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In the paper some two-phase parabolic free boundary value problems are considered. For systems 
governed by such problems some control problems are formulated whose aim is achievement of 
a desired movement of free boundary or obtainment of a given terminal state. A method of solving 
the formulated control problems is proposed. The method is based on employing inverse formula
tions of parabolic problems. 

1. Introduction 

In the paper we propose an approach to solving some optimal control problems 
for parabolic processes with free boundary. 

We consider a one-dimensional parabolic two-phase free boundary value problem 
of the Stefan type. Problems o~ such a type or close to them arise in mathematical 
modelling of·numerous real processes, recall for example 

- solidification 'or melting, in particular crystal growth [3, 6, 9, 17], 
- combustion [16], 
- some biochemical diffusion processes [H)]. 

For the nonlinear model formulated in the paper we state control problem with 
a purpose consisting in obtaining desired dynamics of the free boundary. 

The proposed method of solving such a control problem is based on exploiting 
integral representations of the considered model. The control problem is transform
ed into an inverse problem, having form of a system of linear integral equations 
of the first kind. 

In the introduced inverse formulation one assumes motion of the free boundary 
to be given and determines corresponding boundary function. 

Because of the non-correctness in the Hadamard sense of this inverse formulation 
one should apply a regularization algorithm to solve such a problem. There is a variety 
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of works where such algorithms are proposed and their implementations are con
structed [2, 8, 11, 20]. 

As an application we discuss an optimization problem for crystallization process. 

There are several papers devoted to optimization of processes with free boundaries. 
In more than one dimension there are works of Saguez [13, 18], exploiting techniques 
of variational inequalities. In one-dimensional case there are papers making use of 
various inverse formulations to the free boundary problems [4, 5, 7, 19]. Except 
[13] all the works cited above are dealing with one-phase free boundary problems. 

The method proposed in the present paper can be extended to a broader class 
of one-dimensional problems with free boundary, involving variable coefficients 
and variable values of state functions at the free boundary as well as discontinuity 
of state function there. The process equations and boundary conditions can be 
also nonlinear [15] . 

2. Formulation of a Control Problem for Process with Free 
Boundary 

Let the mathematical model of the process we will consider be in form of one
dimensional two-phase parabolic free boundary value problem of the Stefan type. 

Problem (S) 

- process equations: 

- initial conditions: 

- boundary conditions: 

in Q;, 

Y; (x, t0)= Y;o (x) in Q;o, 

s(t0 )=so 

y 1 (0, t)=u1 (t), tE(to, tf] 

oyz 
ox (L, t)=O, t E(t0 , tf] 

- free boundary conditions: 

y 1 (s(t)-, t)=y 2 (s(t)+, t)=O, 

In the above formulation we use the notations listed below : 
tf- a given upper bound for the time interval, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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s (t ), t E [t0 , t f] - position of free boundary, a priori unknown excepts (t0) = s0 , 

Q 1 ={(x,t)JO<x<s(t), t0 <t<tf}, 

Q2 ={(x, t)Js (t)<x<L, t0 <t<tf}, 

.Qto=(O,so), .Qzo = (so,L), 

Y;- state function of the process, defmed in Q;, 

a;, A;- given positive constants: a 1 #-a2 , ) , 1 #-A 2 • 

We assume that 
(A.1) 0<s0 <L, 

(A.2) The initial data Y;o E C 1 (Qw) and satisfy the following conditions 

d 1 <y10 (x) < 0, 

0<Yzo(x)<dz, 

XE QLO "'-{So}, 

xE Qzo "'-{so}, 

Yto (so)= Yzo (so)= 0. 

(A .3) For the initial and boundary data compatibility conditions hold 

dyzo 
dx- (L)=O, 

Yto(O)=uJto). 

(8) · 

(9). 

(10) 

Following [14, 15] we are in a position to consider the boundary data u 1 

either being elements of the space C 1 [t0 , tf J or of the Sobolev space H 1 [t0 , tf ]. 

According to the above choice we will understand boundary condition ( 4) either· 
in the strong or in the following weak sense [14]: 

'f 

lim J [y 1 (x,t)-u 1 (t)]1J(t)dt=0 , for every 1JE ~~ [t0 ,tf]. (11). 
x-+0+ to 

We assume that for H 1
- boundary data 

(A.4) 

where v1 denotes the generalized derivative of u 1 . 

(1 2) 

(13) 

For C 1
- boundary data both the inequalities (12), (13) hold everywhere and 

the derivgtive in (13) is understood in the classical sense . 

As we have proved in [14] the classical solution {y 1 , Y2, s} of Problem (S), 
corresponding to a function u1 E H 1 [t0 , tf] may be obtained on the basis of solutions. 
{y 111 , y 2 ,, s11 } corresponding to smoothed boundary data U 111 E C 1 [t0 , tf], as the: 
following convergences take palce 

IJYin-Ydb, 1 (Q;) ----;;--+ 0, 

llsn- sJJc. [to• If]---;;-+ 0 

when u~_.~u 1 in H 1 [t0 , tf], at least after choosing some subsequences . 
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Due to this property we can restrict ourselves in the sequel to discussing Problem 
(S) only for smoothed controls u1 E C 1 [!0 , tf ]. 

Existence of a unique classical solution {y~, Yz, s} to this problem is guaranteed 
by results of [14, 15]. More precisely the following theorem holds: 

THEOREM 1. Let: 
-the initial data satisfy (A.1) and 

dy10 dy20 
A1 ~ (so)-Az dx (so)>O, 

-a function u1 E C 1 [t0 , tf] satisfying (A.4) is given, 
- compatibility conditions (A.3) are fulfilled. 

Then there exists a classical solution {y 1 , Yz, s} to free boundary problem (S) 
in some time interval [t0 , tk] and this solution is unique. Value of tk is defined by 

tk=min {t E (t0 , tf]ls (t)=l or tk=tf} 

with some given lE (s0 , L). 
The above theorem can proved in two stages. 
First, introducing equivalent integral representation to Problem (S) and exploiting 

results given in [14] one immediately obtains local existence of the solution {Yr. Yz, s} 
in a nontrivial time interval [t0 , t*] as well as uniqueness of this solution. 

Next one makes use of some a priori estimate& [14, 15] for functions Yi (x, t), 

i~ (s (t), t), s (t). On the basis of them it is possible to extend the local solution 

in a finite number of steps onto the whole time interval [t0 , tk]. We recall here the 
integral representation of Problem (S) and the a priori estimates. 

PROPOSITION 1 [15]. Problem (S) is equivalent to the following system of integral 
equations: 

So t oG 
Y1 (x, t) = J y 10 (() G10 (x, (, t-t0 ) d(+a~ J u1 (r) 0~

0 
(x, 0, t-r) dr+ 

0 ~ . 

t 

+ai J v1 (r)G10 (x,s(r),t -r)dr, (14) 

to 

L t 

Y2 (x, t )= J y 20 (0 G2L (x, (, t- t0 ) d(- a~ J v 2 (r) G2L (x , s(r), t- r) dr, (15) 
so to 
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f 
dy20 . 

v2 (t)=2 ~ (~) GlL (s (t), ~. t- t0 ) d~+ 

so 

where 

and 

with 

t 

f 
aGlL 

+2a~ v2 (r) ---ar- (s (t), s (r), t-r) dr, 
to 

t 

s(t)=so+ J (A. 1 v1 (r)-A.2 v2 (r)] dr 
to 

Gw (x, ~. t)=E (x-~, ai t)+( -1)i E (x+~. ai t), 

GiL (x, ~. t)=E (x-~, a~ t)+( -1)i E (x+~-2L, a~ t), 

6 
{ (4nt)- 112 exp (-x2 /4t), 

E(x,t) = 
0 ' 

t>O, XER 

t~O, XER 

217 

(17) 

(18) 

PROPOSITION 2 [15]. Let {y1 , J2 , s} be a solution to Problem (S), defined for 
t E [t0, tk]. Then: 

(P.l) There exists a positive constant m 1 , dependent only upon the bounds of data, 
such that 

(19) 

(P.2) If the initial data satisfy conditions 

(20) 

with given positive constants d3 , d4 , then there exist positive constants m2 , m3 , m4 

dependent only upon the bounds of data, such that 

(21) 

I 
oy1 I . . ox (s (t), t) ~mi+2, 

I •. 
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(P.3) Under assumptions as in (P.2) there exist a priori known positive constants. 
m5 , m6 such that 

(x, t)EQ~, 

(22) 

(x, t)EQ~, 

where 

Moreover by the above a priori estimates it is easy to obtain lower and upper 
bounds for attainable positions of the free boundary. 

PROPOSITION 3 [15]. Let the initial data satisfy (20). Then there exists a positive 
constant m 0 = m0 (m 3 , m4 ) such that 

(23) 

From (23) it follows immediately the lower bound for tk: 

(24) 

On the basis of (24) in the case tk~tf one can indicate necessary modifications. 
of the set of admissible controls or of the initial data. 

For the introduced model with free boundary we are going to formulate a control 
problem. As it is often suggested by technological reasons we would like to secure 
a desired motion of the free boundary (cf. Section 4). 

One of the possibilities of formulating such a control problem is to introduce 
a functional dependent on the difference 

where function CJ corresponds to the desired evolution of the ftee boundary. 

We propose a different approach, based on employing an inverse formulation 
of the free boundary problem. 

To introduce the proposed inverse formulation of Problem (S) we make use of 
the equivalent integral representation (14)-(18) to the model. 

We will consider the control problem whose aim is to achieve the desired motion 
of the free boundary as an inverse two-phase parabolic problem in non-cylindrical 
domains. 
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The inverse formulation consists here in finding functions y 1 , Yz, u 1 under assump
tion that the function s describing position of the free boundary is known and 

s (t)=a (t), (26) 

where tk is defined by 

(27) 

with some I E (s0 , L). 

Exploiting the equivalence of Problem (S) and the system (14)-(18) we can 
formulate the discussed control problem as a problem of solving a system of integral 
equations. 

More precisely, observe that to determine boundary control u1 it is sufficient 
to know only the function v 2 • 

In this connection we ought to solve the following problem, obtained from the 
system (J 4)-(18) by simple calculations. 

Control Problem (IS) 

Determine an admissible boundary control u1 such that the corresponding 
system of Volterra integral equations 

t 

v2 (t)- Jk2 (t,r;a)v2 (r)dr=r 2 (t;a'), (28) 
f o ......._ 

t 

) , 1 J k 1 (t, r;a)v 1 (r) dr=r 1 (t;a,v 2 ) (29) 
t o 

is satisfied for t E [t0, tk]. 

In the above system we use the following notations 

I (2a2 J/ i) - 1 (t-r)- 3 1 2 {[a (t)-a (r)]· 

I ·exp [-(a (t) -a (r)) 2 /4ai (t-r)]+[a (t)+a(r)-2L]· 
k2 (t, r ; a)=~ 

1·exp [-(a(t)+a(r)-2L) 2 /4ai(t-r)J}, if t0 ~r<t~tk 

I 0 for other t, r 

L 

f 
dyzo 

r2 (t;a)=2. ~(~)GJL(a(t),~,t-t0)d~ , 

s o 

l 
(),1/a1 -.Jn)- 1 (t-r)- 1 12 ~xp [-a 2 (t) f4ai(t-r)], 

k 1 (t,r;a)= If t0 ~r<t~tk, 

0 for other t, r 
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1 da 80 dy 1 o · 
r1 (t; a, v2 )= -2 dt (t)+A.1 J ~ (c;) Gzo (a (t), c;, t-t0 ) dc;-

o 
L 

f dho 
-A.2 ~ (c;) GlL(a (t), (, t-t0 ) d(-

so 

1 
da oG20 

-ai J --;t;Cr)~ (a(t),a(r),t-r)dr-
to 

to 

As the set of admissible controls we take 

U!d={uEC1 [t0 , tf]iu(t0 )=Y1 o(O), c1 ::::;;u(t) ::::;; c0 <0, tE[t0 ,tf], 

lv(t) l::::::cz, tE[t0 , tf]} 

du 
where v 6 d(· 

We define above the functions u on the whole time interval [t0 , tf] only for sim
plicity. Actually, for any given a we can restrict ourselves to controls defined on 
corresponding interval [t0 , td, with tk given by (27). 

(28) is Volterra equation of the second kind with continuous kernel and right
-hand side, so its unique solution v 2 exists in [t0 , tk] and is Lipschitz continuous [12]. 
Moreover function v 2 may be a priori estimated by a constant independent of tk 
and a (see Proposition 2). 

(29) is Volterra equation of the first kind with respect to v1 . In view of properties 
of the Green function G20 this equation is non-transformable to any equation of 
the second kind [2, 11]. Kernel k 1 (t, r; a) of this equation is continuous, so the 
corresponding Volterra operator is well defined in the space C [t0 , tk] . 

As it is well known, problem of solving such an equation is non-correct in the 
Hadamard sense [2, 11]. To solve this problem it i~ necessary to apply a regulariz
ation method. Because there are many works concerning both theory and algorithm
ic implementations of various regularization methods, we only refer to some 
of them [2, 8, 11 , 14, 20]. 

By means of regularization algorithms one can solve non-correctly posed prob
lems of type (29), even knowing the kernel and the right-hand side only approxi
matively, what is particularly important in the case when some parameters are 
determined from measurements [11, 14]. There are regularization algorithms, stable 
with respect to perturbations of the data [8, 11] and with respect to approximation 
of the model [ll]. As a result of using such algorithms one obtains sequence of 
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elements convergent in some, generally set - theoretical sense to so called normal 
solution of the exact problem or to a quasi-solution in the case when such a solution 
does not exist [11, 20). 

· 4. Application to Control of Crystallization Process 

In some cases it is possible to describe dynamics of crystal-growth processes by 
model with free boundaries for coupled physical fields of temperature and mass 
concentration [3, 6, 9, 14]. 

For the process of crystal-growth from a two-component substance containing 
one of the components as a vestigial admixture the model will have form of a para
bolic free boundary system. 

We introduce the notations: 
T 1 - temperature, 
C1 - mass concentration of the admixture, 
b1 - diffusion coefficients (b 1 =f. b2 ). 

Lower index i = 1 corresponds everywhere to the solid phase, i = 2 - to the 
liquid. Other notations are as in the previous sections. 

Then the model has the following form: 
Process equations: 

aci az ci 
- -b.--= 0 

at ' .()x 2 

Initial conditions: 
s (t0)=s0 where 0<s0 <L, 

T1(x, t0 )=T10 (x), xEQ10 , 

C1(x,t 0 )=C10 (x), xEQ10 • 

Free boundary conditions: 

T1 (s (t.) -, t)=T2 (s (t)+, t)=TK, t E (t0 , td, 

C1 (s(t)- , t)=lf! 1 (TK), t E (t0 ,tk], 

Cz(s(t)+,t)=lf!z(TK), t E (t0 ,td, 

with some given functions lf/1 , lf/z [9, 14], as well as 

(}T 1 (}T2 ds 
A. 1 ax (s(t)-,t)-2 2 ax (s(t)+,t)=dt(t) , 

ds 
[C2 (s (t)+ , t ) - C1 (s (t)-, t)] dt(t)= 

t E (t0 , td, 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

acl acz 
=bt~ (s(t)-,t)-bz ()x (s(t)+,t), tE(to, td. (38) 



.222 M. NIEZGODKA 
----------,----------------

Boundary conditions : 

(39) 

(40) 

and 

T1 (0, t)=u1 (t), t E (t0 ,tk], (41) 

acz 
----a;: (L, t) = u2 (t), t E (t0 , tk] (42) 

with some tk~tf . 

Assuming that the admixture is contained in the crystallizing substance only 
in vestigial quantities we can simplify the free boundary conditions (36), (38) respect
ively to the form [9, 14]: 

acl acz 
b~ -8- (s (t)-,t)-bz-0- (s(t)+,t)=O, tE (t0, td . (44) 

X X 

F urther we will consider problem of crystal-growth in the above particular case. 

Having as a purpose obtainment of a crystal with some desired physical prop
erties [3, 6, -9, 14] we can formulate the following requirements. 

(R.l ) The free boundary s(t), t~t0 should move after a given pattern O"(t), t~t0 
(cf. Section 3). The terminal time moment tk is then defined as in Section 3. 

(R.2) The final distribution of the admixture C1 (x, tk), x E [0, s (t,'l:)) should be 
equal to a given pattern x (x), x E [0, s (tk)]. 

As controls we take functions u1 , u2 enclosed in boundary conditions (41), (42). 
Such boundary controls have clear physical interpretation . The control u1 enclosed 
in the Dirichlet type condi tion (41) corresponds to assignment of the heating power 
[9, 14], whereas the control u2 enclosed in the Neumann type condition (42) - to 
defin ing flux of the admixture. 

The sets of admissible controls we define as in Section 3 in case of u1 and in the 
following way in case of u2 : 

We make also an additional simplifying ssumption. 

As it follows from physical experiments if the problem we consider evolution 
of the free boundary first of all depends on t . e dynamics of the thermal processes 
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[6] . The diffusion processes have only slender influence on this evolution. That is 
why we can apply the following idea of solving the considered problem (see 
Figure). 

Control of Crystal-6rowth Process 
governed by 

Coupled Parabolic free Boundary Ptablems 
for 

Temperature and Concentration fields 

Control Problem 
fnlegro!l?epresentalion 

Control Problem 
Concentration Field 

Control Problem 
Integral Representation 

Idea of the proposed method of solving control 
problem for the crystal-growth process 

First we solve the control problem for the temperature field (cf. Section 3) with 
model including free boundary s (t), t ~ t0 and with the purpose in satisfy
ing (R.l). 

Next assuming that the function s (t ), t E [t0 , td is known, we solve the control 
problem for concentration field. The purpose consists now in achiev
ing (R.2). 

For the proposed method of solving the first subproblem we refer to Section 3. 
The second subproblem we propose to solve using similar approach. 

Employing the thermal potentials' method we introduce again an equivalent 
integral representation of the model [9, 14, 15]. 

Then we formulate an appropriate inverse problem, consisting in determining 
boundary control u2 and functions Cl> C2 satisfying problem (31), (34), (40), (42), 
(43), (44) for the concentration field with known dynamics of the interface s (t), 
t E (t0 , tk) and including the terminal condition 

(45) 

6 
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This problem may be resolved into the system of integral equations [14]: 

tk 

b2 J Hzo (x, s (r), tk-r) w2 (r) dr= 

to 

where 

so 

=x(x)-J Clo(~)H2o(x,~,t1, -t0)d~+ 
0 

X E (0, /], 

to 
. . L 

J 
dC2o 

+ ~ (~) HlL (s (t ), ~' t- t0) d.<;, 
s 0 

ac2 . 
w2(t) 6 -~- (s (t), t); 

·UX 

I= rJ (t,J (cf. Section 3), 

H 20 (x, ~' t) !c=_ =E(x-~, b~ t)+E.(x+(, b1 t), 

HlL(x, ~, t) 6 E(x-(, b2 t)-E(x+~-2L, b2 t). 

(46) 

(47) 

In the above system ( 46) is a Fredho-Im equation of the first kind with respect 
to w2 and (47) is a Voltetra equation of the first kind with respect to ·u2 (with w2 

known on the basis of (46)). 
Making use of a regularization techniques (cf. Section 3) we are in a position 

to determine function u2 being regularized solution or quasi-solution to the inverse 
problem for . the concentration field. 
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Sterowanie parabolicznymi zagadnieniami ze swobodnl! 
granicl! - zastosowanie sformulowaii odwrotnych 

W pracy S'l, rozwazane dwufazowe paraboliczne zagadnienia brzegowe ze swobodn<t granic<t. 
Dla takich zagadnien zostaj'l sformulowane zadania sterowania, kt6rych celem jest zapewnienie 
poz<tdanego przemieszczania si« swobodnej granicy b<tdi osi<tgni«cie wyznaczonego stanu kOJ1co
wego. W pracy zostala zaproponowana metoda rozwi<tzywania takich zagadnien, wykorzystuj<tca 
pewne sformulowania odwrotne problem6w wyjsciowych. 

YnpaBJieuue napa6oJiuqecKHMii 3a,!J;aqaMH eo cBo60,!J;HOii 
rpauu~eii- npnMeneune o6paTnhlx !l>opMyJIHpOBOK 

B pa6ore paccMarpH:saercll p;syx<}>a3Hbie napa6o.mr'!ecKne 3aAa'Ill eo cso6op;Hoi1: rpaHH!.Ielf. 
,[(Jlll 3THX 3a)J;a'i C<\JOpMyJIHpoBaHbl rrpo6neMbi yrrpaBJJeRHll C IIOKa3aTeJiliMH 3aBHCllffiHMH OT )J;BH
)l(eRH.H CB060)J;HOH rpaRHI(l>I JIH60 OT <}>HHaJThHOfO COCTOliHirll. 3TH npo6neMbi <}>opMYJJHpyeTC.II 
KaK o6paTHbie rrapa6o.mr'!eCK.He 3a,ll;a'ill. 




