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A class of quadratic-cost optimal control problems for systems governed by second order
hyperbolic equations is considered. Basing on [2], conditions for linear convergence of the finite-
dimensional Galerkin approximation applied to this class are formulated. The general result is
numerically verified on the one-dimensional energy minimization problem for a vibrating string.

1. Introduction
\

The paper delas with some distributed-control quadratic-cost optimal control
problems related to vibrating systems governed by the second order hyperbolic
equation. Solution of such a problem can be searched, exept a few trivial cases,
only by finite-dimensional approximation. In [2] the rate of convergence estimates
for a discrete-time Galerkin approximation applied to some general case has been
formulated. A numerical verification of these convergence results is however a signi-
ficant problem.

Our present aim is to construct a nontrivial example which could be solved
analytically or numerically with arbitrarily high accuracy, making possible a practi-
cal verification of the general convergence results.

For this purpose we define in Section 2 one-dimensional example (P) of a vibrating
string. The problem consists in minimizing, within a given time, an integral of the
vibration energy including the control cost in the functional.

Problem (P) is obtained by a simple modification of some boundary-control
problem for vibrating string considered in [4] and [7]. In both cases the control
constraints of amplitude type were assumed, whereas the control cost component
did not appear in the functional. The solutions in an analytical form were obtained.

Using the same technique it is shown that (P) can be reduced into an equivalent
Fredholm integral equation of the second kind, which can be solved numerically
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with arbitrarily high accuracy. Basing on such a solution, rate of convergence for
a finite-dimensional approximation can be calculated.

In Section 3 some regularity conditions for the optimal state variables are esta-
blished provided that the optimal control is properly smooth. These conditions,
closely related to the results of [2], are formulated for a general calss (G) containing
(P) as a special case.

In Section 4 the discrete-time Galerkin approximation applied to (G) is intro-
duced. Utilizing regularity conditions the rate of convergence of approximation
is estimated.

Furthermore the results of a numerical test are presented. For the parameters
of discretization sufficiently small it can be seen that the convergence of a finite-
dimensional approximation is close to linear, what confirms the previous general
results.

The fundamental notation used throughout the paper is mainly based on [5]
and [6].

2. The problem statement

In the rectangle Q=(0, 1)x (0, ), where T<2, we consider vibrations of a homo-
geneous string governed by the one-dimensional wave equation

2 a 82
);t(zx ) — 3(: t) xu(t), (x,t)eQ 2.1

with the homogeneous boundary conditions
iz (09 t)=y (19 t)=09 te [09 T] (213)

and the initial conditions

7
Y& 0=y (), 5 0=p @, xe[o,11. 2.10)

Assume that the control u () appearing in the right side of (2.1) belongs to
U=L? (0, T). Consider the following

ProeLEM (P). Find w’ e U such that
ITw)<I(u) VuelU,
where '

Iw=J (u,y W)=

1 L 4 2
='2~yfu2(z‘)dt : fj [( ) (x, t)+(3y) (x, t)]dxdt (2.2

provided that y (x, t) is the solution of (2.1), and y>0 is a given constant. [
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Utilizing technique developed in [1, 4] we can reduce (P) to a certain integral
equation,which can be solved numerically with arbitrarily high accuracy.

Let us start with transforming of the cost functional to the form depending only
on the control and the initial data. To this end note [4] that for any (x, #) e O the
following relation holds:

1 @ 4
o T {x, D4ys (5 D= 5= e bn 1) 72 (v, D=

=Y (%, 1) [Vee (%, 1) = yxx (%, 7)]. (2.3)
Taking into consideration (2.3) and the state equation (2.1) we can express the
vibration energy at the time ¢ as

1 ~[fay)\? ay\*
E(, u)‘—“E f [(EJ;) (x; :)+(3§) (6 t)] dx=

1 Arlsv\e av\2 t 1 oy
=—2-— [(%) (X, 0)+(_é%) (x, 0)] d}t"!‘ f f —é;:-(x’ T)x Uy (T) dx df, (24)
since by (2.1a)
ay dy
7 O 0=7-(1,)=0.

It is known [4, 7] that the solution of (2.1) can be expressed in the form

vx, )=y*(x,)+9(x, 1), 25
where
Y =2 h: E-_(kl;—)z! u (s) sin kw (t—s) ds - sin knx (2.6)

is the solution of (2.1) for homogeneous initial conditions, whereas

1 x4t
5= [5 G045, =0+ [ 520 ] %)
x=t
is the solution of (2.1) for a homogeneous right-hand side. The functions appearing
in (2.7) are defined as follows

oo JPi(%) for 0O<x<l1
yl(x)_{—y;(—-x) for —1<x<0

and i=1, 2. They are extended to all x € R as periodic ones with the period equal 2.
Substituing (2.5) into (2.4) we have

(2.8)

11 T

E(t,w)= % I 04 )+ (2 ()] dct ‘ J .

4]

*

dy
at

(x, ) x u(z)dx de+

t 13,.
+J‘!—é§-(x,f)-x-u(‘r)dxdr. 2.9)
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Now we shall modify the last two components of the sum (2.9). First of all
denote :
1 E)f) 1 } a},}
F(t)=fx-a~r—(x, ?) dxzfj S (& 1) de d. (2.10)
o 0 x

Differentiating the series (2.6) with respect to time we obtain [4]
L i) k de sin & 211
——a—;——(x, H=2 2 i f u(7) cos kn (t—1) dr sin knx. (2.11)
k=1 0
Hence, applying (2.11) we derive by some elementary calculations
i S K s [ xsin ko a
foa—T—(x, 1) dx= 2 pm j u (s) cos kx (z—35) .s(fxsm X dx =
k=1

o] )

i fu(s) cos kn (t—s) ds - (—cos kn)=

=2 >
(km)*

k=1

1 : : i T (o —
(kn)zofu(s)coskn (‘r—s)ds=20fu(s) ;%ﬁl e

k2

1
=fu(s) [%—(r—s)+—2—(r—-s)2:|ds. 2.12)

=2

D\

k=1

We have utilized in the last step the known formula

2 2

* cosknx = nx+x
Z K 6 2 4

k=1

satisfied for any 0<x<27.
It follows from (2.9), (2.10) and (2.12) that the functional (2.2) and the following
one

T{l ! [ : 1 1 )
I(u)='f 5 ®)+(T—1) F(t)+fu('c)<~3~—(t— T)h ?(t—r) )df]u(t)} dt

(2.13)

are equivalent having the same minimizer. Since the functional (2.13) is convex
— by convexity of the problem (P)— the solution u° is determined by the condition

4 J 1
81 (u; hy= j {yu(t)-h(t)+<T—t>F(t)-h<t>+<T—t) f M(T)(“_,’—“(t—f)+

1 2) t ! 0 1 2 {
+7(t—r) d‘r'h(t)+(T——t)u(t)f(-—3~"~(t—f)+~2~‘(t——‘c) )h(r) drj dt=0

VheI?(0,T). (2.14)
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It can be easily shown, by a simple modification of the last term, that (2.14)
is equivalent to the following integral equation:

A : i1 i
f {}ru O)+(T—1) F(t)—}-J u(t) (T—r)(? = (I—T)-!-_i‘“ (t—-‘r)z) dr+

4 1 1
+ f u (t’)(T-—-‘r)(?+ (t—1) +—5(t—r)2)dr} h(t)dt=0,

which should be satisfied for any A e L? (0, T). This finally yields

t 1 1 T
yu (t)+f u (1) (T--t)(—3---._.(1~r)+~2—~(t~—r)3)dt+f u (1) (T—7) x

x (ug—+ -0+ %(t—t’)z) di=—(T—t)F(t) (2.15)

for almost all z€ [0, T].

If we denote

1 1
(T—t)(?— (l—r)+~2—(r—r)2) for T<t;
K, 1)= i 1 (2.16)
(T—‘E)(?-l' @—1) +7 (t—‘c)’) for 1>t,

then (2.15) can be expressed as the following Fredholm integral equation of the
second kind:

T
1 :
u(t)+%! K, )u() dr=—-;’—(i"'—r) F@). (2.17)

There exists a unique solution of (2.17) by unique solvability of (P) and equiva-
lence of these two problems . This solution can be found numerically with arbi-
trarily high accuracy. The last fact will be utilized in the sequel for the rate of con-
vergence testing of the finite-dimensional approximation applied directly to (P).

3. General regularity conditions
3.1. Characterization of the optimal variables

Regularity of the optimal solutions is an important piece of information on the
problem. The crucial role is played here by regularity of the optimal control which
is responsible for the smoothness of the state variables.
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In the case (P) regularity of u° follows from equivalent integral equation. To show
it observe that (2.15) can be expressed in a general form

@+ 3 et @) [ £ Qu@d+g @ [ g @u@d]=60), @1

where
g, GeC*[0,T] for i=1,2,3, k=lI,..4. (3.1a)

Note that « (- ) is continuous by continuity of the kernel (2.16). Hence, differen-
tiating (3.1) with respect to time and using (3.1a) we arrive at u e C' [0, T.

Applying just the same arguments we prove inductively that the solution
of (P)

weC>[0,T]. (3.2)

It will be shown in the next paragraph that regularity of y° follows from (3.2)
and from the state equation (2.1). In order to obtain the result of this type concer-
ning the adjoint state variable p°, we derive the adjoint equation applying the stan-
dard optimality conditions [5]

T
f (O, L, y°, p°) (t), ¥ (t)) dt =0, (3.3)
dy
VyeL*(0,T; Hy(@), y©=—-(0)=0, (3.3a)
f (0L (w0, 3%, p°) (£), u (1)) dt=0  VueL?(0,T; H° (), (3.4)
0

where

°

2 2

3 d d
LGn D LIy @)+ [ (00, T -5 0)dr

- [ o G@)d, G

(Bu) (x, t)gx-u(t).

It follows from (2.1a), (2.2) and (3.3a) that

z 2 4,0

T
f (6,7 (w°, »°) (t),y(t))dtz_f( at); O+

(o]

azyo ) (ayo
+3—xz(t),y(t) dt+ % (T),y(T))- (3.6)
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On the other hand, integrating twice by parts with respect to time and using
(3.3a), we obtain

2 320

T 8 T
[ (ro. 5 @)= [ (G ) ar

0

ay ap°
+(pﬂ(:r), —3;(T))—( - (T),y('r)), 3.7)

whereas applying the Green’s formula and taking advantage of (3.3a) again, we get

TaZB

iy T
a*y p
[ (ro. 3 0)a= [ (G 0r0)a+ [ 7o
2 3 2
x-gf%(l,t)dr—fp"(O,r)-gi—(o,x)dr. (3.8)

Substituting (3.6)—(3.8) to (3.3) we arrive at the following adjoint mixed problem:

ap°(x,t)  Pp°(x,t) _ 8*y°(x,1) L 2ren

ot? dx? at? ax? L
7’0, 6)=p°(1,¢£)=0, 1€[0,T], (3.9a)

! ap° _ d)°
P{x.T)=0, —f-a;(x, T)*——-ér—(x, T), xel0,1]. (3.9b)

Observe that by (3.5)
1
B*p*) ()= [ xp° (x, 1) dx,
0

hence according to (3.4) we obtain [5] the gradient of the functional J (-, -)in
the form

3,J (u, y(u))=}’u+f xp°(x, t) dx. (3.10)
T

Equations (2.1), (3.9) together with d,J (4, y ())=0 characterize the optimal
solution of (P).

3.2. Regularity of the optimal states

The main result of this section will be formulated for a certain general class
of problems containing (P) as a special case. We start with introducing of this class.

Let be given a bounded domain 2 < R" situated locally on one side of the properly
regular boundary ¢@ and let T be a fixed time.
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In Q=% (0, T)we consider the following weak formulated hyperbolic problem:

( d?y (1)

= ,v)+a(y(t),71)=(f(t),v) VoeV=HL (@), te©,T),3.11)

dy
y 0=y, 7;(0)=y2, (3.11a)

where symmetric, bilinear form a (-, ) defined on Hg(Q)xH L(Q) is assumed to
be continuous and coercive.

We shall assume on the sequel that the initial data satisfy the conditions

YeHU2(Q), yeH @),

3.12
yl=y*=0 on 092, @12)

which imply in particular [3, 6] that the solution of (3.11) belongs to

d
Y={ye c([o,T]; H* (@): %EC([O, Tl H? (.Q))}

Let # be some Hilbert space and # 3z, be a given element. Denote by U=
=L2 (0, T; H° (@) the space of controls with the usual scalar product )
and consider the cost functional of the form

T (1, y () || Cy— 2%+ (W, ), (3.13)
where
Ce s (H™(Q), #), (3.14)
whereas
Ne< (U, U) (3.15)

satisfies the following condition of coercivity:
>0  (Vu, w)zolul> Vuel. (3.15a)

Furthermore, let be given linear operators

Be 2 (H'(Q),H'(@) for r=0,..4, (3.16a)
D, e 2 (H" (), C(I0, T]; H' (@), (3.16b)
D, e 2 (H*'(Q), C ([0, T]; H°(@))- (3.16¢)

Consider the following problem of optimal control.

ProBLEM (G). Find w e U such that

J(@,y W)<J (wy@w) Vuel,




A linearly convergent approximation . 267

where y (1) is the solution of the state equation

d’y (1) .
R +a(y(t),2)=(Bu(t),) YeeH)(Q), te(0,T) (3.17)

along with the initial data

dy
yO=y', Q=) (3.17a)
satisfying conditions (3.12). i
Assume furthermore that the optimal adjoint state is characterized by the set

d*p°(t) ) . :
(T”f')“@ (1), 9)=(C*(Cy @)~z4). %),
Voe Hy(@), 1€(0,T), (3.18)

0

P'(T)=(D1y @) (T), ‘3; (T)=(Dsy @) (T) . (3.182)

Basing on [6] one can get (modifying the proof of Lemma 1.3 in [3]) the follo-
wing result concerning reguarity of the solution to the problem (3.11).

LemMA 3.1. If for some r=1 the following conditions hold

' e IO, (3.19a)
i 4r—1 -
S x0eH * (@ for i=0,1,.,2—1, (3.19b)
4r+3 4r+1
y'eH 2 (@), »eH > (9, (3.19¢)
yt=y*=0 on oQ (3.19d)

then the solution of (3.11)

yE H2r+1|2r+1 (Q)_ (3'20) .

Applying the last result we can formulate regularity conditions related to the
solution of the problem (G).

CoOROLLARY 3.1. If
weH**(Q), (3.21)
then
Yy e H*3(0). . (3.22)
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If moreover

Cte 2 (#',H**(Q)), (3.23a)
C*Ge % (H7 0). B> (0), (3.23b)
De 2 (H**(0), C ([0, T]; H* (2))), (3.23¢)
D,e % (H>*(Q), C ([0, T]; H2(Q))), (3.23d)
then
B Ay (3.24)

Proof. Let r=2. Conditions (3.19a-b) follow from (3.21) and (3.16a), hence taking
(3.12) into account we obtain (3.22) by Lemma 3.1.

Now let #=1. Consider the adjoint equation (3.18) and apply Lemma 3.1 for
the reverse direction of time ®=T—t. To prove (3.24) it is enough to check that
the right-hand side in (3.18) satisfies (3.19a) as well as (3.19b) at @=0. To this end
observe that by (3.22) and (3.23a-b)

f=C*(Cy"—z) e H**(Q),

hence assumptions (3.19a-b) are satisfied. Now (3.24) follows from Lemma 3.1
since (3.19c-d) are implied by (3.23c-d) and (3.22). B

Note that in the case (P) we have z,=0, D;=0, D,=1 and in particular by
3.9

2 2

CcrC= (—3—1‘7+ -5;2—) e¥ (H5’5 (Q), JErE (Q)) 5

Hence, if conditions (3.12) are satisfied then Corollary 3.1 applies to Problem (P).

4, Rate of convergence estimates for the finite-dimensional
approximation

4.1. A discrete-time Galerkin approximation

We shall define a finite-dimensional approximation of (G). Let t=T/N (v) be
a parameter of time discretization converging to zero, where N (7) is a natural num-
ber. By ya.(f) we denote the characteristic function of subinterval [nt, (n+1) 7).
Now introduce the space E. (r, 7, (r,+1) 7; X) of step functions

Iy

o(t)= D w0 (1), w(m)eX,

n=rg
where 0<r, <r,<N(7) and X is a given Banach space.
Let for the parameters of discretization &, k converging to zero — ¥V, be a linear

finite-element subspace of V=H§(Q), and W, be a constant finite-element subspace
of W=H°(Q) (see [3] for details).
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In the sequal we shall approximate Y by E.(0,T+7; V) and U by U .=
=E, (0, T; W,), respectively.
Using the standard finite-difference operators
(@: 2o) (1) =[v. (t+1)—2.()]/7,
(@29,) () =[o. (t4+7) =20, () +2, (= D))/,

1 1 1
U4 (I )= Tf“r (I+T)+ _2 Ur (t)+ th (f_' ‘.’.'), (41)

for v, € E.(0, T+1; V,), we iniroduce the following discrete-time Galerkin approxi-
mation of the optimal control problem (G):

PrOBLEM (D). Find uf . e Uy . such that

‘I (u(; k4] yﬂ, T (IJ(;' ~.'))"-';~Jr (uk, 4] yk, T (uk, 'r.)) Vuk,t € Uk,r ]

where vy, . (U ) Is the solution of the discrete state equation

(512 P, (), ?’k)'f'ﬂ' ()’n, s (1), vp) = (B”k,t(‘ )s ‘Z’k) Vo€V, telr,T] (4.2)
provided that

“(}’n, 0=y, v)=a (a:}'h,z (OSSN Uﬁ) =0 Vuy,eVl,. (4.22)

It can be shown [2, 3] that (D), as a standard finite-dimensional convex program-
ming problem, admits a unique solution u$, .. Applying Corollary 3.1 we can establish,
by a simple modification of general convergence results in [3], the following rate of
convergence estimate for the finite-dimensional approximation of (G):

CoRroOLLARY 4.1. If the assumptions of Corollary 3.1 hold, then
[[u® — “g,z”umo) =0 (t+h+k). il

Recall that the last result applies to the general class of problems containing (P)
as a special case. [t means that (P) can be used for numerical verification of the thesis
in Corollary 4.1. Some results of such a test are presented in the next paragraph.

4.2. A numerical experiment

The computational test was carried over for a different values of parametres.
We give below results obtained for

»i(®¥=sinx, y,(x)=0, 7T=1, y=05.

Some other results can be found in [3].

The integral equation (2.17) was solved with a high accuracy using a standard
numerical procedure FRH2 [8]. A finite-dimensional approximation of (P) was
introduced according to the general scheme (D). A discrete solution of this problem
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0.933

0.543

Control

0.153

= (0.1
| t
1
S0 BT
0.933 .
TR,k =0.05
o
£0.546
Q
@)
0454/
i 2 1 |
a
~0/289
0.9451~ T ,h,k =0.025

I
5 0.550
&)
0455
I | i | 1 ! |
0.J000 0.200 0.400 0.800 0.800 1.000 1.200 1.400
o 24OL Time

Fig. 1. The approximation error for a different values of discretization parameters
1 — a model solution, 2 —- a finite-dimensional solution
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was obtained by conjugate gradient optimization algorithm GSPR1 [9], where the
gradient was calculated according to formula (3.10).

In Fig. 1 we present in a graphical form the results obtained for a decreasing
sequence of the discretization parameters 7, A, k={0.2, 0.1, 0.05, 0.025}.

4.613

£
=
(o2}
[
5

-

2.307

1153

Approximation error epsx 10

1 | 1 1 ! 1 | .
O'OOOO.OOO 0.400 0.800 4.200 1600 2000 2.400 2.800
Step of discretization

Fig. 2. Convergence of approximation

These results imply that for sufficiently small values of discretization parameters,
the convergence to zero of the approximation error

&= Ilu"-uz, dllza (, r)”l“"”r.z (0, T)

is close to linear what confirms the thesis of Corollary 4.1. The last fact is
illustrated in Fig. 2.
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Liniowo zbiezna aproksymacja kwadratowych zadan stero-
wania systemami hiperbolicznymi

Rozwazana jest klasa zadan sterowania optymalnego systemami opisanymi rownaniem hiper-
bolicznym drugiego rzedu przy kwadratowym wskazniku jakoéci. Na bazie rezultatéw [2] sformu-
towano warunki liniowej zbieznosci aproksymacji skonczenie wymiarowej typu Galerkina zasto-
sowanej do rozwazanej klasy zadan. Na jednowymiarowym przykladzie minimalizacji catki z energii
drgan struny dokonano weryfikacji numerycznej uzyskanych wynikéw ogélnych. Wzorcowe stero-
wanie optymalne uzyskano w tym przypadku rozwiazujac numerycznie roéwnowazne rownanie
catkowe.

B

JInmeiino cxomuMasi ANOPOKCHMANHA KBAAPATHYECKAX 32129
yOpABJCHAS THIEPGOIMIECKAME CHCTEMAMH

Vccnenmyercs xace JIMHEMHO-KBAIPATHYECKHX 3a0a4 ONTHMAJIBHOIO YIPABICHUS CHCTEMAMHE
ONMCHIBAEMBIMA, THIEPOOIIMIECKMM YPaBHEHHEM BTOPOro mOpsika. VICmOmb3yst pe3yibrarhl [2]
dhopMymIpyeTCst YCHOBHS THHENHOM CXOIHMOCTH KOHETHOMEPHOH armpokcaManuy Tuna Ianepxusa
TPEMEHERHOM K 3TOoMy XKjaccy 3amad. OOmumii pe3ynbraT IPOBEPEH YHCIEHHLIME METOJAMEA IJIs
OJTHOMEPHOMH 3a/1a9u MIHAMM3AIIHHA MHTErPaia KAHETAYECKOH SHepTHA Kojiebanuil ctpyust. O6pas-
10BO€ PEIeHre 3TOr0 IPUMepa TOJIyYeHO IPHMEHSS OYeHb TOYHBIE YHCIIHEHHBIE METOMBL K KBH-
BANIEHTHOMY MHTET DATEHOMY YPABHEHHIO.




