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The basic approaches to modelling of hydrologic phenomena on the example of process of open
channel flow was discussed. The problem of synthesis of pulse response for the case of ungauged
catchment was studied. The possibility of evaluation of conceptual model parameters on the basis
of conditions of systems equivalence was analyzed. A number of lemmas and remarks justifying
the method of moment matching of system pulse responces was given. On the basis of this method
the values of parameters of conceptual models were calculated in terms of physical characteristics
of an open channel flow. The possibility of choice of structure of conceptual models by means of
Pearsonian moment ratios analysis was discussed.

1. Introduction

In the last few decades the necessity of mathematical modelling for control
purposes came about in the topics initially outside the classical interests of control
systems engineers. Examples of such domain are — hydrology and water mana-
gement. Due to the increasing value of water as a raw material water economy
deals more frequently with mathematical optimization problems. Modelling of
hydrologic systems becomes thus an important part of the general problem — the
control of water resources in the broad sense.

The techniques of mathematical modelling of hydrologic systems have adopted
many elements of electric circuits theory and of dynamic systems science. However,
modelling of hydrologic phenomena is far more difficult than the description of
electronic elements of electrical circuits. In electrical circuits modelling a passive
element e.g. capacitor can be described exactly for a wide range of working regimes
by means of linear ordinary differential equation of the first order.

In hydrology the same phenomenon (e.g. open channel flow) can be described
in a number of ways, depending upon the parameters of the problem (available
information concerning system structure, measurement data), the techniques at
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one’s disposal (computational facilities) and the aim of the modelling (required
speed and accuracy of simulation).

The basic tool for modelling the relationships between the quantities characte-
rizing hydrologic cycle are equations of mathematical physics. Assumption of a
physical model necessitates the solution of equations describing the laws of con-.
servation of mass, momentum and energy.

The parameters of such a model have clear physical interpretation. Hence hydro-
dynamic models can easily be adapted to different catchments, provided mea-
surement, computation or estimation of parameters pertaining to & given catch-
ment is possible. In practice this approach is often unacceptable because of the
difficulties in determining the equations parameters and initial and boundary
conditions with sufficient accuracy. This is due to the existence of unknown
heterogeneities, anisotropics and nonstationarities of the system and to comput-
ational difficulties.

Because of the aforementioned difficulties in applying physical models other
methods of mathematical modelling are quite frequently used. A widely used method
which completely differs from the hydrodynamic approach is the method of black
box system modelling. The real system is modelled by a “black box’* with a number
of inputs and outputs. The black box opetator is identified from time series analyses
of input and output data. Examples of this type of model are integral operators,
fot which kernels are identified by means of one of many competing methods (e.g. —
matrix inversion with eventual regularization, methods of integral transforms,
correlation, approximation by orthogonal polynomials, etc.). ;

A third type of hydrologic models has proved to be popular is the class of concep-
tuals models developed from abstract conceptual structutres which transform hydro-
logical variables. These structures reflect a portion of hydrologic reality together
with empirical simplifying assumptions based on the pearsonal judgment of a mo-
deller. Since these structures are assumed, identification of such models results in
identification of the parameters.

2. Conditions of systems equivalence

As there are 2 number of ways of describing hydrologic systems, the problem
of inter-relationships between models is of primary importance. From a practical
point of view obtaining such relationships may enable the construction of a con-
ceptual model based on the measurement or evaluation of physical system para-
meters, without the need for long series of input/output measurements. However,
the only method of describing open channel flow which involves actual physical inter-
pretation of parameters is the hydrodynamic approach to modelling.

Parameters of black box system models can be identified by analysing long time
series of input and output values measured in the real system. The weakness of the
quasi-physical assumptions, on which conceptual models are based does not allow
any clear physical interpretation of parameters of these models.
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In case of ungauged catchments measurements over a long period of time which
are required to identify system black box model or conceptual model do not exist.

In order to synthetise the pulse resbonse for an ungauged catchment a sufficient
number of measurements are first made in controlled catchments. Subsequently
the parameters of the pulse response are correlated with the physical catchment
characteristics. Major problems occur when these relationships are extended to
other catchments. The correlation formulae obtained appear to be regional.

An interesting method of determination of physical sense of parameters of con-
ceptual hydrologic models seems to be moment (or cumulant) matching approach
introduced by Dooge [l, 2]. Basing on the above method one can find analytic
formulae linking parameters of conceptual models and parameters of linear phys-
ical model.

The starting point of the moment matching method is analysis of equivalence
of linear dynamic systems in the sense of input/output relation. By term ‘‘systems
equivalence’ it is understood here, that both compared systems have identical
responses to the same input signal (in particular — signal belonging to a given
class of functions).

Let us consider two linear systems described by equations
¥i(O= [ @) x (=7 dr=y;, O+ [ by @) x (t=1) d, j=1,2 (M
[§] ]

where: x — input signal, y — output signal, 4 — pulse response, y; — term res-
ponsible for the impact of initial condition upon the present output signal.

Physical sense enables assumption of finite system memory 7, very conve-
nient from computational point of view. One obtains

T
7: 0= [ hy@) x (=) dr, j=1,2 )

whereas for initially relaxed systems

min (¢, T}
0= [ hEx@-9d, j=1,2. ©)

(4]

Equivalence of two linear systems in the sense of input/output relation means,
under the assumption of finite system memory 7 ), that for every time instance ¢
and for any input signal x (¢) the following relationship holds

71 (O=2 ()= [ [h @)= hy @] x (t—1) dr=0. 4)

In a similar way one can define equivalence of infinite memory systems (7—c0).

1y In the case of different memory lengths of the two compared systems (i.e. T, # T>), the common
memory length T=max (T, T>) will be assumed here.
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Statement, that the expression (4) vanishes because of identity of impulse res-
ponses of both systems at every time instance is of no practical meaning. The input/
output equivalence of two linear systems can be formulated in another way — through
impulse response moments of the type

T

Ch()Ys,r= [ 1"h(t)dt (5)
or h

ROy, = [ 1"h (D)t (6)

for finite or infinite memory systems respectively.
The basic theorem used in the moment matching method is

TueoreM 1 (Lerch). If a function f(¢) is continuous in the interval € [0, T] and
T

f " f(t)dt=0 for n=1,2, ... then f()=0 in the whole interval [0, 7.

(o]

The proof can be found in the book by Mikusinski [4].
Basing on this theorem one can formulate conditions for mput/output system
equivalence, different from (4).

Lemma 2. If impulse responses of two linear systems with finite memory T are such,

that
T T

f T hy (7) d‘L'=f il (@) dey =0, 1,2,
0 4]
then both systems response identically to any input signal.

The proof is obvious, since from the Theorem 1 it results, that /, @)=h, (1)
in the whole interval ¢€ [0, T] i.e. y; (£)—y, (t)=0 for every time instance and
for all classes of input signals. The above Lemma holds also for 7—co. Matching
infinite number of moments of two impulse responses is rather of academic impor-
tance. However matching a finite number of moments also enables drawing some
conclusions concerning systems equivalence.

LeMMA 3. If the N first impulse response moments of the type (5) of two linear
dynamic systems with finite memory 7" are respectively equal, then both systems
response identically to input signals being polynomial functions of time.
Induction proof. Let us assume, that only zero-th moments of impulse responses
of both linear dynamic systems are respectively equal, i.e.

i3

f e (1) di=

(¢]
where

e()y=hy (v)—h, (v)
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then responses of both systems to a constant input signal of the amplitude X are
identical, i.e.

E®)=y, ()= (f)=Xf e(t)dr.

Matching of zero-th moments is guaranteed by the assumption of finite memory
of passive nondissipative systems (both moments are equal to 1).
Let us assume now, that from the relationship
T

f ' e(r)de=0i=0, ...,n

]

" aq; t' the following holds

.

results, that for the input signal x, (#)= Y
i-0

T

E()=y,()—y, (f)=f x,(t—71)e(r) dr=0.

Let it be
ok
f 1 e (1) de=0.
0
n+1
Then, for x,., (¢)=> a;t' one obtains
i=0

T 7
E{t)=f Xy (t—1) e (1) dr=f x, (t—1) e (7) dr+

-
[ fa,,“ (t—1)"*tte(r)dr=0. q.ed.
[v]
The above Lemma remains valid also for the case T'—=co.

LemMa 4. If the first ¥ moments of the type (6) of impulse response of two linear
dynamic systems (described by convolution integral, i.e. initial relaxed) are respec-
tively equal and the input signal is common to both systems, then output sig-
nals in both systems have identical first N moments.

The proof results directly from the interpretation of formula describing transfor-
mation of moments in linear dynamic systems.

n
G008, =Sl 0 2 O, a= 3 ()b OV (0%, 11,2
r=0
It is easy to see that the N-th moment of the type (6) of the output signals in each
of the two systems depends on moments of the input signal and of the impulse
response up to the N-th order. Since, by assumption first N moments of the impulse
response and all the moments of the input signal are respectively equal for both
systems, moments of the output signal for both systems are identical up to the
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N-th order inclusive. The above statement is valid for all kinds of input signals.
It is thus extension of the consideration out of the class of input signals being poly-
nomial functions of time.

REMARK 5. If the N first impulse response moments of the type (5) of two linear
dynamic finite memory systems are respectively equal and the input signal common
to both systems reads

t<0

0
X (t)=|ZN:ai 120
i=0

then both systems response identically starting from the time instance 7, where
T — memory of the system.

EEMARK 5a. If the N first impulse 1esponse moments of the type (5) of two linear
dynamic finite memory systems are respectively equal and the input signal common
to both systems reads

Z aitt te(ty, 1)
x(t)= 2 bt te(t,tisr) NiSNY,

Z Ziti te(tn——la tn)

where n is any given integer number, then both systems response identically in
the following time intervals

(ti+T, ti+1) lf ti+1-ti>T, i:l, 2, cesy n.

REMARK 6. If the N first impulse response moments of the type (5) of two linear
dynamic finite memory systems are respectively equal and the input signal common
to both systems is the polynomial function of time of the order M >N, then the
difference between output signals depends on the weighted sum of differences of
N-+1-th, ..., M-th moments of impulse responses in both systems.

Itis easy to see, that

E(t)=f[2 [a; (t—-r)i]e(r) dr= ﬁ fTa,- (t—7)e(r)dr

i=N+1 0
since, by assumption

N

f [Z a; (I—T)i] e (7) dv=0.

i=0
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Remark 7. If the N first impulse response moments of the type (6) of two linear
dynamic systems (described by convolution integral — initially relaxed) are respec-
tively equal and the input signal common to both systems has the following
properties
<x1 (t)>ru,w=<x2 (t)>r0,oo .?'-_-].., "'aNa
XL (@5, 0 #<X2 (05,0 r=N+1,N+2,...

then output signals from both systems retain matching of the first N moments of
the type

D026, 0, 1=1,2.

It results directly from the Lemma 4.

3. Cumulant matching technique

When comparing differing structurally linear models of the same hydrologic
processes one can take into account several parameters of the pulse response (maxi-
mum value of the pulse response, time corresponding to this value, time corresponding
to the “‘centre of gravity’’ of the area under the curve / (¢), properties of the rising
part of this curve and of its falling part).

More general conclusions can be drawn from analysis of matching the pulse
responses by moments — aggregated function characteristics. Even more convenient
from computational point of view than moment matching is cumulant matching.
The simplest formula for determination of cumulants is

Crr=('_ l)" .dST [lOg 33 (5)]!5-=0 (7)
where:

n— cumulant order, F(s) — transfer function i.e. Laplace transform of the
impulse response function f(z).

The functional relationship exists between moments and cumulants (cf. [1],
[3]). Thus it seems, that construction of theorems concerning cumulant matching is
not necessary.

Let us assume, that the real physical system is modelled by two different struc-
turally linear models with &, and k, parameters respectively. Let k&, denotes number
of parameters (of conceptual model) that should be determined in terms of k, para-
meters of physical model.

Then by matching k&, first moments of impulse responses of both systems one
can find the conditions of systems equivalence for input signals being polynomial
functions of time of the k,~th order.

It can happen however, that k* physical parameters and k,; parameters of con-
ceptual model (detetmined by optimization) are known. The problem reads — find

lacking (k, — &k *) unmeasurable physical parameters. It can also be solved by moment
matching method.
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A separate problem is connected with existence of solution of equations condi-
tioning systems equivalence in the sense of input/output relation by means of mat-
ching impulse responses by moments. One cannot formulate any statements con-
cerning the existence of solution in general case, with no assumption on the class
to which impulse responses belong.

4. Examples of application of moment matching method

As an example matching cumulants of impulse responses of linear dynamic
wave model and linear conceptual model will be performed. Moment matching
allows coarse identification of conceptual model parameters basing upon physical
system characteristics.

The linear dynamic wave model has been obtained in the result of linearization
of physical equations describing movement of a flood wave in an open channel
of semi-infinite length. The equation of linear dynamic wave for prismatic channel
with rectangular cross-section reads

’*q d*q 0d*q 285, 9q aq
©r0=%0) a0 g o R "I ®

Yo

or, when avoiding description by parameters connected explicitely with the re-
ference values

2 2
(FS g* n® ST3_F8g4ns 537) 7 _oFt g2 3 g-3i2 0% q
° 2 o Torox
Mazq aq dq
£z 912 +2F‘4g"1 n-3 S(;I/Z—at—-'l— 3gSO—5;=0 (9)

wheie:
g — gravitational acceleration, y, — reference depth, v, — reference flow valo-
city, ¢ — flow rate, x — longitudinal variable, 7— time instance, s, — channel

slope, F— Froude number, F=vo/V§}; , n— Manning coefficient.
In order to determine the impulse response of linear dynamic wave model the
following conditions must be fulfilled:

@ g (x, 0)=4g; (x, 0)=0,

(i) ¢ (0, 1)=6 (),
(i) ¢ (x, )<oo Vx e [0, ), (10)

(iv)qu(x, Hdi=1 ¥xe [0, 0).

It is easy to calculate the Laplace transform of impulse response (system transfer
function) of this model. It reads

H (x, s)=exp (ocxs—l—/fx—xl/ysz-l-és—-i:;) (11)
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where the coefficients «, f5, 7, d, ¢ are functions of reference values and of constant
parameters of the equations (8)-(9) (Dooge [1], Kundzewicz [2])

The cumulants can be computed directly from the above formula for the transfer
function with no necessity of inverting the relationship (11) to the time domain.

Due to the complexity of the above model and to its limited applicability, hydio-
logists have introduced a number of linear empirical conceptual models.

An easy and popular approach to modelling the open channel flow is based upon
conceptual partitioning the channel into a cascade of abstract linear reservoires
(characteristic reaches). The basic element of this model is an abstract concept of
linear reservoir (characteristic reach) fulfilling the continuity equation

_ds() '
x0 (=4 (D=1 (12)
and the storage equation
sO=Kauw () (3)

where :

g0 (inflow to the reservoir (flow rate in the cross-section opening the charac-
teristic reach), g, — outflow from the reservoir (flow rate in the cross-section
closing the characteristic reach), s — storage volume (retention in the characteristic
reach), K — storage coeflicient.
- If the outflow from the i-th linear reservoir in thecascade equals to the (i+ 1)-th
reservoir, then the system of NV reservoirs can be described by means of the
impulse response

1 ¢ N-1
h (I)='m(k—) e uE, (14)

If the concept of partitioning the length of the channel into characteristic reaches
is followed, one can deal with real values of N (inconvenient for the reservoir inter-
pretation of the former version).

T (-I—)M ek, | (15)
KT (N) \ K

where I'(N) is'the gamma function
The general formula for the R-th cumulant of model of cascade of linear reser-
voir reads

Ce=N (R—1)! K®. (16)

The starting point for calculation of cumulants of the complete linearized model
is the relationship (11) for Laplace transform of the Impulse response of the model
(8) subject to the conditions (10).
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When differentiating the logarithm of the Laplace transform of impulse response
with respect to s in the point s=0 one obtains
x 2

E— =3 32 T4 52
@ T 3 ¥ 5o F~*g amn

where notation follows the formulae (8)~(9)

2, 2, 2
C*=i(l _ i )(_&_)( * ) =_§_(1 __F__)xs—l gt F-? (18)
23 4 J\sox/\1.57, 27 4 0 i

When comparing the first two cumulants calculated according to (16) and (17)-(18)
one can obtain the relationship between parameters of conceptual model and phy-
sical parameters of linearized hydrodynamical model.

IS R T P

3 4 \sox/\150,) 9
e 1 3 Soix o
. 2(1 F2) Yo 2 5 4 6(1 F2) 8
3 4 ) sox gn 4

“Another method of construction of a simple conceptual model is simplification
of complete linear dynamic wave equations. This method however, in the contrary
to the moment matching approach does not enable exact determination of class
of input signals granting full equivalence of both systems in the input/output senseg

gxt -do ‘[
[m3s™a [

1S+

05—

24 |
10 20 30 tlhrl

Fig. 1. Comparison of responses of linearized dynamic wave model (/) and of cascade of linear
reservoir (2) to rectangular input signal
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In Fig. 1 the comparison of simulation of the flow in the system modelled by
eq. (8) and subject to the conditions (10) and in the system described by conceptual
model (12)-(13) with parameters evaluated by moment matching method is made.
The input signal common to both models of flow in prismatic open channel with
rectangular cross-section and length of 100 km is the switched step function

)= 200m3 s~1, t<0, t>11 min.
YW= 210m3 51, te [0, 11 min].

In the similar way one can find the responses of the three-parameters model co-
mposed of the cascade of linear reservoirs in series with linear channel are also
shown.

Parameters of such models have been obtained also from matching cumulants
of impulse response of such a conceptual model and of a linearized hydrodynamic
model (cf. [3]).

In the so far presented considerations no real system with an adequate set of
measurement data has been taken into account. The moment matching technique
has been tested on data generated by the solution of linear dynamic wave equation

Now the discussed method will be applied to a real system of river flow (reach
of lower Vistula-Wiloclawek — dam, Wilocalwek — flow rate measurement section
located 150 m upstream fiom the permanent gauge).

Inserting the values of physical parameters to the formulae (17)-(20) one obtains

K=13226.197 s, n=.43188.

sooL- T
) S TTIPAE TV v i oo A
0 i 12 3 s IS tThr]

Fig. 2. Simulation of the flow rate by means of the model of cascade of linear reservoirs (Vistula
at Wloclawek, Sept. 25th 1975); x=3770 m

11— discharge from the power station, 2— measured flow rate in the cross-section x, 33—
simulated flow rate in the cross-section x

In Fig. 2 simulation of flow on the basis of conceptual model of cascade of linear
reservoirs with parameters obtained by moment matching method is presented.
The records of discharge from Wioclawek dam and measured flow rate in the cross-
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-section located 3770 m downstreams are compared with the flow rate simulated
by the model (12)-(13) with parameters computed by moment matching method.

Relatively poorer simulation in the range of greater flow rates can be explained
by evident nonlinearity of the system. In the example a simplified assumption of
steady state was accepted for step input signals presented in Fig. 2. In fact, the last
section of input function occured when the steady state corresponding to reference
discharge has not been reached yet in the system what is one of the sources of inac-
curacy.

Linearization was performed under assumption of small deviations from the
reference point. The time variability of discharges from the dam violates seriously
the above assumption. The amplitude of flow rate at the input to the river reach
modelled ranks in the example considered from 450 to 1650 m?® sec™'. The errors
obtained are not catastrophic, even for big variations of input signal.

5, Choice of structure of conceptual model basing on Pearso-
nian moment characteristics

The further extension of application of the concept of functional moments in
modelling hydrologic processes is determination of criterion of choice of structure
of conceptual model. As such criterion one can accept the assessment of similarity
of impulse responses of conceptual model and of linearized hydrodynamic model
expressed by Pearsonian moment characteristics, i.e.
measure of skewness

B =ﬂ§/ﬂ§i . 21
measure of curtosis
Ba=taltis (22
and generally
2
2 /’t2n :u n+1
ﬁz:::“;n_: 2n+1=;§n:1 5 }’l=1,2, sme iy (23)
2. 2

where yu; denotes the central moment of the impulse response of the i-th order.
The above characteristics give image of shape of impulse response function in-
dependently on scale and location parameters.

~Assume, that several three-parameters conceptual models are at one’s disposal.
One can (provided the solution of adequate set of equations exists) make the three
first moments for conceptual models considered and for linearized dynamic wave
model respectively equal. Then the difference of values of moment characteristics
can be a measure of quality of fitting the structure of given conceptual model to
the structure of linearized hydrodynamical model and can constitute the criterion
of choice. By determination of the loci corresponding to different conceptual mo-
dels and to the linear dynamic wave model one can illustrate the applicability of
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conceptual models considered for different flow regimes. More extensive discussion
of this problem can be found elsewhere [6]. These considerations help to explain
the world-wide career of conceptual model in the form of serial cascade of linear
reservoirs with or without linear channel. It has been proved, that for the Froude
number equal to .54 such model and linear dynamic wave model (8) have identical
form of the ielationship between f, and f,

B,=1.50,+3. (24)

1t means, that matching the first three moments results in matching of the fourth
moments of both system. It is wondering, that in spite of completely different for-
mulae for impulse responses of both models, for the above value of Foude number
also a very close fit of moment characteristics 5 can be observed, with identical
structure of the relationship

Bs= P (af,+10)° (25)

where: ¢=3 for the model of cascade of linear reservoirs, a=3.0556 for the mo-
del of linear dynamic wave.

The characteristics f, and [ are simple measure of differences in responses
of both models to input signals in the form of polynomial functions of time of
fourth and fifth order respectively.

One can create also another criterion of choice of structure that does not impose
the validity of linear dynamic wave model, which proves to be the model of limited
applicability. When comparing Pearsonian plots corresponding to different concep-
tual model which gives the best fit to given conditions.

6. Concluding remarks

In the paper the method of moment matching and its application to approxima-
tion of conceptual models parameters (on the example of hydrologic model of open
channel flow) on the basis of known physical system characteristics is discussed.
The “quality” of simulation obtained by conceptual models with parameters deter-
mined by moment matching method in comparison ot the pattern behaviour of
linear physical model is analyzed. The accuracy of simulation is referred to classes
of input signals. The material presented forms the foundation to further reserach
on extension of the abovementioned method by matching pseudomoments with
weighting function of the type

Cf@) - (t)>”=ff"f(2‘) @ (2) dr. (26)

where ¢ (7) is a weighting function of the form following the heavily damped nature
of real flow systems.

Extension of this methodology to the case of system black box models is straight
forward. System models in the identification stage (basing on the approximation
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of impulse response by means of orthogonal polynomials) can be treated similarly
to conceptual models discussed in this paper. The coefficients of particular terms
of orthogonal polynomials can be related to the physical system characteristics.

The authors are aware of the nonlinearity of the complete real physical system.
The moment matching method can be easily generalized to cover the case of systems
governed by nonlinear integral Volterra series equations. It would enable performing
the approximation of parameters of conceptual models of the Volterra integral
series structure upon the basis of development of physical model in the form of
Volterra series.

The authors do hope, that the moment matching method and the analysis of
Pearsonian moment characteristics will prove to be a tool easing the application of
big variety of existing linear hydrologic models.
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O pewnej metodzie okreSlania parametréw koncepcyjnych
modeli przeplywu w korycie otwartym '

Omowiono podstawowe sposoby modelowania zjawisk hydrologicznych na przykladzie procesu
przeplywu w korycie otwartym. Postawiono problem syntezy odpowiedzi impulsowych dla zlewni
nie kontrolowanych. Zbadano mozliwo$é szacowania parametréw modeli koncepcyjnych na pod-
stawie warunkow rownowaznosci systemow. Przedstawiono twierdzenia i spostrzezenia uzasadnia-
jace ‘metode dopasowania momentéw odpowiedzi impulsowych systemoOw. Stosujac te metode
okreslono wartosci parametrow rownowaznych modeli koncepcyjnych na podstawie fizycznych
charakterystyk przeplywu w korycie otwartym. Oméwiono mozliwo$§é wyboru struktury modeli
koncepcyjnych ha podstawie analizy pearsonowskich charakterystyk momentowych.
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O HeKOTOPOM METOole ONpe/IeIenHs NAPAMETPOB KOHHENTY-
AJBABIX Moje/eil Tedenuss B OTKPLITOM pycJie

PaccMoTpensl OCHOBHBIE METONEI MOIENHMPOBAHHA THAPOJOTHYECKHX SB/ICHHN Ha IIPHMEpPE
Ipolecca TeYeHHs B OTKpEITOM pycne. ITocTasnena 3amava cHHTE3a HMOYIECHON XapaKTepHCIHKH
IS HEROHTPOIMPYEMBIX BoHocOopHEDX Oaccelimos. MccnenopaHa BO3MOJKHOCTE OIEHKH IADa-
METPOB KOHUENTYAIBHBIX MOJeNell Ha OCHOBe YCJIOBHI SKBHBATEHTHOCTH cHcTeM. Ilpencrannesns
TeOpeMbl H 3aMevyaHus 00OCHOBHIBAIOIIHAE METOM COITIACOBAHHA MOMEHTOEB HMITYJIBCHEIX XapakTte-
PHCTHK cHCTeM. Mcmone3yd 5TOT METOH OnpefesieHbl 3HAYeHWd IIapaMeTPOR HKBHBANICHTHBIX
KOHUENTYAIbHBIX MOJeNel HAa OCHOBe (M3AWYECKHX XAPAKTEDHCIWK TEHEHHS B OTKDBITOM DPYyCle.
PaccMoTpena BO3MOX HOCTh BbIOOpa CTPYKTYPHl KOHUENTYAT-HBIX MOIENEH Ha OCHOBE AHAH3A
OHPCOHOBE!X XaPAKTEPHCTHK MOMEHTOB.




