that the first term on the right-hand side of (6.36) tends to zero when $\left\|y_{K_{v}}-y\right\|_{1, T} \rightarrow 0$. The second term tends also to zero since $u$ is continuous in $\mathrm{cl} D$. Therefore (6.35) is actually satisfied.
It remains to show that

$$
\begin{equation*}
y(t)=y_{0}+\beta \int_{0}^{t} v(\zeta) d \zeta \text { for } t \in[0, T] \tag{6.37}
\end{equation*}
$$

To this end first we are going to show that

$$
\begin{equation*}
\left|V^{r Q}-v_{K_{v}}\left(t_{r Q}\right)\right| \leqslant W_{1}(h, \tau), r=0,1, \ldots, K_{v} \tag{6.38}
\end{equation*}
$$

where $W_{1}(h, \tau)=M\left(h \ln ^{\delta} \frac{1}{h}+\tau \ln ^{\delta} \frac{1}{\tau}\right)+2 M\left(h \ln ^{\delta} \frac{1}{h}+Q \tau \ln ^{\delta} \frac{1}{Q t}\right)$. Indeed, observe that

$$
\begin{align*}
&\left|U_{i}^{r Q}-\tilde{u}_{K_{v}}\left(\xi_{i}, t_{r Q}\right)\right| \leqslant\left|U_{i}^{r Q}-\tilde{u}_{L}\left(\xi_{i}, t_{r Q}\right)\right|+\left|\bar{U}_{i}^{r Q}-\tilde{u}_{L}\left(\xi_{i}, t_{r Q}\right)\right|+ \\
&+\left|\bar{U}_{i}^{+Q}-\tilde{u}_{K_{v}}\left(\xi_{i}, t_{r Q}\right)\right| \tag{6.39}
\end{align*}
$$

where $\bar{U}_{i}^{Q r}, i=0,1, \ldots, N ; r=0,1, \ldots, K_{v}$ is a solution of the following finite-difference scheme

$$
\begin{gather*}
B_{i}^{r Q} \frac{\bar{U}_{i}^{r Q}-\bar{U}_{i}^{(r-1) Q}}{Q \tau}-\frac{1}{h}\left[A_{i+1}^{r Q} \frac{\bar{U}_{i+1}^{r Q}-\bar{U}_{i}^{r Q}}{h}-A_{i}^{r Q} \frac{\bar{U}_{i}^{r Q}-\bar{U}_{i-1}^{r Q}}{h}\right] \\
-C_{i}^{r Q}\left[\kappa A_{i+1}^{r Q} \frac{\bar{U}_{i+1}^{r Q}-\bar{U}_{i}^{r Q}}{h}-(1-\kappa) A_{i}^{r Q} \frac{\bar{U}_{i}^{r Q}-\bar{U}_{i-1}^{r Q}}{h}\right]=0, \\
\quad i=1, \ldots, N-1 ; r=1, \ldots, K_{v},  \tag{6.40}\\
\bar{U}_{0}^{r Q}=F_{1}\left(t_{r Q}\right), \bar{U}_{N}^{r Q}=F_{2}\left(t_{r Q}\right), r=1, \ldots, K_{v},  \tag{6.41}\\
\bar{U}_{i}^{0}=\tilde{u}_{0}\left(\xi_{i}\right), i=0,1, \ldots, N ; \tag{6.42}
\end{gather*}
$$

$A_{i}^{r Q}, B_{i}^{r Q}, C_{i}^{r Q}$ are defined by (5.11), (5.28).
For the first term on the right-hand side of (6.39) the estimate (6.16) holds. According to Theorem 5.1 [8]

$$
\begin{gather*}
\left|\bar{U}_{i}^{r Q}-\tilde{u}_{K_{v}}\left(\xi_{i}, t_{r Q}\right)\right|,\left|\bar{U}_{i}^{r Q}-\tilde{u}_{L}\left(\xi_{i}, t_{r Q}\right)\right| \leqslant M\left(h \ln ^{\delta} \frac{1}{h}+Q \tau \ln ^{\delta} \frac{1}{Q \tau}\right), \\
i=0,1, \ldots, N ; r=0,1, \ldots, K_{v} \tag{6.43}
\end{gather*}
$$

From (6.39), (6.16) and (6.43) it follows that

$$
\begin{equation*}
\left|U_{i}^{r^{Q Q}}-\tilde{u}_{K_{v}}\left(\xi_{i}, t_{r Q}\right)\right| \leqslant W_{1}(h, \tau), \quad i=0,1, \ldots, N ; \quad r=0,1, \ldots, K_{v} \tag{6.44}
\end{equation*}
$$

Since $V^{r Q}=U_{N / 2}^{r Q}$ and $v_{K_{v}}(t)=\tilde{v}_{K_{v}}(t)$, we get by (6.44) the estimate (6.38). Now observe that

$$
\begin{align*}
y_{K_{v}}\left(t_{r Q}\right)=y_{K_{v}}\left(t_{(r-1) Q}\right)+Q & \tau\left(Y^{\prime}\right)^{(r-1) Q}=y_{0}+Q \tau \sum_{s=0}^{r-1}\left(Y_{0}^{\prime}\right)^{s Q}= \\
& =y_{0}+\beta Q \tau\left[V^{0}+\sum_{s=1}^{r-1} V^{s Q-1}\right], \quad r=1, \ldots, K_{v} \tag{6.45}
\end{align*}
$$

Noting that

$$
\begin{equation*}
\left|V^{s Q-1}-v_{K_{v}}\left(t_{s Q}\right)\right| \leqslant\left|V^{s Q-1}-V^{s Q}\right|+\left|V^{s Q}-v_{\mathbf{K}_{v}}\left(t_{s Q}\right)\right|, \quad s=1, \ldots, K_{v} \tag{6.46}
\end{equation*}
$$

and taking into consideration (6.22) as well as (6.38) we get

$$
\begin{equation*}
\left|V^{s Q-1}-v_{K_{v}}\left(t_{s Q}\right)\right| \leqslant W(h, \tau), \quad s=1, \ldots, K_{v} \tag{6.47}
\end{equation*}
$$

where $W(h, \tau)=W_{1}(h, \tau)+M_{2}\left(h \ln \delta \frac{1}{h}+\tau \ln \delta \frac{1}{\tau}+\tau\right)$.
Moreover, let us note that

$$
\begin{equation*}
V^{0}=v_{K_{v}}\left(t_{0}\right) \tag{6.48}
\end{equation*}
$$

From (6.45), (6.47) and (6.48) we obtain the following estimates

$$
\begin{align*}
& y_{0}+\beta Q \tau \sum_{s=0}^{r-1} v_{K_{v}}\left(t_{s Q}\right)-\beta Q \tau(r-1) W(h, \tau) \leqslant y_{K_{v}}\left(t_{r Q}\right) \leqslant \\
& \quad \leqslant y_{0}+\beta Q \tau \sum_{s=0}^{r-1} v_{K_{v}}\left(t_{s Q}\right)+\beta Q \tau(r-1) W(h, \tau), \quad r=1, \ldots, K_{v} \tag{6.49}
\end{align*}
$$

Now let $h, \tau \rightarrow 0$ (consequently $X_{v} \rightarrow \infty, Q \rightarrow \infty$ ). Passing to the limit in (6.49) and taking into consideration that

$$
\sup _{t \in[0, T]}\left|y_{K_{v}}(t)-y(t)\right| \rightarrow 0, \quad \sup _{t \in[0, T]}\left|v_{K_{v}}(t)-v(t)\right| \rightarrow 0
$$

as well as that $Q \tau \rightarrow 0, W(h, \tau) \rightarrow 0$ when $h, \tau \rightarrow 0$, we get (6.37).
It follows from the above considerations that there exist the limit functions $u_{1}, u_{2}, y$ satisfying all the conditions of Problem $\left(\mathrm{B}_{1}^{S}\right)$. Due to uniqueness of the solution to this problem [7] we can claim that the entire sequences $\left\{y_{K}\right\}_{K=1}^{\infty}$, $\left\{y_{K}^{\prime}\right\}_{K=1}^{\infty},\left\{v_{K}\right\}_{K=1}^{\infty},\left\{u_{i K}\right\}_{K=1}^{\infty}, i=1,2$ are convergent.

So we have constructed the sequence $\left\{u_{1 K}, u_{2 K}\right\}_{K=1}^{\infty}$ of solutions to Problem $\left(\mathrm{b}_{1}\right)$ associated with the sequence of functions $\left\{y_{K}\right\}_{K=1}^{\infty}$ and we have proved that the limit functions

$$
y=\lim _{K \rightarrow \infty} y_{K}, \quad u_{i}=\lim _{K \rightarrow \infty} u_{i K}, i=1,2
$$

are the solution of Problem $\left(\mathrm{B}_{1}^{S}\right)$. To complete the proof let us note that

$$
\begin{gathered}
\left|U_{i}^{r Q}-u\left(x_{i}, t_{r Q}\right)\right| \leqslant\left|U_{i}^{r Q}-u_{K}\left(x_{i}, t_{r Q}\right)\right|+\left|u_{K}\left(x_{i}, t_{r Q}\right)-u\left(x_{i}, t_{r Q}\right)\right|, \\
\left|Y^{r Q}-y\left(t_{r Q}\right)\right| \leqslant\left|Y^{r Q}-y_{K}\left(t_{r Q}\right)\right|+\left|y_{K}\left(t_{r Q}\right)-y\left(t_{r Q}\right)\right|, \quad i=0,1, \ldots, N, \quad r=0,1, \ldots, K .
\end{gathered}
$$

Hence by (6.44), (6.32), (6.29) and (6.33) we get the assertion of Theorem 6.1.

> Q.E.D.

## 7. The Direct Finite-difference Scheme

Apart from the method employing the preparatory transformation of the problem we propose a direct method. The direct method is applicable to solving free boundary value problems without any preparatory stages. In case of the Problem ( $\mathrm{B}_{1}^{S}$ ) (see Section 3) one can prove convergence of this method in much the same manner as in Section 6 for the method with preparatory transformation.

In [7] apart from Problems $\left(\mathrm{B}_{k}^{S}\right)$ we have introduced free boundary value problems, denoted by $\left(\mathrm{A}_{k}\right)$, which differ from $\left(\mathrm{B}_{k}^{S}\right)$ in form of the ordinary differential equation describing dynamics of the free boundary. In the case of Problems $\left(\mathrm{A}_{k}\right)$ we have not got proof of convergence neither of the method with preparatory transformation nor the direct method, but we have obtained computational results, suggesting efficiency of both algorithms. In the next section we will present these results and discuss them.

Now we recall Problems $\left(\mathrm{A}_{k}\right)$. Find functions $\left\{p_{1}, p_{2}, y\right\}$ satisfying the following conditions:

$$
\begin{gather*}
\qquad \frac{\partial p_{i}}{\partial t}-\alpha_{i} \frac{\partial^{2} p_{i}}{\partial x^{2}}=0 \text { in } D_{i}, \quad i=1,2,  \tag{7.1}\\
y(0)=y_{0}, \quad p_{i}(x, 0)=p_{i 0}(x) \text { in } Z_{i},  \tag{7.2}\\
p_{1}(y(t), t)=p_{2}(y(t), t),  \tag{7.3}\\
a_{1} \frac{\partial p_{1}}{\partial x}(y(t), t)=a_{2} \frac{\partial p_{2}}{\partial x}(y(t), t), \quad t \in(0, T],  \tag{7.4}\\
\text { for Problem }\left(\mathrm{A}_{1}\right): p_{i}\left(l_{i}, t\right)=f_{i}(t), \quad t \in(0, T],  \tag{7.5}\\
\text { for Problem }\left(\mathrm{A}_{2}\right): a_{i} \frac{\partial p_{i}}{\partial x}\left(l_{i}, t\right)=F_{i}(t), \quad t \in(0, T], \\
\frac{d y}{d t}(t)=-\beta a_{1} \frac{\partial p_{1}}{\partial x}(y(t), t), \quad t \in(0, T] . \tag{7.6}
\end{gather*}
$$

Here $\alpha_{i}, a_{i}, \beta, y_{0} \in(0, l)$ are given positive constants and $p_{i 0}, f_{i}, F_{i}$ are, given functions. The above problems form mathematical model of a controlled underground gas reservoir, expressed in terms of pressure distribution [3, 6]. The boundary conditions depend on the type of control.

As in [8] we will perform the process of constructing the direct finite-difference scheme in two stages. Note that in Problems $\left(\mathrm{A}_{k}\right)$ there occurs an additional difficulty associated with approximation of $\frac{\partial p_{1}}{\partial x}$ at the free boundary. On account of this we restrict ourselves to the version of the direct finite-difference scheme related to Problems $\left(\mathrm{A}_{k}\right)$.

Stage I. First we approximate the auxiliary problems (7.1)-(7.5') associated with a given function $y \in C^{2}[0, T]$. We will assume boundary conditions in the form more general than (7.5) and (7.5'):

$$
\begin{equation*}
a_{i} \frac{\partial p_{i}}{\partial x}\left(l_{i}, t\right)+(-1)^{i} \sigma_{i}(t) p_{i}\left(l_{i}, t\right)=g_{i}(t), t \in(0, T], \quad i=1,2 \tag{7.7}
\end{equation*}
$$

where $\sigma_{i}$ satisfy condition (H9) (see Section 5). We introduce the regular grid $\omega_{h \tau}$ (see Section 2). Using the integral-interpolation method [9] we obtain the following system of implicit finite-difference equations for $P_{i}^{j},\left(x_{i}, t_{j}\right) \in \omega_{h \tau}\left(P_{i}^{j}\right.$ denote approximate values of a solution to problem (7.1)-(7.4), (7.7)):

$$
\begin{align*}
& \widetilde{\mathscr{F}_{1}}\left[P_{i}^{j}\right] \triangleq B_{i}^{j} \frac{P_{i}^{j}-P_{i}^{j-1}}{\tau}-\frac{1}{h}\left[A_{i+1}^{j} \frac{P_{i+1}^{j}-P_{i}^{j}}{h}-A_{i}^{j} \frac{P_{i}^{j}-P_{i-1}^{j}}{h}\right]=0 \\
& \quad i=1, \ldots, N-1, \quad j=1, \ldots, L,  \tag{7.8}\\
& \widetilde{\mathscr{F}_{2}}\left[P_{i}^{j}\right] \triangleq A_{i}^{j} \frac{P_{1}^{j}-P_{0}^{j}}{h}-\sigma_{1}\left(t_{j}\right) P_{0}^{j}-\frac{a_{1} h}{2 \alpha_{1}} \frac{P_{0}^{j}-P_{0}^{j-1}}{\tau}=g_{1}\left(t_{j}\right), \\
& \widetilde{\mathscr{F}_{3}}\left[P_{i}^{j}\right] \triangleq A_{N}^{j} \frac{P_{N}^{j}-P_{N-1}^{j}}{h}+\sigma_{2}\left(t_{j}\right) P_{N}^{j}+\frac{a_{2} h}{2 \alpha_{2}} \frac{P_{N}^{j}-P_{N}^{j-1}}{\tau}=g_{2}\left(t_{j}\right),  \tag{7.9}\\
& \tilde{\mathscr{F}_{4}}\left[P_{i}^{j}\right] \triangleq P_{i}^{0}=p_{0}\left(x_{i}\right), \quad i=0,1, \ldots, N \quad j=1, \ldots, L,
\end{align*}
$$

where

$$
\begin{gather*}
A_{i}^{j}=\left[\frac{1}{h} \int_{x_{i-1}}^{x_{i}} \frac{d x}{a\left(x, t_{j}\right)}\right]^{-1}, \quad B_{i}^{j}=\frac{1}{h} \int_{x_{i-1 / 2}}^{x_{i+1} / 2} b\left(x, t_{j}\right) d x,  \tag{7.11}\\
a(x, t) \triangleq \begin{cases}a_{1} & \text { for }(x, t) \in \mathrm{cl} D_{1} \backslash \mathrm{cl} \Gamma, \\
a_{2} & \text { for }(x, t) \in \mathrm{cll} D_{2},\end{cases}  \tag{7.12}\\
b(x, t) \triangleq \begin{cases}\frac{a_{1}}{\alpha_{1}} & \text { for }(x, t) \in \mathrm{cl} D_{1} \backslash \mathrm{cl} \Gamma, \\
\frac{a_{2}}{\alpha_{2}} & \text { for }(x, t) \in \mathrm{cl} D_{2},\end{cases}  \tag{7.12}\\
p_{0}(x) \triangleq \begin{cases}p_{10}(x) & \text { for } x \in\left[0, y_{0}\right) \\
p_{20}(x) & \text { for } x \in\left[y_{0}, l\right]:\end{cases}
\end{gather*}
$$

From the maximum principle for implicit schemes [9] it follows that there exists. a unique solution of (7.8)-(7.10). The following result is valid (see [6] for the proof).

Lemma 7.1. Assume that:
(i) there exists a unique solution of problem (7.1)-(7.4), (7.7) corresponding to a given function $y \in C^{2}[0, T]$ and this solution satisfies the regularity condition (6.4);
(ii) $\tau \leqslant h$;
(iii) $\alpha_{1} a_{2}=\alpha_{2} a_{1}$;
(iv) $\sigma_{i}, i=1,2$ satisfy condition (H9) (see Sec. 5).

Then for sufficiently small $h\left(h \leqslant h^{* *}\right)$

$$
\begin{equation*}
\max _{\left(x_{i}, t_{j}\right) \in \omega_{h \tau}}\left|P_{i}^{j}-p\left(x_{i}, t_{j}\right)\right| \leqslant M h^{1 / 2} \tag{7.14}
\end{equation*}
$$

where $M$ is a positive constant independent of $h, \tau ; p(x, t) \triangleq p_{i}(x, t)$ for $(x, t) \in \mathrm{cl} D_{i}$, $i=1,2$.

Before we pass on to the description of finite-difference schemes corresponding to Problems $\left(A_{k}\right)$ we will show how one can approximate $\frac{\partial p}{\partial x}$ at a node $\left(x_{i}, t_{j}\right) \in \omega_{h \tau}$ on the basis of values $P_{i}^{j}$. Observe that in view of (7.14) neither the forward difference $\left(P_{i+1}^{j}-P_{i}^{j}\right) / h$ nor the backward one $\left(P_{i}^{j}-P_{i-1}^{j}\right) / h$ do approximate $\frac{\partial p}{\partial x}\left(x_{i}, t_{j}\right)$. But there may be chosen an integer $\mu$, dependent on $h$ and $\tau$, such that

$$
\begin{equation*}
\lim _{h, \tau \rightarrow 0}\left|\frac{P_{i+\mu}^{j}-P_{i}^{j}}{\mu h}-\frac{\partial p}{\partial x}\left(x_{i}, t_{j}\right)\right|=0 \tag{7.15}
\end{equation*}
$$

To show this note that

$$
\begin{aligned}
\left|\frac{P_{i+\mu}^{j}-P_{i}^{j}}{\mu h}-\frac{\partial p}{\partial x}\left(x_{i}, t_{j}\right)\right| & \leqslant\left|\frac{P_{i+\mu}^{j}-p\left(x_{i+\mu}, t_{j}\right)}{\mu h}\right|+\left|\frac{p\left(x_{i}, t_{j}\right)-P_{i}^{j}}{\mu h}\right|+ \\
& +\left|\frac{p\left(x_{i+\mu}, t_{j}\right)-p\left(x_{i}, t_{j}\right)}{\mu h}-\frac{\partial p}{\partial x}\left(x_{i}, t_{j}\right)\right| \triangle W_{1}+W_{2}+W_{3} .
\end{aligned}
$$

If $\mu h \geqslant h^{1 / 2-\varepsilon_{1}}$ where

$$
\begin{equation*}
\varepsilon_{1} \in\left(0, \frac{1}{2}\right) \tag{7.16}
\end{equation*}
$$

 condition (7.16) we choose

$$
\begin{equation*}
\mu=E\left(h^{-1 / 2-\varepsilon_{1}}\right)+1 . \tag{7.17}
\end{equation*}
$$

For such $\mu, \mu h \leqslant h^{1 / 2-\varepsilon_{1}}+h_{h \rightarrow 0} 0$ and $W_{3} \xrightarrow[h \rightarrow 0]{ } 0$.
Thus (7.15) is actually satisfied.

Stage II. Now we will present a direct finite-difference scheme for solving Problems ( $A_{K}$ ) on the grid $\omega_{h r}$ satisfying condition (7.13). For given $h, \tau$ we define

$$
\begin{equation*}
\widetilde{Q}=E\left(h^{\delta_{1}-\varepsilon_{2}} \tau^{-1}\right)+1 \tag{7.18}
\end{equation*}
$$

where $\delta_{1} \triangleq \min \left\{\varepsilon_{1}, 1 / 2-\varepsilon_{1}\right\}, \varepsilon_{2} \in\left(0, \delta_{1}\right) ; \varepsilon_{1}$ is defined by (7.16). Let us introduce

$$
\begin{equation*}
\widetilde{K} \triangleq L / \widetilde{Q} \tag{7.19}
\end{equation*}
$$

Observe that $\widetilde{Q} \rightarrow \infty, \widetilde{K} \rightarrow \infty, \widetilde{Q} \tau \rightarrow 0$ when $h, \tau \rightarrow 0$.
Finite-difference scheme (2). Algorithm without iterations
Given:

$$
h, \tau, \widetilde{Q} ; \quad Y^{0}=y_{0}, \quad P_{i}^{0}=p_{0}\left(x_{i}\right), \quad i=0,1, \ldots, N ; \quad \text { set } j=1, \quad r=1
$$

Step 1.
(a) Set

$$
V^{j-1}=-\kappa a_{1} \frac{P_{\theta-1}^{j-1}-P_{\theta-1-\bar{\mu}}^{j-1}}{\bar{\mu} h}-(1-\kappa) a_{2} \frac{P_{\theta+\frac{1}{\mu}}^{j-1}-P_{\theta}^{j-1}}{\bar{\mu} h}
$$

where

$$
\begin{gather*}
\Theta \triangleq \min \left\{i \in\{0,1, \ldots, N\} \mid Y^{j-1} \leqslant i h\right\},  \tag{7.20}\\
\bar{\mu}=\left\{\begin{array}{l}
\mu \text { if } h \leqslant h^{* *} \\
1 \text { if } h>h^{* *},
\end{array}\right.
\end{gather*}
$$

$\mu$ is defined by (7.17), $\kappa \in[0,1]$.
(b) If $j=1$ then set $\left(Y^{\prime}\right)^{j-1}=\beta V^{j-1}$ and go to 1 (d), otherwise go to 1 (c).
(c) If $j-1<r \widetilde{Q}$ then $\operatorname{set}\left(Y^{\prime}\right)^{j-1}=\left(Y^{\prime}\right)^{(r-1) \tilde{Q}}$, otherwise set $\left(Y^{\prime}\right)^{j-1}=\beta V^{j-1}$ and $r \leftarrow r+1$.
(d) Set $Y^{j}=Y^{j-1}+\tau\left(Y^{\prime}\right)^{j-1}$.
(e) If $0<Y^{j}<l$ then go to Step 2, otherwise STOP.

## Step 2.

(a) Compute $A_{i}^{j}, B_{i}^{j}, i=1, \ldots, N-1$ on the basis of expressions (7.11), (7.12) with $y\left(t_{j}\right)$ replaced by $Y^{j}$.
(b) Compute $P_{i}^{j}, i=0,1, \ldots, N$ by solving the system of difference equations

$$
\widetilde{\mathscr{F}}_{1}\left[P_{i}^{j}\right]=0, \quad i=1, \ldots, N-1
$$

with conditions:
— for Problem $\left(\mathrm{A}_{1}\right): P_{0}^{j}=f_{1}\left(t_{j}\right), P_{N}^{j}=f_{2}\left(t_{j}\right)$,

- for Problem ( $\mathrm{A}_{2}$ ): conditions (7.9) where

$$
\sigma_{k}\left(t_{j}\right)=0, \quad g_{k}\left(t_{j}\right)=F_{k}\left(t_{j}\right), \quad k=1,2 .
$$

(c) If $j<L$ then go to Step 3 , otherwise STOP.

Step 3. $j \leftarrow j+1$ and return to Step 1.

Remark 7.1. The above algorithm may be used in an iterative version, similarly as the finite-difference scheme (1) (see Section 5).

Remark 7.2. One can easily modify the finite-difference scheme (2) to make it applicable for solving Problems $\left(\mathrm{B}_{k}^{S}\right)$ (see [6] for details). Convergence of the finitedifference scheme (2) to the solution of Problem $\left(\mathrm{B}_{1}^{S}\right)$ can be proved in the way similar to that presented in Section 6.

## 8. Numerical Results

In this section we present the results of numerical experiments which have been performed to test the methods suggested in the previous sections. We have applied the method with preparatory transformation and the direct method for solving Problems $\left(\mathrm{A}_{k}\right)$. For Problems $\left(\mathrm{A}_{k}\right)$ there are available nontrivial analytical solutions so a comparison of efficiency of both methods is possible.

We have solved Problems $\left(\mathrm{A}_{k}\right)$ in domain

$$
D\left(T_{0}, T\right) \triangleq\left\{(x, t) \mid x \in(0,1), t \in\left(T_{0}, T\right)\right\} \text { where } 0<T_{0}<T
$$

Functions $y, p$ defined in the following way

$$
p(x, t)=\left\{\begin{array}{c}
y(t)=2 \sqrt{t}, \quad t \in\left[T_{0}, T\right] \\
p_{1}(x, t)=\bar{a}_{1} \operatorname{erf}\left(\frac{x}{2 \sqrt{\alpha_{1} t}}\right)+\bar{a}_{2},(x, t) \in \operatorname{cl} D_{1}\left(T_{0}, T\right)  \tag{8.1}\\
p_{2}(x, t)=\bar{b}_{1} \operatorname{erf}\left(\frac{x}{2 \sqrt{\alpha_{2} t}}\right), \quad(x, t) \in \operatorname{cl} D_{2}\left(T_{0}, T\right)
\end{array}\right.
$$

where

$$
\begin{gather*}
\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) d t \\
\bar{a}_{1}=-\frac{\sqrt{\pi \alpha_{1}}}{\beta a_{1}} \exp \left(\frac{1}{\alpha_{1}}\right), \quad \bar{b}_{1}=-\frac{\sqrt{\pi \alpha_{2}}}{\beta a_{2}} \exp \left(\frac{1}{\alpha_{2}}\right),  \tag{8.2}\\
\bar{a}_{2}=-\bar{a}_{1} \operatorname{erf}\left(\frac{1}{\alpha_{1}}\right)+\bar{b}_{1} \operatorname{erf}\left(\frac{1}{\alpha_{2}}\right), \\
D_{1}\left(T_{0}, T\right)=\left\{(x, t) \mid x \in(0, y(t)), \quad t \in\left(T_{0}, T\right)\right\}, \\
D_{2}\left(T_{0}, T\right)=\left\{(x, t) \mid x \in(y(t), 1), \quad t \in\left(T_{0}, T\right)\right\}
\end{gather*}
$$

satisfy Problem $\left(\mathrm{A}_{1}\right)$ with the initial conditions

$$
p\left(x, T_{0}\right)=\left\{\begin{array}{cl}
y\left(T_{0}\right)=2 \sqrt{T_{0}}, \\
\bar{a}_{1} \operatorname{erf}\left(\frac{x}{2 \sqrt{\alpha_{1} T_{0}}}\right)+\bar{a}_{2}, & x \in\left[0, y\left(T_{0}\right)\right]  \tag{8.3}\\
\bar{b}_{1} \operatorname{erf}\left(\frac{x}{2 \sqrt{\alpha_{2} T_{0}}}\right), & x \in\left[y\left(T_{0}\right), 1\right]
\end{array}\right.
$$

and with the Dirichlet boundary conditions

$$
\begin{equation*}
p(0, t)=\bar{a}_{2}, \quad p(1, t)=\bar{b}_{1} \operatorname{erf}\left(\frac{1}{2 \sqrt{\alpha_{2} t}}\right), \quad t \in\left[T_{0}, T\right] . \tag{8.4}
\end{equation*}
$$

Functions $y, p$ defined by (8.1) satisfy also Problem $\left(\mathrm{A}_{2}\right)$ with initial condition (8.3) and with the Neumann boundary conditions

$$
\begin{equation*}
\frac{\partial p}{\partial x}(0, t)=\frac{\bar{a}_{1}}{\sqrt{\pi \alpha_{1} t}}, \quad \frac{\partial p}{\partial x}(1, t)=\frac{\bar{b}_{1}}{\sqrt{\pi \alpha_{2} t}} \exp \left(-\frac{1}{4 \alpha_{2} t}\right), \quad t \in\left(T_{0}, T\right] . \tag{8.5}
\end{equation*}
$$

The finite-difference schemes (1) and (2) in noniterative as well as in iterative versions were applied for solving Problem ( $\mathrm{A}_{1}$ ) with conditions (8.3), (8.4) and for solving Problem ( $\mathrm{A}_{2}$ ) with conditions (8.3), (8.5).

The following values of parameters were assumed:

$$
\begin{array}{r}
T_{0}=8 \cdot 10^{-3}, \quad T=33 \cdot 10^{-3}, \quad a_{1}=100, \quad a_{2}=1, \quad \alpha_{1}=1, \quad \alpha_{2}=100, \quad \beta=5, \\
Q=1, \quad \tilde{Q}=1 .
\end{array}
$$

In the domain $D\left(T_{0}, T\right)$ the regular grid $\omega_{h \tau}$ with $h=1 / N, \tau=\left(T-T_{0}\right) / L$ was introduced.

We present the result of computations which have been performed on computer Odra-1325.

Table 1 lists errors of approximation to Problem $\left(\mathrm{A}_{1}\right)$ by using the finite-difference scheme (1) in noniterative as well as in iterative versions (Euler-Cauchy, Milne and Hamming predictor-corrector routines were used). The discrete values of solution to Problem ( $\mathrm{A}_{1}$ ) were obtained on the grid $\Omega_{h \tau}$ (see Section 5). The computations were performed for $h=0.05$ and $\tau=0.001$ ( $N=20, L=25$ ).

The errors listed in Table 1 are the following:

- error of approximation to $y(t)$ for $t=t_{j}, j=0,1, \ldots, L$

$$
\begin{equation*}
\operatorname{err}\left[y\left(t_{j}\right)\right] \triangleq \frac{\left(y\left(t_{j}\right)-Y^{j}\right)}{y\left(t_{j}\right)} 100 \% ; \tag{8.6}
\end{equation*}
$$

- error of approximation to $p(y(t), t)$ for $t=t_{j}, j=0,1, \ldots, L$

$$
\begin{equation*}
\operatorname{err}\left[p\left(y\left(t_{j}\right), t_{j}\right)\right] \triangleq \frac{\left(p\left(y\left(t_{j}\right), t_{j}\right)-P_{N / 2}^{j}\right)}{p\left(y\left(t_{j}\right), t_{j}\right)} 100 \% . \tag{8.7}
\end{equation*}
$$

The maximal absolute value of the relative error of approximation to function $p$ in $t=t_{j}$ was achieved at the node ( $x_{N / 2}, t_{j}$ ) (i.e. at the free boundary) for both versions of the algorithm.

It follows from the results given in Table 1 that the iterative version of the finitedifference scheme (1) yields only small improvement in the approximation.

Considering the fact that time of computation for iterative version is about twice longer than for noniterative one, we conclude that if number of time steps is relatively small then the noniterative version is to be preferred. Employment of the iterative version becomes profitable when the discretization with respect

Table 1.
Finite-difference scheme (1)-Problem ( $\mathrm{A}_{1}$ ); $h=0.05, \tau=0.001$

| Number of the time step $j$ | $\operatorname{err}\left[y\left(t_{j}\right)\right]$ |  |  |  | $\operatorname{err}\left[p\left(y\left(t_{j}\right), t_{j}\right)\right]$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Without iterations | Iterative versions |  |  | Without iterations | Iterative versions |  |  |
|  |  | Euler | Milne | Hamming |  | Euler | Milne | Hamming |
| 3 | $-0.159$ | 0.277 | 0.277 | 0.277 | $-6.825$ | $-6.363$ | -6.363 | -6.363 |
| 5 | $-0.107$ | 0.471 | 0.474 | 0.473 | -8.333 | -7.799 | -7.999 | $-7.799$ |
| 7 | -0.012 | 0.658 | 0.665 | 0.662 | -9.244 | -8.676 | -8.738 | -8.675 |
| 9 | 0.110 | 0.842 | 0.850 | 0.848 | -9.833 | -9.249 | -9.294 | -9.307 |
| 11 | 0.248 | 1.022 | 1.032 | 1.028 | -10.227 | -9.636 | -9.756 | -9.668 |
| 13 | 0.394 | 1.197 | 1.210 | 1.205 | $-10.493$ | -9.900 | -10.051 | -9.962 |
| 15 | 0.545 | 1.369 | 1.383 | 1.378 | -10.671 | $-10.078$ | -10.247 | -10.173 |
| 17 | 0.698 | 1.537 | 1.554 | 1.547 | $-10.785$ | -10.195 | $-10.374$ | -10.307 |
| 19 | 0.853 | 1.701 | 1.721 | 1.713 | $-10.852$ | $-10.266$ | -10.452 | -10.390 |
| 21 | 1.007 | 1.862 | 1.885 | 1.876 | -10.885 | $-10.303$ | $-10.493$ | -10.434 |
| 23 | 1.161 | 2.021 | 2.046 | 2.036 | -10.891 | $-10.313$ | -10.506 | $-10.450$ |
| 25 | 1.315 | 2.177 | 2.204 | 2.194 | $-10.876$ | $-10.403$ | -10.497 | -10.443 |
| Time of computations [s] | 53 | 90 | 74 | 82 |  |  |  |  |

Table 2.
to $t$ is significantly more dense (in that case cumulation of errors following from the use of Euler-Cauchy extrapolation method of solving ordinary differential equations plays important role).

For the considered discretizations the process of iterations in iterative versions of finite-difference scheme (1) was quickly convergent. As a rule after two iteations difference between two succeeding approximate solutions turned out to be less than $10^{-6}$.

Table 2 lists the following results obtained by using scheme (2) both in noniterative and iterative versions:
— error of approximation to $y(t)$ for $t=t_{j}$, defined by (8.6);

- error of approximation to $p(y(t), t)$ for $t=t_{j}, j=0,1, \ldots, L$

$$
\operatorname{err}\left[p\left(y\left(t_{j}\right), t_{j}\right)\right] \triangleq \frac{\left(p\left(y\left(t_{j}\right), t_{j}\right)-W^{j}\right)}{p\left(y\left(t_{j}\right), t_{j}\right)} 100 \%
$$

where

$$
\begin{gathered}
W^{j}=\kappa P_{\theta-1}^{j}+(1-\kappa) P_{\theta}^{j}, \quad \kappa=\frac{a_{1}\left(x_{\theta}-Y^{j}\right)}{a_{1}\left(x_{\theta}-Y^{j}\right)+a_{2}\left(Y^{j}-x_{\theta-1}\right)}, \\
x_{\theta}=\Theta h, \quad \Theta=\min _{i \in\{0,1, \ldots, N\}}\left\{i \mid Y^{j} \leqslant i h\right\} ;
\end{gathered}
$$

- maximal error of approximation to $p(x, t)$ for $t=t_{j}, j=0,1, \ldots, L$
where

$$
\max _{i} \operatorname{err}\left[p\left(x_{i}, t_{j}\right)\right]=\frac{\left(p\left(x_{m}, t_{j}\right)-P_{m}^{j}\right)}{p\left(x_{m}, t_{j}\right)} 100 \%
$$

$$
m=\arg \max _{i \in\{0,1, \ldots, N\}}\left|\frac{p\left(x_{i}, t_{j}\right)-P_{i}^{j}}{p\left(x_{i}, t_{j}\right)}\right| .
$$

Table 3.
Finite-difference scheme (1) without iterations - Problem $\left(\mathrm{A}_{1}\right)$, dependance on the discretization step $h ; \tau=0.001$

| Number of <br> time step $j$ | $\operatorname{err}\left[y\left(t_{j}\right)\right]$ |  |  |  | $\operatorname{err}\left[p\left(y\left(t_{j}\right), t_{j}\right)\right]$ |  |  |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -0.159 | -0.297 | -0.374 | -6.825 | -3.661 | -1.902 |  |
| 5 | -0.107 | -0.356 | -0.495 | -8.333 | -4.477 | -2.331 |  |
| 7 | -0.012 | -0.361 | -0.557 | -9.244 | -4.977 | -2.596 |  |
| 9 | 0.110 | -0.334 | -0.582 | -9.833 | -5.307 | -2.773 |  |
| 11 | 0.248 | -0.287 | -0.586 | -10.277 | -5.532 | -2.895 |  |
| 13 | 0.394 | -0.227 | -0.575 | -10.493 | -5.689 | -2.298 |  |
| 15 | 0.545 | -0.160 | -0.555 | -10.671 | -5.798 | -3.043 |  |
| 17 | 0.698 | -0.087 | -0.528 | -10.785 | -5.872 | -3.086 |  |
| 19 | 0.853 | -0.012 | -0.498 | -10.852 | -5.921 | -3.116 |  |
| 21 | 1.007 | 0.066 | -0.464 | -10.885 | -5.951 | -3.136 |  |
| 23 | 1.161 | 0.145 | -0.428 | -10.891 | -5.965 | -3.148 |  |
| 25 | 1.315 | 0.225 | -0.391 | -10.876 | -5.968 | -3.153 |  |
| Time of |  |  |  |  |  |  |  |
| computa- | 53 | 102 | 168 |  |  |  |  |
| tions [s] |  |  |  |  |  |  |  |

Table 4.
Finite-difference scheme (2) without iterations - Problem ( $\mathrm{A}_{1}$ ), dependence on the discretization step $h ; \tau=0.001$

| Number of time step $j$ | $\operatorname{err}\left[y\left(t_{j}\right)\right.$ ] |  |  | $\operatorname{err}\left[p\left(y\left(t_{j}\right), t_{j}\right)\right]$ |  |  | $\max _{i} \operatorname{err}\left[p\left(x_{i}, t_{j}\right)\right]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $h=0.05$ | $h=0.025$ | $h=0.0125$ | $h=0.05$ | $h=0.025$ | $h=0,0125$ | $h=0.05$ | $h=0.025$ | $h=0.0125$ |
| 3 | $-0.071$ | -0.221 | -0.364 | -5.304 | -2.497 | -1.736 | -5.308 | -2.498 | -3.674 |
| 5 | $-0.137$ | -0.272 | -0.390 | -3.966 | -4.648 | -3.369 | -7.391 | -4.646 | -3.366 |
| 7 | 0.068 | -0.327 | -0.460 | -4.353 | -3.387 | -3.027 | $-13.853$ | -5.910 | -4.373 |
| 9 | 0.281 | -0.271 | -0.452 | $-9.410$ | -4.246 | -3.613 | $-9.419$ | -4.247 | -3.896 |
| 11 | 0.350 | -0.218 | $-0.420$ | $-7.515$ | $-5.538$ | -3.979 | -7.537 | -5.536 | -3.975 |
| 13 | 0.470 | -0.184 | -0.379 | $-6.752$ | $-4.380$ | -4.078 | -11.921 | -6.007 | -4.075 |
| 15 | 0.744 | $-0.062$ | -0.335 | -11.782 | $-5.933$ | -4.108 | -11.790 | -5.934 | -4.106 |
| 17 | 0.844 | $-0.018$ | -0.289 | $-9.281$ | -4.838 | -4.108 | -9.299 | -6.407 | -4.105 |
| 19 | 0.948 | 0.101 | -0.239 | -8.283 | $-6.077$ | -4.125 | -9.543 | -6.079 | -4.123 |
| 21 | 1.112 | 0.157 | -0.185 | $-7.784$ | $-5.109$ | -4.175 | -12.938 | $-6.470$ | -4.174 |
| 23 | 1.328 | 0.272 | $-0.129$ | -8.524 | -6.250 | -4.236 | -14.655 | -6.253 | -4.235 |
| 25 | 1.514 | 0.338 | $-0.072$ | $-10.673$ | $-5.277$ | -4.263 | $-10.695$ | $-5.340$ | -4.263 |
| Time of computations [s] | 54 | 99 | 158 |  |  |  |  |  |  |

Computations were carried out for the same discretization as previously, i.e. $N=20, L=25$. If follows from the results given in Table 2 that in the case of scheme (2) its iterative versions yield the errors greater than noniterative one. The results obtained suggest that maximal absolute values of approximation errors for every $t_{j}, j=0,1, \ldots, L$ are attained at one of the nodes neighbouring to $x=Y^{j}$.

Comparing results given in Tables 1, 2 one arrives at the conclusion that in the case of the method with preparatory transformation errors are smaller from those obtained by the direct method.

Tables 3, 4 ilustrate influence of the spatial discretization (i.e. value of $N$ ) on accuracy of approximate solutions to Problem $\left(\mathrm{A}_{1}\right)$, obtained by means of the finite-difference schemes (1) and (2) in noniterative versions. It follows from these results that the rate of convergence of the method with preparatory transformation is greater than the rate of convergence of the direct method.

In summary, we remark that the method with preparatory transformation seems to be preferred whenever possible, i.e. when it is known that in the problem considered free boundary $\Gamma$ between layers does not touch fixed parts of the boundary of the domain $D$.

In the case when the set $\mathrm{cl} \Gamma \cap\left\{(x, t) \mid x=l_{i}, t \in[0, T]\right\}$ can be nonempty, one ought to use the direct method.

## APPENDIX B

Denote by $\mathscr{L}$ the family of curves $\{x=y(t) \mid y(t) \in(0, l), t \in[0, T]\}$ satisfying Lipschitz continuity condition

$$
\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right| \leqslant c\left|t_{1}-t_{2}\right|, \quad t_{1}, t_{2} \in[0, T]
$$

with constant $c$, the same for all $y \in \mathscr{L}$.
Let $Q \subset R^{2}$ and $(x, t) \in Q$, then $H_{x_{v}}(Q)$ where $v=1,2, x_{1}=x, x_{2}=t$ will denote the class of functions Hölder continuous in $Q$ with respect to $x_{v}$, with the Hölder index from the interval $(0,1]$ and $H(Q) \triangleq H_{x}(Q) \cap H_{t}(Q)$.

For a given function $y \in \mathscr{L}$ let us consider the following problem.
Find functions $u_{1}, u_{2}$ satisfying:

- system of parabolic equations

$$
\begin{align*}
\frac{\partial^{2} u_{i}}{\partial x^{2}}(x, t)= & a_{i}(x, t) \frac{\partial u_{i}}{\partial t}(x, t)+b_{i}(x, t) \frac{\partial u_{i}}{\partial x}(x, t)+ \\
& +c_{i}(x, t) u_{i}(x, t)+f_{i}(x, t) \quad \text { for }(x, t) \in D_{i}, \quad i=1,2 ; \tag{B.1}
\end{align*}
$$

— initial conditions

$$
\begin{equation*}
u_{i}(x, 0)=u_{i 0}(x) \text { in } Z_{i} \tag{B.2}
\end{equation*}
$$

- boundary conditions

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x}\left(l_{i}, t\right)+(-1)^{i} \sigma_{i}(t) u_{i}\left(l_{i}, t\right)=\varphi_{i}(t), \quad t \in(0, T] \tag{B.3}
\end{equation*}
$$

or

$$
u_{i}\left(l_{i}, t\right)=\mu_{i}(t), \quad t \in(0, T] ;
$$

- conditions at the curve $y$

$$
\begin{align*}
u_{1}(y(t), t)-u_{2}(y(t), t) & =r(t),  \tag{B.4}\\
\gamma_{1}(t) \frac{\partial u_{1}}{\partial x}(y(t), t)-\gamma_{2}(t) \frac{\partial u_{2}}{\partial x}(y(t), t) & =s(t), \quad t \in(0, T] . \tag{B.5}
\end{align*}
$$

Assume that the compatibility conditions are fulfilled, i.e.

$$
\begin{gather*}
u_{10}\left(y_{0}\right)-u_{20}\left(y_{0}\right)=r(0), \\
\gamma_{1}(0) u_{10}^{\prime}\left(y_{0}\right)-\gamma_{2}(0) u_{20}^{\prime}\left(y_{0}\right)=s(0)  \tag{B.6}\\
u_{i 0}^{\prime}\left(l_{i}\right)+(-1)^{i} \sigma_{i}(0) u_{i 0}\left(l_{i}\right)=\varphi_{i}(0) \quad \text { or } u_{i 0}\left(l_{i}\right)=f_{i}(0), \text { respectively. }
\end{gather*}
$$

In $[4,5]$ the following theorem has been proved:

Theorem B. Assume that the data of problem (B.1)-(B.6) satisfy the following conditions:
(i) $0<a_{0} \leqslant a_{i}(x, t) \leqslant A_{0}$ for $(x, t) \in \mathrm{cl} D$ where $a_{0}, A_{0}$ are given constants;

$$
\begin{aligned}
& \frac{\partial a_{i}}{\partial x}, \frac{\partial a_{i}}{\partial t}, b_{i}, c_{i}, f_{i} \in H_{x}(\mathrm{cl} D) \text { or } \\
& \frac{\partial a_{i}}{\partial x}, \frac{\partial a_{i}}{\partial t}, b_{i}, c_{i}, f_{i} \in H_{t}(\mathrm{cl} D), \text { respectively; } \\
& \sqrt{\frac{a_{1}(y(t), t)}{}} \gamma_{2}(t)+\sqrt{a_{2}(y(t), t)} \gamma_{1}(t) \neq 0, t \in[0, T]
\end{aligned}
$$

(ii) $u_{i 0} \in C^{2}\left(\mathrm{cl} Z_{i}\right), u_{i 0}^{\prime \prime} \in H\left(\mathrm{cl} Z_{i}\right)$;
(iii) $\gamma_{i}, \sigma_{i}, \varphi_{i}, s \subseteq H[0, T]\left(\right.$ with Hölder indices $\left.>\frac{1}{2}\right)$;
(iv) $r^{\prime}, f_{i}^{\prime} \in H[0, T]$;
(v) $y, y^{*} \in \mathscr{L}$.

Then

$$
\lim _{\left\|y-y^{*}\right\|_{1}, T \rightarrow 0} \sup _{(x, t) \in S^{i}\left(y, y^{*} ; T\right)}\left|u_{i}(x, t)-u_{i}^{*}(x, t)\right|=0
$$

and

$$
\lim _{\left\|y-y^{*}\right\|_{1}, T \rightarrow 0} \sup _{(x, t) \in S^{i}\left(y, y^{*} ; T\right)}\left|\frac{\partial u_{i}}{\partial x}(x, t)-\frac{\partial u_{i}^{*}}{\partial x}(x, t)\right|=0, \quad i=1,2
$$

where

$$
\begin{aligned}
S^{1}\left(y, y^{*} ; t\right) & \triangleq\left\{(x, \tau) \mid 0 \leqslant x \leqslant \min \left\{y(\tau), y^{*}(\tau)\right\}, \quad 0 \leqslant \tau \leqslant t\right\}, \\
S^{2}\left(y, y^{*} ; t\right) & \triangleq\left\{(x, \tau) \mid \max \left\{y(\tau), y^{*}(\tau)\right\} \leqslant x \leqslant l, \quad 0 \leqslant \tau \leqslant t\right\}, \\
\|y\|_{1, t} & =\sup _{\tau \in[0, t]}|y(\tau)|+\sup _{\tau_{1}, \tau_{2} \in[0, t]} \frac{\left|y\left(\tau_{2}\right)-y\left(\tau_{1}\right)\right|}{\left|\tau_{2}-\tau_{1}\right|},
\end{aligned}
$$

$u_{i}$ and $u_{i}^{*}, i=1,2$, are solutions of problems (B.1)-(B.6) associated respectively with $y$ and $y^{*}$.

## References

1. Ciment N., Guenther R. B.: Numerical solution of a free boundary value problem for parabolic equations. Applicable Analysis 4 (1974).
2. Fulks W., Guenther R. B.: A free boundary problem and an extension of Muskat's model. Acta Math. 122 (1969).
3. Gosiewski A., Pawlow I.: Modele dynamiki podziemnego zbiornika gazu. Arch. Autom. i Telemech. 23, 3 (1978).
4. Камынин Л. И.: О зависимости решения смешанной задачи для параболического уравнения от границы. ДАН СССР 140, 6 (1961).
5. Камынин Л. И.: О непрерывной зависимости решения линейных краевых задач для параболического уравнения от границы. Сиб. Мат. Журнал 4, 3 (1963).
6. Pawzow I.: Modelowanie cyfrowe zagadnienia brzegowego ze swobodną granicą opisującego dynamikę podziemnego zbiornika gazu jako obiektu sterowania. Rozprawa doktorska. Instytut Automatyki Politechniki Warszawskiej 1978.
7. Pawlow I.: On some properties of two-layer parabolic free boundary value problems. Control a. Cyber. (Warszawa) 7, 4 (1978).
8. Pawıow I.: Finite-difference approximations to parabolic free boundary value problems arising in modelling of underground gas reservoir. Part I. Algorithms. Control a. Cyber. (Warszawa 8, 2 (1979).
9. Самарский А. А.: Введение в теорию разностных схем. Иьд. Наука, Москва 1971.

Received, April 1979

## Aproksymacje różnicowe parabolicznych zagadnień brzegowych ze swobodną granicą opisujących dynamike podziemnego zbiornika gazu. <br> Część II. Dowód zbieżności. Wyniki numeryczne.

W artykule przedstawiono dowód zbieżności wprowadzonych w części I aproksymacji różnicowych dla jednowymiarowych parabolicznych zagadnień brzegowych ze swobodną granicą. Podano wyniki eksperymentów numerycznych.

Разностные аппроксимащии параболических краевых задач со свободной гранищей возникающих при моделировании подземного газохранилиица.
Часть II. Доказательство сходимости. Численные результаты.

В статье доказана сходимость описанных в части I разностных схем для решения одномерных параболических краевых задач со свободной границей. Представлены численные результаты.

