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A definition of a repetitive control has been formulated. A continuity of performance index 
with respect to the repetitive control has been proved for linear-quadratic problems. The continuity 
implies existence of a suboptimal control arbitrarily close to optimal. 

1. Introduction 

Repetitive mode of controlling is one of the most efficient methods of managing 
objects with a long time horizon. The choice of lengths of a repetition period and 
of a planning horizon is based in majority of cases on intuition. A more objective 
approach has been proposed in (1]. The crucial point of that approach consists in 
a theorem on existence of a p-satisfying suboptimal control (derived for linear
quadratic problems) which may be understood in terms of a continuity of perfor
mance index with respect to suboptimal control. This theorem will be formulated 
and proved in the paper. 

2. Repetitive control definition 

A notion of a repetitive control although commonly known has been rarely 
defined in a formal way. For the purpose of the article following definition will be 
introduced (Figure presents the repetitive control idea). 

DEFINITION. The mode of controlling an object will be called repetitive iff 

a control u* consists of the sequence { u ~}~= 1 , whereas u: is found for each 
(repetition) period [Tk_ 1 , Td by solving the problem: 

Tk- 1 +T* 

uZ=arg min{Qk(xk>uk)= J fo(xk(t),uk(t),t)dt } 
UkEU Tk-1 

(I) 
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The performance index for the whole control period [0, T], in case of repetitively 
controlled objects, consists of the sum of indices computed for each period 
[Tk-1> Tk]: 

N 

Q* /::, ~ Q ( * *) LJ k xk, uk (3) 
k=l 

where x: E en is a trajectory corresponding to u~ E U* (U* is in general a set 
of acceptable controls). 

It is easy to see that the index (3) is a function of parameters rx and p which 
characterize the planning horizon T* and the repetition period Tv. These para-
meters describe two aspects of the repetitive c control: · 

rx - the smaller rx the shorter the interval for which the non-controlled input 
z (t) must be known (e.g. disturbance forecast) but, the worse quality of controlling 
(in terms of Q*) is obtained; 

P- the larger P the fewer repetitions of computing (and of controlling, of course) 
are to be performed, but, the longer is the period in which one uses non-reliabe 
(might be) disturbance forecast. 

A user (decision maker) trying to achieve the best global effect of controlling, 
should be interested in knowing properties of the relationship Q* (rx, p): e.g. if 
this characteristic is flat he can choose such (rx, P) that economic costs (computers 
memory and time, disturbance forecast length etc.) might be suffi.cently low while 
the performance index Q* ~oes not differ very much from an optimal value. 

In the paper a simple but important problem of continuity of the performance 
index (3) with respect to rx and P will be considered. A theorem proving it will be 
derived. · 

Importance of the considered continuity consists in some guaranted area of 
changes of rx and P which do not imply large variation of Q*. Of course, the bigger 
is this area the better for the user; however the problem of differentiability or finding 
the Lipschitz constants (solution of them could analitically clarify sensitivity of Q* 
with respect to rx and P changes) surpasses the scope of the paper. The attention has 
been paid to the continuity which is a primal notion for the sensitivity mentioned 
above. 

In order to achieve a reference level, in the paper the optimal control for the pro
cess x(t)=f(x(t),u(t),z(t)),x(O)=x0

, tE[O,T] will be understood as 

- T 

u=arg min {Q(u, x)= J !o (x, (t), u (t), t) dt} 
uEU O 

(4) 

where z (t) is a non-controlled input known for the whole optimization period [0, T]. 

The continuity of Q* with respect to et.. and P may be reformulated in terms 
of existence of a suboptimal control (repetitive Tv =PT, based on planning horizon 
T* = rxT) close to optimal. In the paper existence of such a control determined by rx 
and p will be proved. 
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is continuous on rectange exf/ and moreover K( ·; T)eC~xn is continuous 
on interval f7 (with respect to T e :T); c~xn is an n x n product of C -spaces of 

continuous functions over e; S(t) ~::, B(t)R- 1 (t)BT(t). 
2° The solution of linear differential equation: 

i1 (t; T, K)= -(A (t)-S (t) · K(t; T)y h (t; T, K)+ 

+K(t;T)·z(t) for t e[t~>t1 +T] 

h(T;T,K)=O 

h (t; T, K)=O for t e{e""'[t1 , t 1 +TJ} 

h ( · ; T, K) E C~) is continuous with respect to (T, K) on product :T x :%", where 
ff cC~ xn). 

3° The solution of state equation: 

l 
(A (t )-S (t) K(t; T)) x(t; T, K, h)+S(t) · h (t; T,K)+ 

x(t;T,K,h)= +z(t) for tE[tl,tt+TJ 

A(t)·x(t;T,K,h)+z(t) for te{e""'[tbt1 +T1} 

x(t1 ; T, K, h)=X0 

x ( · ; T, K, h) E C~) is continuous with respect to (T, K, h) on product :T x :%" x .Yf 
(.YfcC~)). 

4° A mapping transforming the set of lengths of horizons - :T c Y'l 1 -into a set 
of controls u c c~n)' defined as follows 

u(·; T)=R- 1 (·)BT(')·(h('; T,K)-K('; T)x('; T,h)) 

Ur 
6 

U ( ·; T) E U cC<;;) 

ur: f7 ~u 

is continuous, where 

U 
6 

{ur: ur(t; T)=R- 1 (t)BT(t) x 

x [h(t; T, K)-K(t; T) x(t; T, K, h)] tee, Te ff}. 

Basing on a well known theorem that every continuous mapping transforms 
a compact set into a compact set, now the theorem will be proved since one shows 
that: 

5o A mapping Q* transforming a set of controls u* E U* cLc;) [tl> t 2 ] into R 1
, de

fined as follows: 

N Tk 

Q*(u':')= ~ ,2; J (x;?(t)P(t)x:(t)+u:T(t)R(t)u~(t))dt 
k=1 Tk-t 

is continuous, where x: (t) is a trajectory corresponding to the control u: (t). 
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scope of the paper; however it is easy (intuitively) to see that making assumption 
on forecast weaker (e.g. there is known its covariance and the latter increases with 
time) should even facilitate the proof of a similar theorem formulated in stochastic 
terms. In [1] an algorithm finding satisfying (T*, Tp) is presented; it takes into account 
various aspects of a real control process. Some practical results obtained on the 
base of the presented approach are to be found in [1] and [2]. 

Next steps of research into sensitivity of performance index to suboptimal 
control and inclusion of the stochastic character of disturbance should become 
subject of further investigation. 

Appendix 

A mapping u* given in 6° is continuous. 

Proof. The statement will be proved since one show.s that 

'lfa>O 3<5>0 s.t. 

Y(a-a') 2 +(fJ-[J')2 <<5 =>/lu*(·; a.,fJ)-u*(· ; a',[J')I[<e. 

Because of the compactness of :Y x :Y 3 (a, fJ) the problem boils down into two 
independent : 

(a) Va>O 3<5>0 s.t. la-a'! <o=>llu*(- ; a, fJ)-u* ( ·; a',fJ)i[<a; 

(b) 'lfa>O 3o>0 s.t. 1/J-fJ'I<o=>l[u*( · ;a,[J)-u*(·;a, [J')Il<e. 

The norm of u* ( · ; a, fJ) in L~m) [0, T] is of the form: 

N N Tk 

l[u*( · ;a,fJ)I[ =}; !tu:(·; a,fJ) Il =}; J (uk(t;a,fJ)) 2 dt 
k=l k=l Tk-t 

thus because of N < oo it is sufficient to consider continuities (a) and (b) in an 
interval [Tk-1> Td. 

The validity of (a) follows from lemmae proved in [1] and recalled in the paper 
as 1°, 2°, 3° and 4° and from the theorem on continuity of a differential equation 
with respect to initial conditions. Indeed 

T 

llu:(·;a,fJ)-u:(";a',fJ)Il= J (R- 1 (t)BT(t)((hk(t;a.T,Kk)-

-Kk(t; aT) xk(t; aT, Kk, hk))+R- 1 (t) BT (t) (hk (t; a' T, K~)-

- Kk (t; a' T) xk (t; a.'T, K~, h~))) 2 dt~(Tk- Tk_ 1 )llR- 1 
( • )BT ( · )![ x 

x (l[hk-h~ll+llKk-K~Il+l[xk-x~ID a-a'C> 0 (Al) 

where for convenience arguments have been omitted and with, perturbated values 

have been denoted (e.g. h~ 6 
hk (- ;rx'T, Kk ( ·; a'T))}. 




