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Final observability on [0, T] for constant time-lag systems is defined and studied. Observability 
conditions depending on the length of an obs<:rvation interval are formulated and proved. Two types 
of observability are considered: one with initill.1 function in the space LP, second with continuous 
initial function. 

1. Introduction 

For constant time-lag systems described by linear differential-difference equations 
equations observability problem can be defined in several ways. 

In [I] is considered the system given by equation. 

x (t)=A0 x (t)+A 1 x (t-1), t~O, x (t) ER", 

y (t) = Cx (t), y (t) E RP, 

x(t)=q~(t), tE[-1,0]. 

(1.1) 

The observability problem in classical sense is to determine the initial state 
{q~ (0), A 1 q~ (t), t E [ -1 , 0)} where q~: [ -1, 0] f-'>R" belongs to a preassumed class 
ff' eLl ([ -1, 0], R"), e.g. cp ( · ) E C ([ -1, 0], R") or cp ( ·) ELP ([ -1, 0], R"), I.:;;p,;;; 
~ oo knowing the output y (t ), t E [0, T]. In [1] necessery and sufficient conditions 
are given for observability of (1.1). Similar problem is considered in [9], where for 
system (1.1) general criteria are proved for determination of the initial function 
(not the state) rp (t), t E [ -1, OJ, with cp ( ·) belonging to the set of piecewise conti­
nuous functions provided the output y (t), t E [0, T], is given. Spectral observability 
is discussed in [4], . [8]. System (1,1) is spectral observable if and only if corres­
ponding outputs do not vanish for all its eigensolutions. 

Measurement and control problems assume quite often the knowledge of the vector 
x (T) ER" at T> 0, or the state of the system at T> 0 given as a function x (T +B), 
e E [ -1, 0], while only output information is available. In general case knowledge 
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bility on [0, T] implies ff-final observability on [0, Td, T1 >T. Hence one can 
determine x (T+-r), -re [0, 1], from the data y (t), t e [0, T+1] and, consequently, 
to get the function. Xr+ 1 ( • ). Summarizing these considerations we have: 

PROPOSITION 2.1. 

(i) If system (2.1) is ff-finally observable on [0, T], T?: 1, then it is ff-finally 
observable on [0, Td for each T1 > T provided ff is such that rp e ff implies x 1 ( • ) e ff, 
t>O. 

(ii) ff-final observability of system (2J) on [0, T] implies that the function 
Xr+d·) and the final state (x(T+1),A1 xrH(·)) can be determined from the 
data y (t), t e [0, T+ 1], for any rp e ff. 

The statement (ii) is especially important when a linear-quadratic problem for 
controlled time delay systems is considered. In such a case the optimal control has 
the feedback form u (t)=ffx1 ( ·) [7]. Therefore Xt (·)has to be computed on-line 
if only output measurements are available in the system. 

PROPOSITION 2.2. 

(i) If system (2.1) is ff-finally observable on [0, T] and y (t)=O for all t e [0, Td, 
T1 > T, then x (t) = 0 for all t e (T, Td. 

(ii) y (t)=O for all t e [0, n] implies y (t)=O for all t?:O 

(iii) ff-final observability on [0, T], T>n, implies ff-final observability on [0, n] . 

Proof: 

(i) Follows directly from Proposition 2.1 (i). 
dx 

(ii) Let 2 denote differential operator: (2 x) (t)= dt (t) and z denote the right 

shift operator: (zx)(t)=x(t-l). State equations for system (2.1) can be written 
as follows: [(Al-A 0 -A1 z) x] (t)=O, t?:O or, denoting Ll (2, z)!!. [21-A 0 -A1 z], 
[LI (2, z) x] (t)=o. 

The polynomial in 2, z matrix adj Ll (2, z) is nonsingular and adj L1 (2, z) · L1(2, z)= 
=det Ll (2, z). Hence the latter implies the equation 

[det Ll (2, z) x] (t)=O, Vt> t1 (2.2) 

where t1 is such that the left-hand side of (2.2) is well defined. We shall show that 
t 1 =n-1. In fact, 

(2.3) 

where ai (z), i=O, ... , n-1, are polynomials in z and deg (ai (z))~n-i. 

Therefore, [a1 (z) x] (t) is defined for t?:n-i-1. Since (A.n x) (t) is well defined 
for t>n-I, as it is easily seen by the method of steps, the conclusion follows that 
(2.2) holds with t1 =n-1. Clearly, the output y (t) satisfies the similar equation: 

[det Ll (A., z)y] (t)=O, t?:n (2.4) 
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where rp ( ·) E !F is an initial state for (2.1). The space of functions f( ·) satisfying 
condition (3.6) will be denoted !F 1 . Conversely, if zk (s) is a solution to (3.1) and (3.2) 
then using formula (3.3) a continuous trajectory x (t), t E [0, k] satisfying equation 
(2.1) can be obt?.ined. 

Using Lemma 3.1 any system (2.1) with delay may be transformed into system 
without delay equivalent of the latter on time interval [0, k]. Now, Definition 2.2 
of !?-final observability can be expressed in terms of system (3.1), (3.2). 

LEMMA 3.2. Let T> 1, .AI 6 Ker C, .AI" 6 .AI x ... x % (k-times), k be an integer 
satisfying k?;T>k-1 and zk (s) btl" a solution of (3.1), (3.2). 

System (2.1) is !F -finally observable on [0, T] iff for all f E !F 1 such that for 
allsE[0,1} zk(s)E.Afk implies zk(T-k+1)EJVk_ 1 x{O}. 

Proof. zds)E.Afk if and only if y(t)=O for tE[O,T}. Condition x(T) =O is 
equivalent of zk (T-k+ 1) E .Afk-l x {0}. 

Lemma 3.2 shows that !?-final observability problem can be regarded as a 
kind of controllability problem of existing a nonzero trajectory of system (3.1) 
satisfying (3.2) for which z1. (s) E .Afk, sE [0, 1], and zk (T- k+ 1)ft: JVk_ 1 x {0}. The 
latter means that corresponding solution x (t) of system (2.1) is not equal to zero 
at t=T. So system (2.1) is not observable on [0, T]. To answer the question of the 
existence of such trajectory properties of some controllability subspaces will be 
considered. 

DEFINITION 3.1 [5}, [6}. Let A E Rvxp, BE Rpx 1 and .eft be a subspace in RP. The 
greatest (as of inclusion order) subspace Y contained in f!il satisfying 

AYcff+ImB (3.7) 

is called maximal invariant controlled subspace and denoted Mic (A, B, f!il) 

LEMMA 3.3 [5], [6]. Condition (3. 7) is satisfied iff a matrix DE R 1 x P exists such that 

(A+BD) f/cf/ (3.8) 

DEFINITION 3.2 [5], [6]. Let A ERpxp, BE Rpxl, f!il be a subspace in RP and A-~A+ 
+BD for arbitrary D satisfying (3.8), DE R 1xv. The subspace {AIMic (A, B, f!il)n 
n Im B} is called maximal controllability subspace and denoted Mcs (A, B, f!il). 

In [5], [6] are given algorithms for computing Mic (A, B, f!il) and Mcs (A, B, f!il) 
and properties of both subspaces are studied. 

LEMMA 3.4 [2]. Each solution of (3.1) satisfying condition zk (s) E .Afk> sE [0, 1] 
has the form 

(3.9) 

where zk (0) E Mic (Ak, Bk, .Afk), zk (s) E Mcs (Ak, Bk, .Afk) and _Ak A Ak+ Bk Dk for 
arbitrary Dk E R"xnk satisfying .J"k(Mic (Ak, Bk, .Afk))cMic (Ak, Bk, .Aik). 
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Now the case when T=k and k is an integer k';3;2 will be considered. In accor­
dance with Lemma 3.4 and Lemma 3.2 the question of P-final observability is 
a question whether all trajectories having the form: 

zk(s)=eA:k zk (O)+zk (s) 

for 

(4.1) 

where zk (0) E Mic (A", Bk, Ji"k), zk (s) E Mcs (A", B", JVk), sE [0, 1], fulfil the con­
dition: 

(4.2) 

Using the equality zk (l)=eAk zk (O)+zk (1) condition (4.1) can be written as 
follows: 

(4.3) 

Let Mk, Pk be matrices whose linearly independent columns span subspaces 
Mic (A\ B\ .;Vk) and Mcs (A", B\ JVk) respectively. If m=dim Mic (A", B\ JVk) 
and j = dim Mcs (A\ B", JVk) then Mk E Rnkxm, pk E RnkxJ. 

From (3.4) and definition of matrices Mk and Pk condition (4.3) can have the 
form 

[(Ikn-JkeA:k)Mk;-JkPd[;:]=z;eRn x {Oh-t> z 1 eR"', z2 eR1, (4.4) 

where {O}k_ 1 is the zero subspace in Rn(k-l) . 

Similarly condition (4.2) is equivalent of: 

zdl)=[eA:kMk ;Pd[:qeJVk- 1 x{O}, z1 eR'", z2 eRi . (4.5) 

. The system (2.1) will be P-finally observable on [0, k] iff for all vectors[z~J 
for which (4.4) holds, condition (4.5) is simultaneously fulfilled. z 

The set of vectors (z
1

] e R'" X Ri for which ( 4.4) holds is according to Lemma 
3.5 given by z2

· 

{[::] e Rm x Ri: [(Ikn-Jk e:4k) Mk; -Jk Pd [::] E ~"x {O}k-l }= 
= Ker 1k ([Ink -J eA ] Mk: -Jk Pk) (

9 k - k ' ) 

where lk e Rn(k-t J x nk is a matrix whose linearly independent Iows span the subspace 
(R11 x{O}J._ 1).L= {O} x Rnrk -t). For example: 
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5. C-Final Observability on [0, k] 

In this part of the paper the case ff = C ([ -1, 0] ,R11
) will be considered. Let k 

denote a positive integer and k?;:2. (The case k= 1 will be a simple corollary from 
theorem for k?;: 2). 

Each continuous function/(·), for which the trajectory of equation (3.1) is inclu­
ded in .AI"k for all sE [0, 1] has the form [6]: 

f(s)=Dk zk (s)+Gk v (s), sE [0, 1] (5.1) 

where Dk E Rnxnk is arbitrary satisfying (Ak+Bk Dk) (Mic (A", B\ .AI"k)) c 
cMic (Ak, Bk, .AI"k) and Gk E R"xn satisfies 

ImBk G =Mic (Ak Bk .AI" )nimBk 
k ' ' k . 

v ( · ) is a function belonging to C ([0, 1 ], R"). 

According to Lemmas 3.2 and 3.4 the system (2.1) will be C-finally observable 
on [O,k] iff 

for each 

zk(l)=eA." zk(O)+zk(l), z"(O) E Mic(A\ B", %"), zk(1) E Mcs(Ak, Bk, .AI"k) (5.2) 

where from (3.2) 

(5.3) 

and from (5. 1) 

(5.4) 

Using the definition of zZ given by (3.4) and defining Jk E Rnkxn as 

condition (5.4) can be formulated as follows: 

Z~=I" Dk z (1)+Jk Gk V (1). (5.5) 

From (5.3) and (5.5) we have 

[Ikn-W Dk+J k) e"Ak] zk (O)=(Jk Dk+Jk) zk (1)+Jk Gk V (1). (5.6) 

Ak 6 lnk- (Jk D"+Jk) eA.k, 

a,, D. Jk Dk+I\ 
(5.7) 
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Example. We will consider system given by equations (4.9). We have: 

A0 =[ -~ ~], At =[ -~ !], C=[O I]. 

Let k= 1. Then % 1 =.!V={n: n=[~1] and n1 ER}. By definitions (3.5) _of 
At, B1 and J1 we get: 

Bl =Al , Jl =0. 

find Mic (A 0 , Ar. .!V)=.!V={n: n= [ ~~] and Using inclusion (3.8) we can 
n1 ER}. 

The matrix D 1 satisfying (3.8) can be chosen as 

what implies A1 =A0 +A 1 D1 =[~ ~] andeA'=[~ ;:-e]· 
To find subspace Mcs (A0 , At>· .;V) we observe that 

Im A1 n Mic (A0 , At, .!V)= Mic (A0 , Ar. .!V) 

and by inclusion (3.8) which shows . tha~ Mic (A0 ,A1 , .;V) is A1 ~invariant we 
get: 

The matrix Gt> which fulfils condition 

Im A1 nMic (Ao, At, .!V)=Im At 'G1 

can be chosen as: 

G1=[~ ~] 
Ker Gf =Ker Gt ={g: g=[~2] and g2 ER}. 

Because subspace Mic (A 0 , A1 , .!V), Mcs (A 0 , A 1 , .!V) and Ker Gf are determined 
we can choose matrices M t> P 1 , I: 1 as: 

1 

So: 

- r [e I] [eA M 1 :Pr]= O O . 
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Obserwowalnosc koiicowa ukladow z opoznieniem 

Zdefiniowano i zanalizowano poj~cie obserwowalnosci ,koncowej, na przedziale [0, 11 dla 
uklad6w ze stalym op6znieniem. Sformulowano i udowodniono warunki obserwowalnosci zale:i:ne 
od dlugosci przedzialu obserwacji. Rozpatrzono dwa rodzaje obserwowalnosci: w pierwszym 
zaklada si~, :i:e funkcja poczqtkowa jest klasy LP, w drugim przyjmuje si~, ze funkcja ta jest ciqgla. 

0KOH'IaTeJILH3H H30JIIO~aeMOCTb CHCTeM C 3aDa3~mauueM 

B pa6oTe onpe.L(emieTcll H aHamr3RpyeTcl! noWlTI!e OKOH'Ia'l'eJibHo:il: Ha6mo.L(aeMOC1'R B HHTep­
BaJie [0, T].L(Jill CHCTeM C UOCTOllHHbfM 3ana3.L(biBaHHeM. <I?OpMJmrpyiOTCll:H .L(OKa3I>IBaiOTCll YCJIO­
Bllll Ha6JIIO.L(aeMOCTH, .3aBHCl!lll,l{e 01' BeJIH'IHllbi :HHTepBaJia Ha6JIIO.L(eHHH. PaCCMOTpeHbi .L(Ba BH.L(a 
Ha6JIIO.L(aeMocm: B nepBOM npe.L(ormaraeTcl!, '11'0 Ha'laJ!bHall il>YHKD:llll onpe.L(eJieHa B rrpoCTpaHCTBe 
LP, BO BTOpOM- :)Ta il>YHKD;llll HenpepbiBHa. 

' 




