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Final observability on [0, T] for constant time-lag systems is defined and studied. Observability 
conditions depending on the length of an obs<:rvation interval are formulated and proved. Two types 
of observability are considered: one with initill.1 function in the space LP, second with continuous 
initial function. 

1. Introduction 

For constant time-lag systems described by linear differential-difference equations 
equations observability problem can be defined in several ways. 

In [I] is considered the system given by equation. 

x (t)=A0 x (t)+A 1 x (t-1), t~O, x (t) ER", 

y (t) = Cx (t), y (t) E RP, 

x(t)=q~(t), tE[-1,0]. 

(1.1) 

The observability problem in classical sense is to determine the initial state 
{q~ (0), A 1 q~ (t), t E [ -1 , 0)} where q~: [ -1, 0] f-'>R" belongs to a preassumed class 
ff' eLl ([ -1, 0], R"), e.g. cp ( · ) E C ([ -1, 0], R") or cp ( ·) ELP ([ -1, 0], R"), I.:;;p,;;; 
~ oo knowing the output y (t ), t E [0, T]. In [1] necessery and sufficient conditions 
are given for observability of (1.1). Similar problem is considered in [9], where for 
system (1.1) general criteria are proved for determination of the initial function 
(not the state) rp (t), t E [ -1, OJ, with cp ( ·) belonging to the set of piecewise conti
nuous functions provided the output y (t), t E [0, T], is given. Spectral observability 
is discussed in [4], . [8]. System (1,1) is spectral observable if and only if corres
ponding outputs do not vanish for all its eigensolutions. 

Measurement and control problems assume quite often the knowledge of the vector 
x (T) ER" at T> 0, or the state of the system at T> 0 given as a function x (T +B), 
e E [ -1, 0], while only output information is available. In general case knowledge 
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bility on [0, T] implies ff-final observability on [0, Td, T1 >T. Hence one can 
determine x (T+-r), -re [0, 1], from the data y (t), t e [0, T+1] and, consequently, 
to get the function. Xr+ 1 ( • ). Summarizing these considerations we have: 

PROPOSITION 2.1. 

(i) If system (2.1) is ff-finally observable on [0, T], T?: 1, then it is ff-finally 
observable on [0, Td for each T1 > T provided ff is such that rp e ff implies x 1 ( • ) e ff, 
t>O. 

(ii) ff-final observability of system (2J) on [0, T] implies that the function 
Xr+d·) and the final state (x(T+1),A1 xrH(·)) can be determined from the 
data y (t), t e [0, T+ 1], for any rp e ff. 

The statement (ii) is especially important when a linear-quadratic problem for 
controlled time delay systems is considered. In such a case the optimal control has 
the feedback form u (t)=ffx1 ( ·) [7]. Therefore Xt (·)has to be computed on-line 
if only output measurements are available in the system. 

PROPOSITION 2.2. 

(i) If system (2.1) is ff-finally observable on [0, T] and y (t)=O for all t e [0, Td, 
T1 > T, then x (t) = 0 for all t e (T, Td. 

(ii) y (t)=O for all t e [0, n] implies y (t)=O for all t?:O 

(iii) ff-final observability on [0, T], T>n, implies ff-final observability on [0, n] . 

Proof: 

(i) Follows directly from Proposition 2.1 (i). 
dx 

(ii) Let 2 denote differential operator: (2 x) (t)= dt (t) and z denote the right 

shift operator: (zx)(t)=x(t-l). State equations for system (2.1) can be written 
as follows: [(Al-A 0 -A1 z) x] (t)=O, t?:O or, denoting Ll (2, z)!!. [21-A 0 -A1 z], 
[LI (2, z) x] (t)=o. 

The polynomial in 2, z matrix adj Ll (2, z) is nonsingular and adj L1 (2, z) · L1(2, z)= 
=det Ll (2, z). Hence the latter implies the equation 

[det Ll (2, z) x] (t)=O, Vt> t1 (2.2) 

where t1 is such that the left-hand side of (2.2) is well defined. We shall show that 
t 1 =n-1. In fact, 

(2.3) 

where ai (z), i=O, ... , n-1, are polynomials in z and deg (ai (z))~n-i. 

Therefore, [a1 (z) x] (t) is defined for t?:n-i-1. Since (A.n x) (t) is well defined 
for t>n-I, as it is easily seen by the method of steps, the conclusion follows that 
(2.2) holds with t1 =n-1. Clearly, the output y (t) satisfies the similar equation: 

[det Ll (A., z)y] (t)=O, t?:n (2.4) 
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where rp ( ·) E !F is an initial state for (2.1). The space of functions f( ·) satisfying 
condition (3.6) will be denoted !F 1 . Conversely, if zk (s) is a solution to (3.1) and (3.2) 
then using formula (3.3) a continuous trajectory x (t), t E [0, k] satisfying equation 
(2.1) can be obt?.ined. 

Using Lemma 3.1 any system (2.1) with delay may be transformed into system 
without delay equivalent of the latter on time interval [0, k]. Now, Definition 2.2 
of !?-final observability can be expressed in terms of system (3.1), (3.2). 

LEMMA 3.2. Let T> 1, .AI 6 Ker C, .AI" 6 .AI x ... x % (k-times), k be an integer 
satisfying k?;T>k-1 and zk (s) btl" a solution of (3.1), (3.2). 

System (2.1) is !F -finally observable on [0, T] iff for all f E !F 1 such that for 
allsE[0,1} zk(s)E.Afk implies zk(T-k+1)EJVk_ 1 x{O}. 

Proof. zds)E.Afk if and only if y(t)=O for tE[O,T}. Condition x(T) =O is 
equivalent of zk (T-k+ 1) E .Afk-l x {0}. 

Lemma 3.2 shows that !?-final observability problem can be regarded as a 
kind of controllability problem of existing a nonzero trajectory of system (3.1) 
satisfying (3.2) for which z1. (s) E .Afk, sE [0, 1], and zk (T- k+ 1)ft: JVk_ 1 x {0}. The 
latter means that corresponding solution x (t) of system (2.1) is not equal to zero 
at t=T. So system (2.1) is not observable on [0, T]. To answer the question of the 
existence of such trajectory properties of some controllability subspaces will be 
considered. 

DEFINITION 3.1 [5}, [6}. Let A E Rvxp, BE Rpx 1 and .eft be a subspace in RP. The 
greatest (as of inclusion order) subspace Y contained in f!il satisfying 

AYcff+ImB (3.7) 

is called maximal invariant controlled subspace and denoted Mic (A, B, f!il) 

LEMMA 3.3 [5], [6]. Condition (3. 7) is satisfied iff a matrix DE R 1 x P exists such that 

(A+BD) f/cf/ (3.8) 

DEFINITION 3.2 [5], [6]. Let A ERpxp, BE Rpxl, f!il be a subspace in RP and A-~A+ 
+BD for arbitrary D satisfying (3.8), DE R 1xv. The subspace {AIMic (A, B, f!il)n 
n Im B} is called maximal controllability subspace and denoted Mcs (A, B, f!il). 

In [5], [6] are given algorithms for computing Mic (A, B, f!il) and Mcs (A, B, f!il) 
and properties of both subspaces are studied. 

LEMMA 3.4 [2]. Each solution of (3.1) satisfying condition zk (s) E .Afk> sE [0, 1] 
has the form 

(3.9) 

where zk (0) E Mic (Ak, Bk, .Afk), zk (s) E Mcs (Ak, Bk, .Afk) and _Ak A Ak+ Bk Dk for 
arbitrary Dk E R"xnk satisfying .J"k(Mic (Ak, Bk, .Afk))cMic (Ak, Bk, .Aik). 
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Now the case when T=k and k is an integer k';3;2 will be considered. In accor
dance with Lemma 3.4 and Lemma 3.2 the question of P-final observability is 
a question whether all trajectories having the form: 

zk(s)=eA:k zk (O)+zk (s) 

for 

(4.1) 

where zk (0) E Mic (A", Bk, Ji"k), zk (s) E Mcs (A", B", JVk), sE [0, 1], fulfil the con
dition: 

(4.2) 

Using the equality zk (l)=eAk zk (O)+zk (1) condition (4.1) can be written as 
follows: 

(4.3) 

Let Mk, Pk be matrices whose linearly independent columns span subspaces 
Mic (A\ B\ .;Vk) and Mcs (A", B\ JVk) respectively. If m=dim Mic (A", B\ JVk) 
and j = dim Mcs (A\ B", JVk) then Mk E Rnkxm, pk E RnkxJ. 

From (3.4) and definition of matrices Mk and Pk condition (4.3) can have the 
form 

[(Ikn-JkeA:k)Mk;-JkPd[;:]=z;eRn x {Oh-t> z 1 eR"', z2 eR1, (4.4) 

where {O}k_ 1 is the zero subspace in Rn(k-l) . 

Similarly condition (4.2) is equivalent of: 

zdl)=[eA:kMk ;Pd[:qeJVk- 1 x{O}, z1 eR'", z2 eRi . (4.5) 

. The system (2.1) will be P-finally observable on [0, k] iff for all vectors[z~J 
for which (4.4) holds, condition (4.5) is simultaneously fulfilled. z 

The set of vectors (z
1

] e R'" X Ri for which ( 4.4) holds is according to Lemma 
3.5 given by z2

· 

{[::] e Rm x Ri: [(Ikn-Jk e:4k) Mk; -Jk Pd [::] E ~"x {O}k-l }= 
= Ker 1k ([Ink -J eA ] Mk: -Jk Pk) (

9 k - k ' ) 

where lk e Rn(k-t J x nk is a matrix whose linearly independent Iows span the subspace 
(R11 x{O}J._ 1).L= {O} x Rnrk -t). For example: 
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5. C-Final Observability on [0, k] 

In this part of the paper the case ff = C ([ -1, 0] ,R11
) will be considered. Let k 

denote a positive integer and k?;:2. (The case k= 1 will be a simple corollary from 
theorem for k?;: 2). 

Each continuous function/(·), for which the trajectory of equation (3.1) is inclu
ded in .AI"k for all sE [0, 1] has the form [6]: 

f(s)=Dk zk (s)+Gk v (s), sE [0, 1] (5.1) 

where Dk E Rnxnk is arbitrary satisfying (Ak+Bk Dk) (Mic (A", B\ .AI"k)) c 
cMic (Ak, Bk, .AI"k) and Gk E R"xn satisfies 

ImBk G =Mic (Ak Bk .AI" )nimBk 
k ' ' k . 

v ( · ) is a function belonging to C ([0, 1 ], R"). 

According to Lemmas 3.2 and 3.4 the system (2.1) will be C-finally observable 
on [O,k] iff 

for each 

zk(l)=eA." zk(O)+zk(l), z"(O) E Mic(A\ B", %"), zk(1) E Mcs(Ak, Bk, .AI"k) (5.2) 

where from (3.2) 

(5.3) 

and from (5. 1) 

(5.4) 

Using the definition of zZ given by (3.4) and defining Jk E Rnkxn as 

condition (5.4) can be formulated as follows: 

Z~=I" Dk z (1)+Jk Gk V (1). (5.5) 

From (5.3) and (5.5) we have 

[Ikn-W Dk+J k) e"Ak] zk (O)=(Jk Dk+Jk) zk (1)+Jk Gk V (1). (5.6) 

Ak 6 lnk- (Jk D"+Jk) eA.k, 

a,, D. Jk Dk+I\ 
(5.7) 
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Example. We will consider system given by equations (4.9). We have: 

A0 =[ -~ ~], At =[ -~ !], C=[O I]. 

Let k= 1. Then % 1 =.!V={n: n=[~1] and n1 ER}. By definitions (3.5) _of 
At, B1 and J1 we get: 

Bl =Al , Jl =0. 

find Mic (A 0 , Ar. .!V)=.!V={n: n= [ ~~] and Using inclusion (3.8) we can 
n1 ER}. 

The matrix D 1 satisfying (3.8) can be chosen as 

what implies A1 =A0 +A 1 D1 =[~ ~] andeA'=[~ ;:-e]· 
To find subspace Mcs (A0 , At>· .;V) we observe that 

Im A1 n Mic (A0 , At, .!V)= Mic (A0 , Ar. .!V) 

and by inclusion (3.8) which shows . tha~ Mic (A0 ,A1 , .;V) is A1 ~invariant we 
get: 

The matrix Gt> which fulfils condition 

Im A1 nMic (Ao, At, .!V)=Im At 'G1 

can be chosen as: 

G1=[~ ~] 
Ker Gf =Ker Gt ={g: g=[~2] and g2 ER}. 

Because subspace Mic (A 0 , A1 , .!V), Mcs (A 0 , A 1 , .!V) and Ker Gf are determined 
we can choose matrices M t> P 1 , I: 1 as: 

1 

So: 

- r [e I] [eA M 1 :Pr]= O O . 
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Obserwowalnosc koiicowa ukladow z opoznieniem 

Zdefiniowano i zanalizowano poj~cie obserwowalnosci ,koncowej, na przedziale [0, 11 dla 
uklad6w ze stalym op6znieniem. Sformulowano i udowodniono warunki obserwowalnosci zale:i:ne 
od dlugosci przedzialu obserwacji. Rozpatrzono dwa rodzaje obserwowalnosci: w pierwszym 
zaklada si~, :i:e funkcja poczqtkowa jest klasy LP, w drugim przyjmuje si~, ze funkcja ta jest ciqgla. 

0KOH'IaTeJILH3H H30JIIO~aeMOCTb CHCTeM C 3aDa3~mauueM 

B pa6oTe onpe.L(emieTcll H aHamr3RpyeTcl! noWlTI!e OKOH'Ia'l'eJibHo:il: Ha6mo.L(aeMOC1'R B HHTep
BaJie [0, T].L(Jill CHCTeM C UOCTOllHHbfM 3ana3.L(biBaHHeM. <I?OpMJmrpyiOTCll:H .L(OKa3I>IBaiOTCll YCJIO
Bllll Ha6JIIO.L(aeMOCTH, .3aBHCl!lll,l{e 01' BeJIH'IHllbi :HHTepBaJia Ha6JIIO.L(eHHH. PaCCMOTpeHbi .L(Ba BH.L(a 
Ha6JIIO.L(aeMocm: B nepBOM npe.L(ormaraeTcl!, '11'0 Ha'laJ!bHall il>YHKD:llll onpe.L(eJieHa B rrpoCTpaHCTBe 
LP, BO BTOpOM- :)Ta il>YHKD;llll HenpepbiBHa. 

' 




