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Final observability on [0, T] for constant time-lag systems is defined and studied. Observability
conditions depending on the length of an observation interval are formulated and proved. Two types
of observability are considered: one with initial function in the space L?, second with continuous
initial function,

1. Introduction

For constant time-lag systems described by linear differential-difference equations
equations observability problem can be defined in several ways.
In [1] is considered the system given by equation.

X(t)=Ao x ()+A4, x (t—1), 20, x (1) e R", :
y(£)=Cx(t), y (t) e R”, (1.1)
X(f)=¢(f), IE[—I,O]_

The observability problem in classical sense is to determine the initial state
{0(0), A, p(¢), te[—1,0)} where ¢: [—1, 0] —R" belongs to a preassumed class
FcL' ([-1,0, R, eg. ¢(-)eC([—1,0, R or ¢ (-)eL”([—1,0], R"), I<p<
<oo knowing the output p (¢), t€ [0, T]. In [1] necessery and sufficient conditions
are given for observability of (1.1). Similar problem is considered in [9], where for
system (l1.1) general criteria are proved for determination of the initial function
(not the state) ¢ (7), t€ [—1, 0], with ¢ (- ) belonging to the set of piecewise conti-
nuous functions provided the output y (¢), ¢ € [0, T, is given. Spectral observability
is discussed in [4], [8]. System (1,1) is spectral observable if and only if corres-
ponding outputs do not vanish for all its eigensolutions.

Measurement and control problems assume quite often the knowledge of the vector
x(T)e R"at T>0, or the state of the system at 7>0 given as a function x (7T+),
@ e [—1, 0], while only output information is available. In general case knowledge
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of the state at 7> 0 is not an equivalent of information about the initial state, because
behaviour of the state trajectory of (1.1) is described by a semigroup (not group)
property. Hence it seems to be suitable to introduce the definition of observability
as the determination from output y (), z € [0, T, of vector x (T) or state x (T+0),
7>0, ©[-1,0]. ’

Notation: In this paper the following notation will be used: 4 € R"*? means
that 4 is a real m by p matrix. The kernel and image of a matrix 4 will be denoted
respectively by Ker 4 and Im 4. A" is the transpose of A.

The orthogonal complement of a subspace #<=R" will be denoted by .

For given matrices 4 € R"*", Be R*™, {4|B}=Im [BAB....A"~! B] denotes
controllability subspace. If #=1Im B the controllability subspace will be also written

{A|%}. Character & means equal by definition. Adjoint matrix of A will be denoted
adj A. Identity p by p matrix is denoted by I,.

2. Problem Statement and Preliminary Results

Consider the linear, time-invariant system given by the equations
X()=Aox()+A4; x(t—1), t=0,
y (£)=Cx (2),

where A,, 4, € R**", Ce R?*", with initial condition: x ($)=¢ (z), te[—1, 0],
where ¢ (- )€ #. Two cases will be especially considered: & denotes the ‘space
C([—1,0], R or L*([—1, 0], R"), 1<p<co. A function x,: [—1, 0] >R", x,(0)L
£ x(t4+6), @ e[—1, 0], can be taken as a state for (2.1) at time 7. In the case when
det|d,; =0 a state of (2.1) defined above possesses overbundance of information.
Therefore we define the true state which contains necessary and sufficient informa-
tion to solve system equation (2.1) as follows [1]:

2.1)

DEFINITION 2.1. A pair (x(2), 41 x) £ (x(1), 4, x(t+6),0 € [—1,0)) is said to
be a state of system (2.1) at instant 2.
The fundamental definition in this paper is the following.

DreINITION 2.2. System (2.1) is #-finally observable on [0, 7] iff for all (- )e F
such that y (#)=0, ¢ € [0, T], the final trajectory value x (T)=0. Definition 2.2 makes
sense for 7>1 and means that if the system (2.1) is & -finally observable on [0, 7']
then a unique map {y (¢), t € [0, T} +>x (T) exists, where y () is generated by the
initial function ¢ (- ) € & . Hence it is possible to determine x (7") knowing the output
¥(?) on [0, T']. The importance of the Definition 2.2 lies in the fact that for 4 -finally
observable systems on [0, 7] one is able to determine the final state (x (7+1), A; X7 ().
Indead, for any function space # such that x, (- )€ %, t>0, provided p.€ F we
may shift the time variable and start with x, (- ) for some 7>0, as an initial function.
Utilizing the stationarity of system (2.1) we get the conclusion that % -final observa-
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bility on [0, T] implies #-final observability on [0, 7], 7,>7. Hence one can
determine x (7+71), 7 € [0, 1], from the data y (¢), 7€ [0, T+1] and, consequently,
to get the function x;., (). Summarizing these considerations we have:

PROPOSITION 2.1.

(i) If system (2.1) is F-finally observable on [0, 7], T>1, then it is #-finally
observable on [0, 7', ] for each T, > T provided & is such that pe # implies x, (- ) € &,
t>0.

(i) #-final observability of system (2.1) on [0, 7] implies that the function
Xr31 (+) and the final state (x (T4 1), 4y X744 ( )) can be determined from the
data y (t), t€[0, T+1], for any pe F.

The statement (ii) is especially important when a linear-quadratic problem for
controlled time delay systems is considered. In such a case the optimal control has
the feedback form u (#)=2"x, (- ) [7]. Therefore x, (- ) has to be computed on-line
if only output measurements are available in the system.

ProOPOSITION 2.2.

(i) If system (2.1) is #-finally observable on [0, 7] and y (¢)=0 for all ¢ € [0, T} ],
T,>T, then x(¢)=0 for all te [T, T}].
(i) y (£)=0 for all 7€ [0, n] implies y (#)=0 for all =0
(iii) Z-final observability on [0, T'], T>n, implies #-final observability on [0, n].
Proof:
- (i) Follows directly from Proposition 2.1 (i).

dx
(ii) Let A denote differential operator: (A x) (1)= > (¢) and z denote the right

shift operator: (zx) (f)=x (r—1). State equations for system (2.1) can be written
as follows: [(AT—A4o— A4, z) x] ()=0, =0 or, denoting 4 (A, 2) & [AI—Ay— A4, z],
[4 (4, 2) x] (£)=0.

The polynomial in 4, z matrix adj 4 (4, z) is nonsingular and adj 4 (4, z) -4(4, z)=
=det 4 (4, z). Hence the latter implies the equation

[det 4 (4, z) x] (£)=0, Vt>1, 2.2)

where ¢, is such that the left-hand side of (2.2) is well defined. We shall show that
ty=n—1. In fact,

det 4 (4, 2)=A"+a,_, (2) A" ' +...+a, (z) A+a, (2) (2.3)

where a; (z), i=0,...,n—1, are polynomials in z and deg (g; (z))<n—Ii.
Therefore, [a; (z) x] (¢) is defined for 1>n—i—1. Since (A" x) (¢) is well defined

for t>n—1, as it is easily seen by the method of steps, the conclusion follows that

(2.2) holds with #,=n—1. Clearly, the output y (¢) satisfies the similar equation:

[det 4 (4, 2) ] (£)=0, t=n (2.4)
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which follows by the fact that the operator Cdet 4 (4,z) equals det 4 4, 2) C.
The fact that (2.4) does not hold for ¢ € [n— 1, n) in general is clear since [ao 2) ¥] (®)
may be undefined on this interval (p () is not defined for e [—1, 0)). By (2.3)
we note that (2.4) is actually a differential-difference equation with maximal delay
not greater than n. Therefore fixing y (¢), ¢ € [0, n], uniquely determines the values
y(z)(for t>n. In particular,

¥ (=0 on [0, #] implies y (£)=0 on [0, c0). (2.5)

(iif) Suppose system (2.1) is #-finally observable on [0, T], T>n. Let y(£)=0
for ¢ €[0, n]. Then by (2.5) y (£)=0 for £>0 and by (i) we have x (£)=0 for all >7.
Hence, by the theorem of Henry [10] on small solutions for functional-differential
systems we get x (n)=0 and thus the proof is complete.

3. Reformulation of the #-Final Observability Problem

System (2.1) will be rewritten as an equivalent system with greater dimension
but without delay.

Lemma 3.1 [3], [2]. Let k£ be an integer, k>1. To each trajectory x (¢), t € [0, k]
of the system (2.1) there. corresponds uniquely a trajectory z, (s) € R™, se [0, 1]
of system without delay defined below:

Z ()=A"z (5)+B* f(s), se [0, 1] G.D

and satisfying additional constraints

7 (0)=zg+J* z, (1) (3.2)
where :
X1 (8)
R* 3z, ()& : and x; ()L x(i—1+s), i=1,..,k, se€0, 1], 3.3)
X (5)
x(0)
nk 0 A 0
R¥sz; &) . |. 34
0

The matrices A% e R™*nk Bk g Rukxn_ Jke pukxik have the following form:

I " 0. o]
geal i N peal 0 Jeal e N (3.5)
LN 0. LR

and
f®L£9(s~1), se[0, 1] (3.6)
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where ¢ (- ) € & is an initial state for (2.1). The space of functions f( ) satisfying
condition (3.6) will be denoted & ,. Conversely, if z, (s) is a solution to (3.1) and (3.2)
then using formula (3.3) a continuous trajectory x (¢), ¢ € [0, k] satisfving equation
(2.1) can be obtzined.

Using Lemma 3.1 any system (2.1) with delay may be transformed into system
without delay equivalent of the latter on time interval [0, k]. Now, Definition 2.2
of Z-final observability can be expressed in terms of system (3.1), (3.2).

LemMA 3.2. Let T>1, &2 Ker C, /(LN x...xX N (k-times), k be an integer
satisfying k=T>k—1 and z, (s) be a solution of (3.1), (3.2).

System (2.1) is #-finally observable on [0, 7] iff for all fe #, such that for
all se[0,1] z,(s)e N, implies z, (T—k+1)e A _, x{0}.

Proof. z (s)e A if and only if y(£)=0 for te[0,T]. Condition x(7)=0 is
equivalent of z, (T—k+1)e A", x {0}.

Lemma 3.2 shows that #-final observability problem can be regarded as a
kind of controllability problem of existing a nonzero trajectory of system (3.1)
satisfying (3.2) for which z.(s)e A", s€ [0, 1], and z, (T—k+1) ¢ A", _; x{0}. The
latter means that corresponding solution x (¢) of system (2.1) is not equal to zero
at 1=T. So system (2.1) is not observable on [0, T']. To answer the question of the
existence of such trajectory properties of some controllability subspaces will be
considered.

DeriniTiON 3.1 [5], [6]. Let 4 € R?*?, Be R**' and # be a subspace in R”. The
greatest (as of inclusion order) subspace & contained in # satisfying

AS<S+Im B (3.7

is called maximal invariant controlled subspace and denoted Mic (4, B, %)

LemMA 3.3 [5], [6]. Condition (3.7) is satisfied iff & matrix D € R'*P exists such that
(A+BD) ¥ =& (3.8)

DermNiTION 3.2 [5], [6]. Let A€ R?*?, Be R?*!, 7 be a subspace in R” and 4 £ A+
+BD for arbitrary D satisfying (3.8), D € R**?. The subspace {A|Mic (4, B, #)N
N Im B} is called maximal controllability subspace and denoted Mcs (4, B, #).

In [5], [6] are given algorithms for computing Mic (A4, B, #) and Mcs (4, B, #)
and properties of both subspaces are studied.

LEMMA 3.4 [2]. Each solution of (3.1) satisfying condition z (s)e A"y, s€[0, 1]
has the form
ze(9)=ed* 2. (0)+Z(s), s€[0,1] (3.9)

where z, (0) € Mic (4%, B¥, A", Z (s) € Mcs (4%, B*, #7,) and A* % A4*+B* D, for
arbitrary D, € R"*"* satisfying 4*(Mic (4*, B*, A"\)) =Mic (4*, B¥, 4").
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Furthermore, the set of all points z (5) attainable from z (0) € Mic (4%, B¥, /)
equals :

™ 7z, (0)+Mocs (4%, BX, ).

COROLLARY 3.1. If Mic (4*, B, #)={0} then system (2.1) is & finally observable
on [0, T], T>k, for any suitable & Lt
Proof. If Mic (4, B*, #)={0} then Mcs (4%, B*, #)={0} and only z (5)=0,
s €0, 1], is the solution of the form (3.9). Hence y (1)=0, £ € [0, k], implies x (k)=0,
i.e., system (2.1) is #-finally observable on [0, k]. By Proposition 2.1 (i) system
(2.1) is F-finally observable on [0, T], T>k.

The following Lemma will be useful in the sequal.

LEMMA 3.5. Let 4 € R"™?, 2 be subspace of R and P+ is any matrix with inde-
pendent rows spanning #+ (if dim 2+ =k, then P+ € R**"). Define set A~ ' PL
L f{xeR:3ye? and y=Ax}. Then the following equality holds:

A-1 P=Ker P+ A.

Proof. Let xe A—! #. Then y=Ax for some y € Z. By definition of P+, PL y=0
which implies Pt Ax=0, ie., x € Ker PL A Conversely, let x € Ker P+ A. Then
PL Ax=0 implies 4x e # which means that y €@ exists such that y=4x, ie.,
xed 12

4. L»-Final Observability on [0, k]

Now, it will be assumed that #=L? ([—1,0], R"), 1<p<co. When T=1 then
condition (3.2) is always fulfilled because J 1z, (D=0, z; (0)=x, (0)=x (0) and o
=f(1)=x (0). The system will be L*-finally observable on [0, 1] if each trajectory
of (3.1) contained in A":zy (s) €N Vs€ [0, 1] has the property:

0=z, ()=¢* z, (O)+2, (1)
Vz, (0) € Mic (4o, 43, #7) and  VZ; (1) &€ Mcs (4o, 41, )
This implies, in virtue of nonsingularity of e4', that Mic (4o, 41, #)=1{0}. Conver-

saly, if Mic (4o, 44, #/")={0} then the property above holds since, by Definition
3.2, Mos (4o, A1, /) =Mic (4o, 41, &)

Thus we get the following simple result.

THEOREM 4.1: System (2.1) is L*-finally observable on [0, 17 iff
Mic (A(), Al’ W‘)={0}n




Final observability of time-lag systems

251

Now the case when T'=Fk and k is an integer k=2 will be considered. In accor-
dance with Lemma 3.4 and Lemma 3.2 the question of L?-final observability is
a question whether all trajectories having the form:

- (3)=9:‘k z (0 +Z (3)
for
z (0)=z+J* z, (1) (4.1)
where z, (0) € Mic (4%, BY, A7), Z.(s) € Mcs (4%, B*, A4,), s €0, 1], fulfil the con-
dition:
Ze (1) € Ny % {0} (4.2)
Using the equality z, (1)=e4" z, (0)4Z (1) condition (4.1) can be written as

follows:

i—J* &2 —J¥] [Z E?;] =z, (4.3)

Let M,, P, be matrices whose linearly independent columns span subspaces
Mic (4%, Bf, .4",) and Mcs (4", B, A7) respectively. If m=dim Mic (4%, B*, 4")
and j=dim Mcs (4%, B*, /") then M, € R"*m P e R"*J,

From (3.4) and definition of matrices M, and P, condition (4.3) can have the
form

(L, —J* e4¥) M, —J* P,] [;1]=Z:ER"X{0},‘_1, zZieR™ z?e RJ, 4.4
5 2

where {0},_, is the zero subspace in R"*-1),
Similarly condition (4.2) is equivalent of:

z (1) =[ed* M, P,] [;] €N 1x{0}, z'eR", 22e R’, 4.5)

“The system (2.1) will be L2-finally observable on [0, k] iff for all vectors [;]
for which (4.4) holds, condition (4.5) is simultaneously fulfilled.
1
The set of vectors [ 3 ] € R"x R for which (4.4) holds is according to Lemma
3.5 given by 52,
21 i k ak : k zl ]
2 € R"X R: [(la—JT* e4") My | —J* P,] 2| € R'x {0}y 1=
=Ker (f ([[x—J* e4] My: —J* P,))

where [, € Rk~ U *nk ig 3 matrix whose linearly independent rows span the subspace
(R"x {0}~ 1)+ ={0} x R™*=D, For example:

0y, Ty 0. 0
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The LP-final observability is equivalent of the following inclusion
[ed* M, : Pyl (Ker (f (Un—J"* e4] M, |—J* P))) =N -1 % {0}. (4.6)
Using again Lemma 3.5 the latter inclusion is fulfilled iff
Ker (£ [(Tu—J* e4) My | —J* P,J) cKer (N, (e#* MyiiPy) “.7
where Ni € R¥*™ is a matrix whose linearly independent rows span the subspace
(N ey X {0 =(Im CT)_ 1 X R" and B dim (N -y x {OP*. If rank C=p (what

is usually assumed) i=p (k—1)+n and the following matrix can be chosen as the

g g
o=l @
AN

(4.8)

Denote:: &, = I, ((Iy.—J* €4) My —J* P,).
Inclusion (4.6) can be rewritten as the following rank condition:
rank [®7]=rank [&] | (N e4* M| N- Pl

Hence the following theorem was proved:

TurorEM 4.2. System (2.1) is LP-finally observable on [0, k] k— an integer k=2 iff
rank [@7]=rank [@ | (N} e4* M, Ni PY"].

Example. As the simple example of the consideration given above the following
system equation (2.1) will be examined.

, 01 i
x(t)={—1 2]x(t)+[ 0 l]x(t'l)’ £>0. 9)
y@®)=[0 11x().

If k=1 then Ker C=m={n:n=[g1
Mic (4o, 4, A)#{0} then applying Theorem 4.1 system (4.9) is not LP-finally
observable on [0, 1].

Now, let k=2. By (3.5) the matrices A?, B? are given by:

] and n; e RY. It is easily to check that

01 00] =il

-12 00 01
2 __ 2y
dish o 01’B_ 00

01 —1 2] 00

1

N a=HN XN ={n:n= g and n,, n; € R}. By inclusion (3.7) we can find that

A3
0

Mic (42, B?, A",)={0}.
By Corollary 3.1 the system (4.9) is LP-finally observable on [0, 2].
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5. C-Final Observability on [0, k]

In this part of the paper the case #=C ([—1, 0] ,R") will be considered. Let k
denote a positive integer and k=2. (The case k=1 will be a simple corollary from
theorem for &= 2).

Each continuous function f( - ), for which the trajectory of equation (3.1) is inclu-
ded in 47 for all se[0, 1] has the form [6]:

f (=D, z, (5)+ Gy v (s), se[0, 1] (5.1)

where D€ R"™*"™ is arbitrary satisfying (4°+B* D,) (Mic (4%, BX, /)<
=Mic (4%, B%, A7) and G, € R*™" satisfies

Im B* G, =Mic (4%, B, A",) " Im B*.

@ (+) is a function belonging to C ([0, 1], R").

According to Lemmas 3.2 and 3.4 the system (2.1) will be C-finally observable
on [0, k] iff

Z(1) e Ny x {0}
for each
z (D)=t 2, (0)+2(1), z,(0) € Mic (4, B¥, ), Z.(1) € Mcs(4X, B, ) (5.2)
where from (3.2)
2o (0)=2z0+JT* z, (1) (5.3)
and from (5.1)
FD=Dy 2 (D+Gy - v (1), (54)
Using the definition of z{ given by (3.4) and defining 7* € R™*" as
I
0

J

0
condition (5.4) can be formulated as follows:
zp=I1*Dy z ()+1* G, v (1). ' (5.5)
From (5.3) and (5.5) we have
[n— (I* D, +J") e4*] 2. (0)=(I* D +J®) 2, \)+1* G, v (1). (5.6)
Let A4, € R¥x*™ Qe R™*" be defined by:
w2 Iy — (I* D+ J*) ed*,

QA I*D,+J%, B3
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and as before M, P, are matrices whose linearly independent columns span subspaces.
Mic (4%, B¥, /") and Mcs (4%, B¥, &) respectively. If mZ dim Mic (4, B¥, 4})
and j£ dim Mic (4%, B*, &) then M, € R™*™ P, e R**J, Using this definitions.
(5.6) is equivalent of:

1
[, My} —Q, P]- [i;]:zk Gv (1) where [‘;] € R"X R’ (5.8)
System (2.1) is C—ﬁnaily observable iff condition (5.8) implies
" 1
[e4* M, : P,]- [iz] €N-1x{0}. (5.9)

By Lemma 3.5 this implication can be transformed into the form
Ker [Z, (4, My: — Q2. P)l<Ker [N; (e4* M, P,)] (5.10)

where N is defined by (4.8) and X is a matrix whose linearly independent rows.
span subspace:

(Im I* G)* =Ker (I* G)T=Ker G (I*)".

o

" Inclusion (5.10) may be transformed into some equivalent rank condition:
rank [Z 4 My: —Z, 2, P)"=
=rank [(Zx Ay My i—Z @ PYT (N €@ My Ny P)T]

Hence the following theorem was proved:

THEOREM 5.1. System (2.1) is C-finally observable on [0, k], k an integer k>2 iff:

rank [X 4, Mk —Z Q P) = i :
=rank [(Z; 4z My —Z; Q, P)T | (N ea* M, Nt P)™].  (5.11)

COROLLARY 5.1. System (2.1) is C-finally observable on [0, 1] iff
rank [£; M, —%; D, e M, —%, D, P,]"=
=rank [(Zy M, -2, D, ed' M, -2 D, P,)" (‘3’_41 M, ' P)7] (5.12)

where X, is a matrix whose linearly independent rows span Ker G, and M, P, are
matrices whose linearly independent columns span Mic (4, 44, #) and
Mcs (4o, 41, A7) respectively. :

Proof. if k=1 then A,=1I,—D, e4’, Q,=D,, condition (5.9) has the following
form: : '

.y zt
e o, 2| |0

what implies Ni =1,
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Example. We will consider system given by equations (4.9). We have:

01 [-1 1] B
A0=[_I 2], Al—[ 01p c=[01].

Let k=1. Then .,4r’l=¢4/'={n:n=|j;‘] and n; ER]. By definitions (3.5) of
A*, B* and J' we get:
Art=4d,, Bl=d,, J=0

Using inclusion (3.8) we can find Mic (4o, 44, ‘,V)=‘/V={n: i [;1] and
ny € R}. )
The matrix D, satisfying (3.8) can be chosen as

2=y )
what implies 4'=A,+4, DI=[1 1] ande3‘=[e ez—e].
02 0 ¢?
To find subspace Mcs (4o, 4, 4") we observe that
Im A; NnMic (4, Ay, /)=Mic (4o, Ay, &)

and by inclusion (3.8) which shows that Mic (4, 4y, A7) is A' — invariant we
get:

Mcs (Ao, Ay, A)=Mic (4o, A1, N).
The matrix G,, which fulfils condition
Im 4, NMic (Aq, A, #)=Im 4, G,

10
=

Ker G =Ker G, =!g: g=[§1] and g, € R} 3

can be chosen as:

Because subspace Mic (4, A, A), Mcs (4, 4 1, N ) and Ker GT are determined
we can choose matrices M,, P,, X, as:

Po= =] zi=p 1
So:

[Z,M,—-2, D, ea' M, ':_Zx D, Pi]=[-e 1],
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The rank condition (5.12) is fulfilled because:

—e —e e 0]
rank [_1]=1ank [_1 | 0].

Therefore system given by equation (4.9) is C-finally observable on [0, 1].

6. Concluding Remarks

The observability criteria given in this paper can be generalized for system (2.1)
with delay 4+ | using substitution r=1/ and £ (t)=x (th) or for many comensurable
delays as well. Theorems 4.2 and 5.1 are applyed for testing F-final observability
on [0, k] where k is an positiv integer. By Lemmas given above one can prove con-
ditions of F-final observability on [0, T], 7>1. According to Proposition 2.1 (i)
the necessary condition is #-final observability on [0, k] where k fulfils inequality
k—1<T<k, moreover the rank condition of some matrices must be fulfilled. For
systems (2.1) with greater dimension » and when the observation interval is long
it seems to be necessery to use computers to test observability. In this case some
numerical problems with determination of subspaces and computation of exponents
of matrices can apear.

The important problem which has not been solved yet is construction of observer
determining x (7) using output information y (¢), € [0, T].
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Obserwowalnos$¢ koiicowa ukladéw z opoéznieniem

Zdefiniowano i zanalizowano pojgcie obserwowalnosci ,koncowej,, na przedziale [0, T] dla
ukladow ze stalym opoznieniem. Sformutowano i udowodniono warunki obserwowalnosci zalezne
od dlugodci przedziatlu obserwacji. Rozpatrzono dwa rodzaje obserwowalnosci: w pierwszym
zaklada sig, ze funkcja poczatkowa jest klasy L?, w drugim przyjmuje sie, ze funkcja ta jest ciagla.

Oxonvatesnas HA0JI0N2eMOCTE CHCTEM C 3aNa3JbIBaHHEeM

B pabore onpenensercs H aHAIW3MPYETCA NOHATHS OKOHYATENBbHON HabmogaeMoCTH B HHTED-
Bajie [O, T] mas cHcTeM C MOCTOSHHBIM 3aNa3abBaHieM. POPMYIHPYIOTCA M HOKA3BIBAIOTCS YCIA0-
Bus HAGNIOMAEMOCTH, 3aBHCALME OT BEIMYHHBI HHTepRana Habnromenuit. PaccMOTpPEHB! 1BA BHIA
HaOJII0aeMOCTH: B IIEPBOM IIPEOIUIATASTCH, YT0 HavabHast yHKIHS OXpeieieHa B IPOCTPAHCTRE
L*, Bo BTOpOM — 374 (DYHKUMA HENPEPHIBHA.







