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In the paper some two-phase parabolic free boundary value problems are considered. For systems
governed by such problems some control problems are formulated whose aim is achievement of
a desired movement of free boundary or obtainment of a given terminal state. A method of solving
the formulated control problems is proposed. The method is based on employing inverse formula-
tions of parabolic problems.

)

1. Introduction

In the paper we propose an approach to solving some optimal control problems
for parabolic processes with free boundary.

We consider a one-dimensional parabolic two-phase free boundary value problem
of the Stefan type. Problems of such a type or close to them arise in mathematical
modelling of ‘numerous real processes, recall for example

— solidification 'or melting, in particular crystal growth [3, 6,9, 17],

— combustion [16],

— some biochemical diffusion processes [16].

For the nonlinear model formulated in the paper we state control problem with
a purpose consisting in obtaining desired dynamics of the free boundary.

The proposed method of solving such a control problem is based on exploiting
integral representations of the considered model. The control problem is transform-
ed into an inverse problem, having form of a system of linear integral equations
of the first kind.

In the introduced inverse formulation one assumes motion of the free boundary
to be given and determines corresponding boundary function.

Because of the non-correctness in the Hadamard sense of this inverse formulation
one should apply a regularization algorithm to solve such a problem. There is a variety
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of works where such algorithms are proposed and their implementations are con-
structed [2, 8, 11, 20].

As an application we discuss an optimization problem for crystallization process.

There are several papers devoted to optimization of processes with free boundaries.
In more than one dimension there are works of Saguez [13, 18], exploiting techniques
of variational inequalities. In one-dimensional case there are papers making use of
various inverse formulations to the free boundary problems [4, 5, 7, 19]. Except
[13] all the works cited above are dealing with one-phase free boundary problems.

The method proposed in the present paper can be extended to a broader class
of one-dimensional problems with free boundary, involving variable coefficients
and variable values of state functions at the free boundary as well as discontinuity
of state function there. The process equations and boundary conditions can be
also nonlinear [15].

2. Formulation of a Contrel Problem for Process with Free
Boundary

Let the mathematical model of the process we will consider be in form of one-
dimensional two-phase parabolic free boundary value problem of the Stefan type.

Problem (S) »

— process equations:

i 9%y .
af _aiz 3)62 =O mn Qi, (])
— initial conditions:
yi(x, l)=yi(x) in 2y, (2)
$(to)=5o (3
— boundary conditions:
110, t)=u, (1), te(to, ty] 4
9y,
E‘(ld,t)=0, te(t09 tf] (5)

— free boundary conditions:

yl(s(t)->t):yl(s(t)+at)=07 le(t()’ tf] (6)
ds L 0y4 0y, .
E(t)-—:/q-a;(s(t)—, t)‘—qu(j' (1)+,1), te(ty, 1] @)

In the above formulation we use the notations listed below:
t,— a given upper bound for the time interval,
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s (1), te[ty, t;] — position of free boundary, a priori unknown except s (f5)=sy.,.
0={(x,N0<x<s(t), to<t<tr},
Q,={(% t)is @)<x<L, t<ti<i;},
R40=(0, 50), Q2,0=(50, L),
y; — state function of the process, defined in Q,,
a;, A; — given positive constants: a; #a,, Ay #4,.
We assume that
(A1) O<so<L,
(A.2) The initial data y;, € C' (@,,) and satisfy the following conditions
d; <y10(x)<0, XEQIO\.{SO}zo
O<yro(x)<d,, x€@y0\{s0},

Y10(80) =20 (50)=0. ),
(A.3) For the initial and boundary data compatibility conditions hold

®)

de - (10)

Y10 (@) =uy (%).
Following [14, 15] we are in a position to consider the boundary data u,
either being elements of the space C! [#o, #;] or of the Sobolev space H! [1,, t,].

According to the above choice we will understand boundary condition (4) either
in the strong or in the following weak sense [14]:

ty
lim J v, G, t)—u (1) n (t)dt=0, for every ned [to, t;]. (11).

x>0+ th

We assume that for H!— boundary data
(A.4) i <u (1)<cy<0, ae ety 1] (12).
v (t)|<e¢,, almost everywhere ze[t,, #] (13).

where v; denotes the generalized derivative of u,.

For C! — boundary data both the inequalities (12), (13) hold everywhere and
the derivative in (13) is understood in the classical sense.

As we have proved in [14] the classical solution {y,, y,,s} of Problem (S),
corresponding to a function u; € H' [#,, #;] may be obtained on the basis of solutions.
{P1n> Vau» Suy corresponding to smoothed boundary data u;,e C' [1,, 1], as the:
following convergences take palce

1Yin—Yilles, 19— 05
(18— Sl [tortsl n 0

when u,~u, in H'[t,, t,], at least after choosing some subsequences.
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Due to this property we can restrict ourselves in the sequel to discussing Problem
(S) only for smoothed controls u; € C* [#,, t,].

Existence of a unique classical solution {y,, y,, s} to this problem is guaranteed
by results of [14, 15]. More precisely the following theorem holds:

THEOREM 1. Let:
— the initial data satisfy (A.1) and

dyio
dx

dyso
Ay (50)— 42 e (50)>0,
— a function u, € C*[t,, #;] satisfying (A.4) is given,
— compatibility conditions (A.3) are fulfilled.
Then there exists a classical solution {y;, y,, s} to free boundary problem (S)
in some time interval [¢y, #,] and this solution is unique. Value of #, is defined by

ty=min {1 € (to, t;lls (1)=1 or =t}

with some given /€ (5o, L).

The above theorem can proved in two stages.

First, introducing equivalent integral representation to Problem (S) and exploiting
results given in [14] one immediately obtains local existence of the solution {yy, y,, s}
in a nontrivial time interval [7,, *] as well as uniqueness of this solution.

Next one makes use of some a priori estimates [14, 15] for functions y; (x, ?),
y;
ax
in a finite number of steps onto the whole time interval [7,, #,]. We recall here the
integral representation of Problem (S) and the a priori estimates.

(s @), t), s (¢). On the basis of them it is possible to extend the local solution

ProrosITION 1 [15]. Problem (S) is equivalent to the following system of integral
equations:

So T 3G
16 0= [ 3100 Grole & t=to) dekal [ w5z (x, 0, 1=7) det
0 To

t

+a; J 0y (1) Gro (X, 5 (1), t—=7) dr,  (14)

V2 (5 1)= [ 720 Gor(x, &, 1=10) =} [0, (0) Gor (v, 5(0), 1=, (15)

So to

So d o t
”1(’)=2f 25 (@Gzo(s(t): f,t“to)df—z f"1(T)Gzo(s(t)aoat"7)df—
0 To

© 3G
—22 f 0@ g (5@, =), (16)

to
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- dyso
00=2 [ O Gl -1 i+

. le
+2a2 f 2, (7) o (s (@), 5 (@), t—1) dr, 17

to

s@)=s0+ [ [l10: (@)= A20,(2)] dr (18)
where
du, 0y,
nOLEL@,  wOLS (s 0,0)

and

Gio (%, &, 1)=E (x—&, & )+ (=1) E (x+¢&, a2 1),

Gu(x, & t)=E (x—¢&, a2t)+(— 1) E (x+&—2L, a2 t),
with '

(4nt)~ Y2 exp (—x2/4t), >0, xeR

E(x.t)=
(x, 1) "

() xeR’

ProrosiTION 2 [15]. Let {y;,y,,s} be a solution to Problem (S), defined for
t € [to, t;]. Then:

(P.1) There exists a positive constant m,, dependent only upon the bounds of data,
such that

s@®=m;  telty, 4]. 19)

(P.2) If the initial data satisfy conditions

l dyio

T (x)‘<di+25 xe0; (20)

with given positive constants d;, d,, then there exist positive constants m,, ms, m,
dependent only upon the bounds of data, such that

Sdiyz, X€Q,

Vi
S (x, 20)

9y1
L 0,1)

sm,, teto, tl, . 21

SMyyr, LE[ty, 1.

22
?yx_ (s(@®),1)
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(P.3) Under assumptions as in (P.2) there exist a priori known positive constants
ms, mg such that

dy, (x,1)|< ( Z‘)EQk

3}6 5 \m59 X, 1>

. (22)
) -

&X (X,t)|<m67 (X, t)eQS’

where
kL — 0, N [RX (Lo, 1]

Moreover by the above a priori estimates it is easy to obtain lower and upper
bounds for attainable positions of the free boundary.

PropositioN 3 [15]. Let the mitial data satisfy (20). Then there exists a positive
constant mg=m, (m3, my) such that

— Ao Mg (t—1to)+ 505 (1)< Ay Mo (t—10)+50, teftq, 1;]. (23)

From (23) it follows immediately the lower bound for #;:

1
) tiz———({—5s0)+1- (24)

Ay Mg

On the basis of (24) in the case #,>1, one can indicate necessary modifications
of the set of admissible controls or of the initial data.

For the introduced model with free boundary we are going to formulate a control
problem. As it is often suggested by technological reasons we would like to secure
a desired motion of the free boundary (cf. Section 4).

One of the possibilities of formulating such a control problem is to introduce
a functional dependent on the difference

s(t; u)—a (1)

where function ¢ corresponds to the desired evolution of the free boundary.

We propose a different approach, based on employing an inverse formulation
of the free boundary problem.

3. Inverse Formulation of Preblem (S)

To introduce the proposed inverse formulation of Problem (S) we make use of
the equivalent integral representation (14)—(18) to the model.

We will consider the control problem whose aim is to achieve the desired motion
of the free boundary as an inverse two-phase parabolic problem in non-cylindrical
domains.
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The inverse formulation consists here in finding functions y,, y,, #; under assump-
tion that the function s describing position of the free boundary is known and

s@)=a(t), telto, il (26)
where #, is defined by
te=min {t|o (¢)=1} @7

with some /€ (sq, L).

Exploiting the equivalence of Problem (S) and the system (14)-(18) we can
formulate the discussed control problem as a problem of solving a system of integral
equations.

More precisely, observe that to determine boundary control u; it is sufficient
to know only the function v,.

In this connection we ought to solve the following problem, obtained from the
system (14)-(18) by simple calculations.

Control Problem (IS)
Determine an admissible boundary control u, such that the corresponding

system of Volterra integral equations

00— [kt w3 0) 0, () de=rs (15 0), (28)

b [ kit w30)vi (@) do=ry(t; 0,9) (29)

is satisfied for 7€ [t,, 1]

In the above system we use the following notations

Qayymy ' (t—1)73? {[o (t)—0 (D]

-exp [~ (o (1)—0 (1))*/4a; (t—D)]+[o (1)+0 (x)—2L]-

cexp [— (o (1) +0 (1) =2L)*/4a2 (t—D)]}, if to<T<t<t
0 , for other ¢, 7

|
|
k2 (T,T,O-):;
|
|

L a,)2
nto)=2 [ 2@ Gl (0.8 1—to) e,

(afayy7)~" (1=1)7 11 exp [—o? (t)/4a] (t—1)],
kl(t,‘L';U)= if t0<T<t<tk,

0 for other ¢, 7
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1 do 2 dyio
rl (t; ag, 7)2)= ——2_ E‘(t)—l-}‘l f df

0o

(€) G20 (0 (1), &, t—1,) dE—

J - dyzo0 d
— 42 dé (é)GlL(g(t),é9t'_t0) c—

, [ do G
n fﬁ@ o (6 (), 0@),t—1)de—

[ . . 0G0 " Gy,
= f v,(t;0) & PE (o (1), 06 (1), t—7)+a] PE (a(t),a(r),t—r)] dr,

to

du,
V1(1)=“;lt—(t)-

As the set of admissible controls we take
U;dz{uecl [t0> tf]lu (tO):yIO (0)9 clgu(t)<60<03 te[t07 tf]a

[V (t)|<029 te[tOs tf]}

du
e

where v& !
dt

We define above the functions # on the whole time interval [#,, #,] only for sim-
plicity. Actually, for any given ¢ we can restrict ourselves to controls defined on
corresponding interval [#,, #,], with #, given by (27). ‘

(28) is Volterra equation of the second kind with continuous kernel and right-
-hand side, so its unique solution v, exists in [#,, #,] and is Lipschitz continuous [12].
Moreover function v, may be a priori estimated by a constant independent of z#,
and o (see Proposition 2).

(29) is Volterra equation of the first kind with respect to v;. In view of properties
of the Green function G,, this equation is non-transformable to any equation of
the second kind [2, 11]. Kernel k, (z, 7; o) of this equation is continuous, so the
corresponding Volterra operator is well defined in the space C [#, t].

As it is well known, problem of solving such an equation is non-correct in the
Hadamard sense [2, 11]. To solve this problem it is necessary to apply a regulariz-
ation method. Because there are many works concerning both theory and algorithm-
ic implementations of various regularization methods, we only refer to some
of them [2, 8, 11, 14, 20].

By means of regularization algorithms one can solve non-correctly posed prob-
lems of type (29), even knowing the kernel and the right-hand side only approxi-
matively, what is particularly important in the case when some parameters are
determined from measurements [11, 14]. There are regularization algorithms, stable
with respect to perturbations of the data [8, 11] and with respect to approximation
of the model [11]. As a result of using such algorithms one obtains sequence of
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elements convergent in some, generally set — theoretical sense to so called normal
solution of the exact problem or to a quasi-solution in the case when such a solution
does not exist [11, 20].

4. Application to Control of Crystallization Process

In some cases it is possible to describe dynamics of crystal-growth processes by
model with free boundaries for coupled physical fields of temperature and mass
concentration [3, 6,9, 14].

For the process of crystal-growth from a two-component substance containing
one of the components as a vestigial admixture the model will have form of a para-
bolic free boundary system.

We introduce the notations:

T; — temperature,

C, — mass concentration of the admixture,

b; — diffusion coeflicients (b; #b,).

Lower index i=1 corresponds everywhere to the solid phase, i=2 — to the
liquid. Other notations are as in the previous sections.

Then the model has the following form:

Process equations: ’

oT; 5 o*T; ¥ "
xS e (30)
in Q.
at Pox? Bl
Initial conditions:
s (to)=s5s where O=<sy<L, 32)
Ti(x, t)=Tio(x), XE€L, (33)
Ci (x, lo) = C,‘n (x) 5 X e Qio . (34)
Free boundary conditions:
T1(S(t)_:t)=T2(s(t)+at)=TK; 1€ (fo, 1l (35)
Cx(s(t)“at)=l//1(TK), t e (to, tl, (36)
CZ(S(I)+3 t):l//Z(TK)a te(thtk]5 »
with some given functions v, w, [9, 14], as well as
aT, T, ds
/llfa—x—(s(t)—,l)—lza—x(s(t)+,t)=E(I‘), ze(t05 tk], (37)

d.
[Co(s @)+, 2)—Ci(s(®)—, )] 7:(t)=

aC, 0C;
=b1W(S(t)——,t)—b2~8-x—(s(t)+,t), te(to, tl- (38)
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Boundary conditions:

a7,
. (L,t)=0, te(to, t,], 39)
C,
ax (0’ t):09 te(to, z"k]’ (40)
and
Tl (Oa t):ul(t) 5 te (tO’ tk] ) (41)
_ax—z(L, )=ux(t), te(to, kil (42)

with some #,<t,.

Assuming that the admixture is contained in the crystallizing substance only
in vestigial quantities we can simplify the free boundary conditions (36), (38) respect-
ively to the form [9, 14]:

Ci(s @)= )=Co(s (t)+,t)=Cx, LE(lo; &ls (43)
oCy 906, 4
le(s(t)——,t)—bz e (s @®)+,1)=0, t€(to, 1i]. (44)

Further we will consider problem of crystal-growth in the above particular case.

Having as a purpose obtainment of a crystal with some desired physical prop-
erties [3, 6,9, 14] we can formulate the following requirements.

(R.1) The free boundary s (z), t>1, should move after a given pattern o (1), t=1,
(cf. Section 3). The terminal time moment 7, is then defined as in Section 3.

(R.2) The final distribution of the admixture C,; (x, ), x € [0, s (¢x)] should be
equal to a given pattern y (x), x€[0, s ()]

As controls we take functions u,, u, enclosed in boundary conditions (41), (42).
Such boundary controls have clear physical interpretation. The control u, enclosed
in the Dirichlet type condition (41) corresponds to assignment of the heating power
[9, 14], whereas the control u, enclosed in the Neumann type condition (42) — to
defining flux of the admixture.

The sets of admissible controls we define as in Section 3 in case of u; and in the
following way in case of u,:

5 ‘ dtoq
Uad:{uz € C[to, tilluy (t0)= i L,
X
S (t)<ey,  FE [tos Ldh-

|
We make also an additional simplifying assumption.
As it follows from physical experiments in the problem we consider evolution
of the free boundary first of all depends on the dynamics of the thermal processes
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[6]. The diffusion processes have only slender influence on this evolution. That is
why we can apply the following idea of solving the considered problem (see
Figure). ‘

Control of Crystal-Growth Process
governed by
Coupled Parabolic Free Boundary Problems
for
lemperature and Concentration Fields

[

i
|
k i
Control Problem

4
|
|

lemperature Feld :
[
|

I
|
I
|
|
|
I
|
I
I

N\

s, telty, t,J

Control Problem

Concentration Field

Control Problem Control Problem
Infegral Representation Integral Represeniation

Idea of the proposed method of solving control
problem for the crystal-growth process

First we solve the control problem for the temperature field (cf. Section 3) with
model including free boundary s(z), 1>7¢, and with the purpose in satisfy-
ing (R.1).

Next assuming that the function s(2), 7 € [, ;] is known, we solve the control
problem for concentration field. The purpose consists now in achiev-
ing (R.2).

For the proposed method of solving the first subproblem we refer to Section 3.
The second subproblem we propose to solve using similar approach.

Employing the thermal potentials’ method we introduce again an equivalent
integral representation of the model [9, 14, 15].

Then we formulate an appropriate inverse problem, consisting in determining
boundary control u, and functions C,, C, satisfying problem (31), (34), (40), (42),
(43), (44) for the concentration field with known dynamics of the interface s (¢),
te [to, t;) and including the terminal condition

Cilr,t)=x (), xe[0,s@@)]. (45)
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This problem may be resolved into the system of integral equations [14]:

197
b, f Hio (x, 5 (0), t,—17) W, (2) dr=
to

So

— 7 (¥)— f Cro(®) Hao (x, &, ty—10) di+
(0]

113

0H,,
+CK f [bI_a?(X, S (T), tk_T)_
ds .
= (r) Hao (x, 5(2), tk—r)] dr, xe€l0,1], (46)

T

0H,y
b, fuz(r)—a—é-—(s(t),L,t—r)dr=

to
it

1 / d
— =5 O+b: [ w0

to

HlL

o¢

(s@®,s@,t—1) dr+

. u<poelOgy
+ [ OHLOL )&, ten] @)

where 5

3C)’62 (s@),1), -
I=0(t) (cf. Section 3),
Hyo(%, & 1) 2 =E(x—¢& by t)+E(x+¢&, by 1),
Hi (x5, ) AE(x—& by t)—E(x+E—2L, b, t).
In the above system (46) is a Fredholm equation of the first kind with respect

to w, and (47) is a Volterra equation of the first kind with respect to u, (with w,
known on the basis of (46)).

Making use of a regularization techniques (cf. Section 3) we are in a position
to determine function u, being regularized solution or quasi-solution to the inverse
problem for the concentration field. ’

wy(t)£
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Sterowanie parabolicznymi zagadnieniami ze swobodna
granica — zastosowanie sformulowan odwrotnych

W pracy s3 rozwazane dwufazowe paraboliczne zagadnienia brzegowe ze swobodng granica.
Dla takich zagadniefi zostaja sformulowane zadania sterowania, ktorych celem jest zapewnienie
pozadanego przemieszczania si¢ swobodnej granicy badZ osiagnigcie wyznaczonego stanu konco-
wego. W pracy zostala zaproponowana metoda rozwiazywania takich zagadnien, wykorzystujaca
pewne sformutowania odwrotne probleméw wyjsciowych.

Viopasienue napadosiMuecKHME 3aJaYaMH €O  CBOGOXHOM
rpauuneii — nprMencHHe o0paTHBIX (GOPMYJIHPOBOK

B pabote paccmartpmBaercst nByxdasuble napabommyeckue 3aHavd CO CBOOOIHOM IpaHHLIEH.
Jns sTux 3ama4 chopMynmpoBansl MPOGIEMBI YIPABIICHAS ¢ HOKA3aTEISIME 3aBHCSIIIMEA OT IBU~
JKeHUsl CBOOOIHOM rpaHuipl OO OT (HHAIBHOrO COCTOSHHS. DTH NPoOiIeMbl (OpMyITHPYETCs
kak obparHble mapaGonnmyeckde 3aIayu.






