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The the 1ry of linear (discrete-time) dynamical systems has been definitively formulated from the 
algebraic viewpoint in the author's fundamental contribution [3]. The results obtained make it possible 
to identify the "state" of a dynamical system with the "memory" which the system possesses about 
a given input. Hence the "state" is a special feature of an input "pattern" which may be identified 
by the system. 

This paper is concerned with extending these results to the theory of nonlinear systems. 

Basic elements of the algebraic theory of multilinear systems are given. They indicate a great 
.complexity of such systems. Some consequences concerning nonlinear-filtering, pattern recogni­
tion, and nonlinear Fourier analysis are briefly discussed. 

Preface 

This paper was written in May- August 1968. It was first presented publicly in 
September, 1968 at the IFAC.International Symposium on Technical and Biological 
Problems of Control, held at Erevan, Armenian SSR, USSR, and was subsequently 
published in Russian in the proceedings of this symposium. The precise reference is: 

"Raspoznavanie obrazov polilineinymi mashinami", in Trudy Mezhdunarodnogo 
Simposiuma po Tekhnicheskim i Biologicheskim Problemam Upravleniya, vol. B, 
pages 7-29, Izdatel'stvo "Nauka", Moskva, 1971. 

For several years, the problem of realization of multilinear systems stood es­
sentially as outlined in this paper. In the last 5-8 years, however, attempts have 

*)Now (1979) at Center for Mathematical System Theory, University of Florida, Gainesville, 
Fl. -32611 and Mathematische Systemtheorie, Eidgenossiche Technische Hochschule, CH-8092 
Ziirich, Switzerland. 
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been made to improve the theory. Unfortunately, some of these attempts have 
smuggled certain misconceptions into the literature. The situation is at present 
confused . It was therefore thought useful to publish here, for the first time in a good 
English translation, the original 1968 paper. 

Aside from correcting minor misunderstandings and printing errors, the present 
version faithfully renders the Russian text into modern idiomatic English. For the 
benefit of the Western reader, we have added some comments 2.nd references, indi­
cated by [ ] or footnotes 1, 2, .... Footnotes referenced as I , II, ... are fr.om the 
original version. 

The difficulties raised by the examples in this paper <:" re r.ot yet fully resolved. 
The reader may find the elementary exposition contained ];ere easier to follow 
than some of the more advanced material which is now ceing published. In the 
perspective of ten ·years many of the difficulties, so mysteriou ~ in 1968, now appear 
in much sharper focus. 

In possession of the original manuscript of this paper and after its public presen­
tation, in December 1968 Arbib [13) has given an interesting reexposition of some 
of the results of this paper, without however introducing essentially new ideas. 
The reader may find that his account throws further light on the some of the pro­
blems discussed below. 

1. Introduction 

We g1ve here a progress report about recent research in algebraic system 
theory. This field (which is quite new) emphasizes the application of modern 
mathematics and the tools of abstract algebra to the formulation, study, and 
solution of specific problems arising in dynamical systems [written in 1968]. 
It would not be wrong to call our field also applied algebra, emphasizing 
thereby the fact that it deals with a new aspect (application) of an old body 
of knowledge (algebra). For general background information, see [1; especially 
Parts Ill and IV) and [2). 

The theory of linear (discrete-time) dynamical systems has been completely 
settled from the algebraic point of view by the writer's fundamental theorem [3] 
that the state space of such a system admits the structure of a finitely generated module 
over the ring K [z] of polynomials in one variable z with coefficients in a fixed number 
field K. This result allows us, in particular, to characterize the states of a linear system 
in an intrinsic way using the language of polynomials. Further' interesting implica­
tions arise in model building, even in theoretical biology [4-5], which are recalled 
in the next section. Briefly, the picture which has emerged is the following. The 
"state" of a dynamical system may be identified with the "memory" that the system 
retains of a particular input; in other words, the "state" is that specia.l feature of 
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an input "pattern" which the system is capable of "recognizing". While the intuitive 
description of a state in terms of an iriput may be very complicated (this should serve 
as a warning to modelmakers !), in the linear (and cyclic) case we have a very simple 
characterization:. the state is equivalent to the remainder resulting from dividing 
the input polynomial by the characteristic polynomial of the system. 

It is natural to attempt to extend this investigation to the theory of multilinear 
systems. These systems have been studied quite extensively already, as part ofNorbert 
Wiener's attempts [6] to analyze nonlinear s,ystems by generalized polynomial 
(V olterra-Lichtenstein) expansions. See especially [7-10]. One may state categorically, 
however, that neither Wiener nor his followers have been able to obtain any result 
of basic mathematical, system-theoretic, engineering, or practical significance. Multi­
linear systems appear as a subproblem of this area, since each term in a Volterra 
expansion of a nonlinear response function induces the response function of a multi­
linear system .. 

In 1966 the writer (in collaboration with U. Passy) began a comprehensive 
attack on this subproblem of Wiener's general nonlinear problem. The first results, 
reported here, give some insight into the extreme complexity of the situation. This 
complexity is undoubtedly at least in part responsible for the failure of earlier in­
vestigations. 

The main features of the algebraic theory of multilinear systems are the following: 

(i) The state space of a multilinear system is most appropriately characterized 
as a variety (= algebraic manifold) einbedded in a linear space of rather high dimen­
siOn. 

(ii) This variety turns out to be abelian and admits the structure of a K [z]-mo­
dule, the1eby generalizing the fundamental theorem of linear system theory. 

(iii) The ideal of the state variety represents intrinsic interconnections within 
the system in a way which is vaguely analogous to the role of the minimal polyno­
mial in representing the dynamics of the system. 

(iv) It is possible to give an explicit characterization of the states as equiva­
lence classes of inputs, but this characterization, even in its abstract algebraic form, 
is far more complicated than in the linear case. 

(v) The state variety may be expliciLly computed. 

Other questions, such as the theory of minimal realizations, are yet to be studied 
in depth. But even the preceding results are sufficient to give a sharp picture of the 
complexity of multilinear systems. Some consequences in regard to nonlinear fil­

. tering, pattern recognition, and nonlinear Fourier analysis are briefly mentioned 
in Sec. 6. 

Many of the topics studied here first arose in conversations with Dr. U. Passy 
(now at Technion, ISRAEL) and Dr. W. R. Nico (Tulane, USA). While all ideas 
presented here are the original work of the author, these early conversations in the 
first half of 1967 had a stimulating effect on the final formalism. The essential results 
were obtained in May 1968, in Paris. The support of Ecole des Mines de Paris during 
this period is gratefully acknowledged. 
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2. Review of the Algebraic Theory of Linear Systems 

The following discussion unavoidably requires a fairly advanced level of mathe­
matical development. We assume, therefore, that the reader is familiar with the 
algebraic theory of linear systems via modules (see [1, Chapter 10]) and that he is 
also acquainted with the rudiments of abstract algebra and algebraic geometry. 
On the other hand, we shall try to emphasize intuitive and conceptual aspects of 
our topic so that he should not be unduly concerned about the precise understan­
ding of mathematical technicalities. [The treatment of these "technicalities" is cer­
tainly incomplete in this paper.] 

A dynamical system may be described in (at least) two fundamentally different 
ways. 

We could specify its complete internal structure, saying exactly how all its com­
ponents are interconnected, how they interact, and how they behave individually. 
We call this the internal or state-variable or axiomatic definition of a system and 
denote it usually by L. A system defined in this way is sometimes also called a ma­
chine, to emphasize the analogy with computers, complex control systems, etc. 

We could also describe a system externally, emphasizing the aggregate behavior 
of all of its components and specifying · exactly what the response of the system 
is to each of a large class of stimuli, but without saying anything about its internal 
properties. We call this the external or input/output or empirical definition of a system 
and usually denote it by f The problems of experimental science, especially those 
of biology (whence the terminology of stimulus/response relationships) are con­
genial to this point of view. In many cases we are interested in constructing L from 
knowledge of a given f We call this the problem of realization. 

To specify a system, we must agree on the kind of numbers with which we shall 
write equations. In applied physics, it is customary to use real numbers R. For us, 
this would be an unnecessary (and perhaps misleading) restriction; it is best to assume 
that the numbers belong to an arbitrary (number) field K. 

We must also specify a time set (values oftime at which the behavim of the system 
is defined). In this paper the time set will always be the integers ; we shall deal only 
with discrete-time systems. 

The input/output map f of a constant linear system (external description!) is 
a K-linear map , 

00 

f:K"'[z]-+ZKP[[z- 1 ]]: w r-+ .}; f(zi- 1 w))i z -i 
j = l 

such thatf(zw)=zf(w). 

Notation: K"' is the m-dimensional vect01 space over K (that is, the vector space 
of all m-tuples with coefficients from K) , Km [z] =polynominals in z with coefficients 
in Km, KP [[z- 1 

)) = formal power series in z- 1 with coefficients in KP. 

Interpretation: an element w of K"' [z] (sometimes called input space and denoted 
by Q) is a finite sequence of vectors inK"' which arrive at the m input terminals of 
our system before or at t = 0; the coefficient of the term zk corresponds to the m 
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input symbols (EK) applied at t= -k (note minus sign); f(w)=y is an element of 
KP [[z- 1 ]], that is, a formal power series, whose coefficients correspond to the output 
of the system after the application of the input. (There is an implicit assumption 
in this setup that the input is identically zero for t > 0.) In particular, the coefficient 
of the j-th term in f(w), denoted as (f(w))f, corresponds to the p symbols (EK) 
appearing the p output terminals of the system at timet= j. (Again, z is a time-marker 

· in that the coefficient of z-i gives the output at t=j.) As a special rule in defining J; 
we assume that (f(w)) 0 is identically zero0 . Thus (f(w))1 is the first observed output, 
appearing at t= 1, in response to all the inputs fed into the system at all t::;;O. The 
use of z as a time-marker and the division of the time set into disjoint subsets, one 
(t::;;O) allotted to the inputs and the other (t>O) to the outputs, is a very convenient 
metamathematical convention. It does not restrict the generality of our setup and 
corresponds to the usual classical framework of linear system theory. Notice that f 
does not give us directly the output values of the system for t::;;O, but these values 
can be compmed indirectly whenever needed. 

The role of algebra is a consequence of a number of fundamental t.heorems 
(see [1, Chapter 10] for more detail). 

Let E be the equivalence relation defined on K'" [z] by 

wE6:J iff f(w)= f(6:J). 

This means that two inputs w, 6:J are £-equivalent if and only if (they both vanish 
for t > 0 and then) they produce the same output sequence after t = 0. 

(f(w))l =(f(CJ))J, (f(w))2 =(f(6J))2 , ··· · 

Let us recall that that two inputs w, 6:J are Ne rode equivalent (see [1 J) if and 
only if (they may differ up to t = t 1 and are arbitrary but equal for all t > t 1) they 
produce exactly the same output sequence after t=t1 ." The Nerode-equivalence 
classes in Q associated with a given input/output map f (which may be even nonli­
near, in general) are the precise notion of state when the system is defined in external 
form. 

It is clear that Nerode equivalence implies E equivalence. In the linear case, 
the converse is also true and we get the fundamental 

REPRESENTATION THEOREM. Two inputs w and 6:; to a linear system are Nerode equi­
valent if and only if they are E equivalent. 

We denote the £-equivalence class of w by [w]. As a result of the representation 
theorem, we can call the set of £-equivalence classes 

the state set off Moreover, Xf is also a K-vector space. Since knowing the state 
of our system is equivalent to specifying a point in the K-vector space Xf, it follows 

1) Some authors do not require this. In any case, the value of (f(w))0 is of no interest as far as 
the construction of the theory is concerned. 
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that .the state can be represented by finitely many numbers (each inK) if and only 
if Xf is finite dimensional. Since each number in Xf must be stored in the machine 
~f which Jealizes f, we are led LO the second fundamental result : 

FINITE REALIZATION CRITERION. A linear input/output map f has a finite-dimensional 

realization if and only if the K-vector space Xf is finite dimensional. 

Necessity is clear. To prove sufficiency, one makes use of the third result, which 
we call 

FUNDAMENTAL THEOREM OF LINEAR SYSTEM THEORY. The natura/ state space Xf 
of a linear input/output map f admits the structure of a K[z]-module. 

To define a K [z]-module over a set X, it suffices to (i) make X into a K-vector 
space (here this is trivial) and (ii) define a scalar product z · x. Step (ii) is possible 
because of the "shift" property f (zw) = zf ( w ). The only correct definition of the 
scalar product is the obvious one: 

z· [w]:=[zw]. 

Because of the possibility of multiplying by z, we can express the internal dyna­
mics of the system very succinctly. Let wE K"' [z] be the input to the system initially 
and p E Km the next input symbol. Then the state transformation induced by p is 
clearly given by 

[w] H [zw+p]=z · [w] + [p]. 

We call p ~--+[p] the read-in map and z: [w] ~--+z · [w] the free state transition map of 
the realization ~f off Read: The state at t = 0 is the equivalence class [w] of the 
input w. The state at t = 1 is the equivalence class of the same input followed by the 
symbol p but thought to have been applied 1 unit of time earlier (stationarity !), 
that is, the equivalence cla:ss [zw + p ]. To put it differently, viewing z as a time marker 
means that z defines a map 

z: t~--+t+1 ; 

while viewing z as an opeiator acting via scalar multiplication means that z defines 
a map 

(0 input) 
z: present state 1---> next state. 

So the second ope1ation, essential for dynamics, is a direct algebraic conse­
quence of the first operation, the shift in time. With the aid of the module structure' 
on Xf, the proof of the sufficiency of the finiteness criterion becomes an abstract 
triviality. We shall give the essential details of the construction of a realization of 
a multilinear input/output map in Section 4. 

To give an intuitive description of the importance of the module concept for 
linear systems, it is best to consider the special case m =p = 1 (the general case turns 
out to be only slightly more general!). Then, if Xf is finite-dimensional, the homo­
morphi&m theorem shows that 

.X:r~{equivalence class , of polynomials in K[z] modulo a fixed polynomial Xf}. 
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The polynomial Xf is a well-known and classical object: it is called the charac­
teristic polynomial of f. Let n (ordinary polynomial in z) be any input signal in 
K [z]=Q. Our system I:f "recognizes" n by "storing" it as the state [n ]. This means, 
according to the above characterization of Xf, that we may think of the stored data 
as any polynomial ii such that n - ii=O modulo Xf (that is, n-ii is divisible by Xf). 

The simplest choice for ii is to divide n by Xf and then designate the remainder 
as if.. Since the degree of the remainder is less than n, the degree of xf, we see that 

If m = p= 1, the elements of the state space Xf off are polynomials inK [z] of 
degree less than n =dim Xf = deg Xf; each [n] is represented by the remainder ii. 

In other words, a linear system "remembers" by dividing by Xf and keeping the 
remainder. If n and Xf are polynomials of high degree, the division process does 
not have any obvious intuitive significance, even though it is a very simple operation 
from the algebraic point of view. This means that even the simplest class of dynamical 
systems, the linear ones, cannot be analyzed properly without making some conces­
sions in the direction of abstract algebra. Some specific examples of this "pattern 
recognition" property of linear systems may be found in [1]. 

The possibility of representing states as polynomials suggests certain specific 
ways of setting up bases ior a coordinate system in the state space. For instance, an 
obvious basis is [1], [z], ... , [z]" - 1 , because every polynomial n satisfies 

n(z)=~ 1 + ~zz+ ... +~nz"- 1 mod Xf 

(remember: n = deg x1 ). In particular, it is interesting to compute the coordinate maps 

nH~,(n) 

which assign numerical values to certain features of the input pattern (=polynomial) 
n. (Of course, these maps depend on the ·choice of the basis. In other words, while 
the statement "If remembers n as ii" is coordinate-free (or basis-free), the inter­
pretation of the numbers ~' (n) as input properties depends on the choice of the 
basis.) 

To see what actually happens, consider the following case. 
11 

Suppose that X (z)= n (z-a.)' a, E K, no two a, equal. A convenient basis 
i =l 

for the n-dimensional vector space of all polynomials modulo x is given by the set 
of polynomials {e, (z)= x (z) /(z-a,), i= 1, ... , n} . Any polynomial n may be written 
uniquely modulo x as 

n 

n (z) = }; ~' (n) e, (z) mod x ,! · 
i= 1 

where the coordinate functions are given by 

~Jn) = n (a,) feJaJ. 

This formula is proved as follows 1 ). Observe first that 

(§) 

'> Here the original derivation has been somewhat simplified. Note that the problem is a variant 
of the Lagrange interpolation formula. 
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Hence, for any n and any j, k the fact ~i (n)=~i (70 implies 

~i ((z- ak) n) = (i ((ai- ak) n) = (ai- ak) ~i (n). 

Since ~i is a linear function on polynomials, it follows that 

~i(n)=~i(n (ai)+(z-ai) a)=~i(n (aJ)=n (aJ· ~i(l). 

To determine ~; (1) E K, observe that 
n n 

e; 0 1 =e; ~ I; ~j(l) ej= 2 ~j (1) n (z-ak) ej 0 

j=l j=1 ki'i 

Using (§) gives 

" 
= L ~j (1) n (aj-ak) ej mod X' 

j= 1 k,, i 

=~;(1) n (a; -ak) e; mod X. 
k#i 

This shows that (; 1 (l)=e;(a;)#O, as claimed above. 

R. E. KALMAN 

In short: relative to the basis {e; (z)/e; (a;)} the coordinate maps m-~~; (n) are 
given by the evaluation of the value of the input polynomial at roots of the character­
istic polynomial, normalized by t(le factor e[ 1 (a;). 

In the linear case, all this may appear to be just a modernized statement of the 
well-known method of partial-fraction expansion used in linear system theory. 
We emphasize, however: 

In any dynamical system, linear or not, the coordinate maps correspond to abstrac­
ting certain characteristic features of the input relative to the basis chosen for the 
state space. The whole problem of realization may be viewed as the problem of effective 
computation of coordinate maps. Even if the internal structure of a system is known, 
its operation in response to inputs (for instance, its pattern recognition properties) 
cannot be fully understood until it is possible to say exactly what the value of each 
state variable says about the corresponding equivalence class [w] of inputs. 

The importance of this general principle will be clear when we attack the· problem 
of computing coordinate maps for a new class of systems, namely those specified 
externally by a multilinear input/output map. 

3. Multilinear Input/Output Maps 

In analogy with the liqear case, we now define a multilinear input/output map f 
of degree r over a field K as an r-linear map ro (over K) 

f:K"''[;1]X ... xK"'~[zr]~z- 1 KP[[z- 1 ]] 

which commutes with the shift operator. 

u) An r-linear map is" linear in each of its r arguments separately when the remaining r-1 
arguments are held fixed. 
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INTERPRETATION: This is a system with r input channels. Each input channel 
receives a vector polynomial wi (zi). 1he outputf(w1 , ... , w,) is an infinite sequence 
of vectors (f(w1 , •.• , w,)) n (f(wl> ... , w2)) 2 , ••• in KP, occuuing at t= 1, 2, ... 

Intuitively, ''r-linear" means that the various scalar signals entering at the r 
input channels are eventually all multiplied together, so that the. output is a sum of 
proqucts each of which contains one and only one factor from each channel. The 
mathematical pr<?blem is to explicate exactly how these multiplications take place 
within the system, using only general .facts (such as "multilinear"). We shall be 
concerned mostly with bilinear (2-linear) maps. 

The simplest example of a bilinear map is the product of two linear input/output 
maps. If g1 and g 2 are linear input/output maps, the product is defined whenever 
P1 =P2 =p. Then f = g1 X g2 is given by 

CO 

j= 1 

where (g; (w;))i is the j-th term in the output sequence of g; (w;) and the multipli­
cation is the componentwise product of two vectors in Kv. (Obviously this defini­
tion extends to the product of any finite number of linear maps, etc.) 

In accordance with a tradition in mathematics which has become very strong 
since 1950, it is interesting to associate with any r-linear map f a linear map f

0 
z) 

said to be induced by f The map f 0 may be regarded as a "universallinearization" 
off: the map / 0 can be constructed for any r-linear f, it is linear, and its properties 
in some sense mirror properties off We set 3 ) 

! 0 (w 1 • • • w.): = f(w 1 , • • ·, w.) . 

This defines f 0 : K"'' [zt1 0 · · · 181 K"'' [z.J~z- 1 KP [z] on polynomial vectors 
expressible as a tensor product w1 (z 1) ® · · · 0 w, (z,) m). The definition is then exten­
ded by linearity to sums of such products, i.e., to the tensor space. 

Useful as this procedure is in pure algebra, it fails to work in many cases in 
system theory. The reason is simple: althoughf0 is a linear map, it is not the input/ 
output map of a linear system in the usual sense. In other words, Q 0 =K"'' [z1 ] 181 · · · 
· · · ® K"'• [z.], although a linear space, is not naturally isomorphic with the usual 
input space D = K"' [z]; even though w1 (z1) 0 · · · 0 w. (z,) may be viewed as an 
input, there is no natural way of viewing a sum of such terms as an input (to the 
multilinear system defined by f). 

In spite of these serious conceptual difficulties, we might still define (in a rather 
.abstract sense) a "tensor machine" associated with f 0 . The procedure is as follows. 
We consider the equivalence relation £ 1 •••• (analogous toE in Sect. 2); we say that 

(wt • • • w.) E1 ..• r (Q>l • • • a>.) 
if and only if 

2
) / 0 is called the tensor map. 

3
) The following paragraphs have been revised from the original for greater clarity. 

m) This means the list (vector) of all products containing exactly one entry from each of the 
·vectors w1 (z,). 
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The equivalence classes [· · · ]1 ... r of E 1 ••• r form a module Xf® with respect 
to the ring K [z1 • • • zr] isomorphic with K [z]. 

The module Xf® has a natural and well-defined read-out map 

h: Xf® -+KP: [oh ••• wrL ..• r~(/0 (wl · · · Wr))l. 

On the other hand, as already noted, Xf0 has no natural read-in map; it is not 
clear how a sum of products Oh • • • Wr can be interpreted as an in.put which, accor­
ding to our basic convention, must be applied serially in time. 

[We could adopt an arbitrary convention that the time of occurrence of inputs 
is given by the function t defined by the relations 

-t (0, ... , 0)=0, 

I ij-1 

-t(i1 , . •. , ir)=( >~ ri)+P1q(ib ... , ir), 
j~O 

where li l = i1 + · · · +ir and the value of pq (i1 , . .. , ir) is k if (il> ... , i,) is the k-th 
member of the lexicographically ordered list of nonnegative integer r-tuples with 
li l =q. Thus t is an isomorphism between the nonnegative integers and r-tuples 
of such numbers. (Of course, there are many such isomorphisms and there is no 
basic reason for preferring any one over the other.) With this convention, we have 
that 

via the rule 

One of the guiding principles of the theory to be developed in the next section 
is to systematically utilize tensor machines without having worry about such an 
arbitrary definition of the read-in m~p.] 

Let us now mention a u&eful cor;mection between "product" and "tensor pro­
duct", noted informally as 

x(Y, XYz) ® cxg, ® Xg2. 

In other words, we can obtain a realization of the bilinear map g 1 X g 2 by 
taking (minimal) realizations ~g, and ~g2 of g1 and g2 separately, forming the tensor 
product ~g, ® ~g2 . (whose state space is of course Xg, ® X g), and then reducing 
the system to a minimal one. Example 2 of Section 5 displays a case where such 
a reduction actually occurs. 

For many purposes, it is desirable to define an r-linear input/output map via 
formal power series. This gives a concrete rule for computing values off We asso­
ciate to any r-linea1 input/output map f the power series 

4
) In these formulas, some minor printing errors of the original have been corrected 
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(More concretely: this power series is a formal r-dimer;sional discrete Fourier 
transform of the impulse-response function generated by f.) Then the output is 
computed by the formula 

where fJj, ... ,i is determined from 

Z 1 w 1 • • • w ='f.[J. . z-i, ... z - i,. r t 1 , .• • , tr 1 r . 

The last requirement implies that the coefficients of Z 1 are to be defined ass) 

Cf.l, . . . ,1 = /(1)1 ' 

The rule for computing the output can be interpreted as follows. Multiply Z 1 
by the (tensor) product of input polynomials, recompute the resulting power series, 
and retain only the "diagonal" terms, that is, the coefficients . of (z 1 ••• z,) - i. 

Instead of dealing with power series, it is in many cases more convenient [10] 
to represent Z 1 as a rational function involving ratios of polynomials in z1_, z2 , ... , 

z1 z2 , ••• , z 1 z2 • • • z,. Such a transfer function is of course equivalent to a formal 
power series. See the examples in Section 5. 

4. Construction of Multilinear Machines 

To keep our notations manageable, we shall assume from now on that 

·m=p=l and r = 1. (4.1) 

This is clearly the simplest nontrivial case. Since it is in principle very easy to 
extend our constructions to the most general case, we shall announce our main 
results without special reference to ( 4 .1 ). This section should be read in parallel 
with Section 5 which gives several concrete examples of the abstract computations 
defined below. 

Given a bilinear response fw1ction f, the construction of a system (machine) 
re11-lizing it proceeds as follows . 

Step 1. We determine the linear system / 0 . More explicitly, 

(i) We determine the equivalence classes [n 1 n 2 ]l2 of the equivalence relation 
E1 2 on K [zd ® K [z2]~K [z 1, z2 ]. 

(ii) The set X 1 2 of equivalence classes is made into a K-vector space (by the 
usual procedure in the linear case); then we choose a convenient basis (of equivalence 
classes) in X 12 • 

(iii) We determine the coordinates of the image of each element of K [z 1 ] ® K[z2 ] 

under the natural projection K [zd ® K [z2 ]-?X:12 • 

5
) Theses formulas were not explicitly mentioned in the original version of the paper. 

' 
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Step 2. We introduce two new equivalence relations on the subspacesK[zd @{l} 
and {1} @ K [i2 ] of K [zd @ K [z2 ], as follows: 

n;E;fi; if and only if f 0 (z: n; (z;)) = f 0 (z:n; (z;)) 

for alll~0 6 l and i= I, 2. It is clear that£1 or E2 equivalence implies E12 equivalence! 
(In fact, this is the principal creative element involved in these definitions, which 
appear here for the first time.) It follows that we have the natural projections 

[nd 1 ~---t[n 1 ·1] 12 foralln 1 EK[z1 l, 

[n 2 ]z ~---t[l· n2 ) 12 for all n 2 E K [z2 ]. 

The equi\ alence classes under E 1 and E2 are denoted by X1 and X 2 respectively. 
Next, we determine module structures on X 1 and X 2 with respect to the rings K [z1 ] 

and K [z2 ] and then compute explicit formulas for the coordinates of the image 
under the maps K [z1 ]~X1 and K [z2]~X2 • 

Step 3. To be specific, we denote the coordinates of[n1 n2 ] 12 by c;- 1 , ... , ~" 12 ' those 
of [n1 ] 1 by 'f/ 1 , ••. , 11n,, and those of [n2 ] 2 by (t> ... , (n, · (The case where at least 
one of the vector spaces X12 , Xu X 2 is infinite-dimensional could occur, but we 
shall not be interested in it here, in view of the finiteness criterion stated below.) 
Let N=n 12 +n 1 +n2 • Then X12 EBX1 EBX2 ~KN and we have the collection of coor­
dinate functions 

given by 

We shall call X12 EBX1 EBX2 the parametrized state space of the basic bilinear 
response function f and denote it by xf. 

We observe that the last two groups of coordinates in KN are linear functions 
of (nl> n2 ), while the first group is a bilinear function of (nt> n2). The last statement 
follows froin the fact that the first group of coordinates is obtained by composing 
the coordinate map K [zd @ K [z2]~K"'2 (which is linear, as are all coordinate 
maps) with the linearization map @: K[z1 ] X K[z2]~K[z1 ] Q9 K[z2 ] (which is hili­
near). These statements prove: The image V1 of p1 in KN is an (affine) variety 7> 

( = algebraic manifold, not necessarily irreducible) in KN. Clearly V1 is intrinsically 

6
) The correct condition is actually l> 0. This error (which was not a printing error in the ori­

ginal version) has serious consequences in that the construction in the case I ;;:;. 0 would yield a reali­
zation which is not necessarily observable. Observability questions were not studied in the present 
paper; see Kalman [14]. 

7
) The intuitive idea which is supposed to justify this statement is that the image of every map 

K"-+KN given by polynomial functions is an affine variety. Unfortunately, this is not preci­
sely true as shown by the counterexample K 2 -+ K 2

: (x, x2 ) 1-+ (x 1x 2 , x2). In modern terminology: 
the image of a morphism of an algebraic set is not necessarily an algebraic set. Instead of conside­
ring the set V" which may not be a variety, we must study its closure Vi in the Zariski topology, 
which is (by definition) the smallest closed (affine) algebraic set containing V1 . See Dieudonne [15]. 
What remains true is that at this point algebraic geometry enters the picture in an essential way. 
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defined by f (independent of the chosen coordinates, hence of the specific form 
of the coordinate map). We shall call Vf the variety of j 8 l. Note that Vf corresponds 
to the natural state space Xf in the linear case. 

The main task in this step, then, is to compute Vf explicitly, from the know­
ledge of Pf· This may be done by establishing certain relationships of constraint 
between the coordinates. See the Examples of Section 5 for illustration of the 
details. 

Step 4. The basic problem of realization theory is to write down the state-transition 
equations (equations of motion). It will be shown below that a point in Vf c Xf 
uniquely specifies the state. The problem therefore amounts to the following: Sup­
pose at time 0 the input sequence received by Channel 1 is a polynomial n1 , as in 
the linear case, and that the input sequence received by Channel2 is a polynomial n2 • 

After one step in time, a new symbol p 1 E K is received at Channel 1 and p 2 is re­
ceived at Channel 2. Hence the new polynomial seen by Channel 1 is z1 n1. +p1 

and that seen by Channel2 is z2 n2 +p2 • At the next step, the new symbols received 
are (p~, p;), then (p';, p;), and so on. To write down the state-transition equations 
for the machine 'f.f which realizes f (thereby specifying 'f.f) is equivalent to filling 
in the dotted arrows in the commutative diagram 

Pf 
(nu nz) - -+ 

I receive 
I (pl,P2) 
+ Pf 

(zlnl+PL>Zzn z+Pz) - -+ 

I receive 
I (p~,p;) 
~ Pf 

(zi n1 +z1P1 +p~, z~ nz+Z1Pz+P;) --> 

I receive 
I (p~' ,p;') 
+ 

coordinates 

: equations 
: of motion 
t 

coordinates 

; equations 
: of motion 
+ 

coordinates 

: equations 
: of motion 
+ 

The transition equations are written down separately for each group of coordi­
nates. In the spaces X 1 and X2 they are computed in the usual way using the module 
structure; they are given by the linear equations 

[nd1 f-+ [z.l n1+P1J1 =Z1 [n1J1 +P1 [1]1, 

[nz]z f-+ [zz 7rz + Pz]z = Zz [nz]z + P2 [l]z · 

8 ) It is an extremely surprising fact (unknown in 1968 but nevertheless explicitly verified by the 
two examples of Sec. 5) that Vf, the closure of Vf, is always isomorphic to a linear space K", where n 
is the minimal number of state variables necessary to realize the system using only linear subsystems 
and real-time multiplication (see .Kalman [161). 

2 
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In X 12 , the computation is more complicated: 

[n 1 nzJ12 f--+ [(zl n1 + Pt)(Zz 7rz +Pz)Jtz = Zt Zz [nl 7rz]tz + [Pt.Pz]12 + 
+ [pz Z1 ntJ12 + [PtZz nzJ12 9). 

The first two terms are computed in the usual way using the module structure 
in X12 ; the last two terms are first computed in X1 and X 2 respectively and then 
projected into x12. 

Intuitively speaking, the purpose of keeping track of information stored in X 1 

and X 2 is solely for the purpose of evaluating the transition map in X12 , because 
this transition map cannot be evaluated in general using only the knowledge of the 
equivalence class [n1 n2 ) 12 of(nt. n2 ). 

Step 5. The explicit specification of the state transition map in Xf already incor­
porates the input information (Pt.Pz), (p~,p~), .... To complete the specification 
of l:f, it is necessary to specify what the read-out function h is. Since f is bilinear, 
it suffices to define h on x12 (that is, h is identically zero on the subspaces xl and 
X 2 of Xf). The obvious definition is 

h: [nl ntJf--+(f® (nt nz))t =(f(nt, 7rz))J· 

The definition of E 12 shows that h is a well-defined function. 

Step 6. As a result of the previous steps, the function (n1 , n2)~(f(n1 , n2)) 1 is 
now explicitly given as a composition of two types of functions: a polynomial func­
tion of coordinates and the coordinate functions. Interpreting the coordinate func­
tions as corresponding to bilinear or linear input/output maps, it remains necessary 
to check whether or not these maps can be realized using a still smaller state space. 
If not, then the state space Vf as originally defined is a minimal one. If -so, some of 
the state transition equations found in Step 4 can be simplified and the dimension 
number N can be replaced by a smaller one 10

). The full theory of minimal realiza­
tion is not yet available. 

The mathematical content of the preceding prescriptions can be appreciated 
better by stating now the three main theorems of the paper. 

9 ) These equations are essentially the same as those published later by Arbib [13, p. 700-710], 
using a different notation. He obtained our result by embedding the Nerode equivalence classes 
into linear spaces (which we got automatically via the module constructions), without studying 
the important question of whether or not the Nerode classes coincide with this linear embedding. 
The dimension of this embedding is not minimized by Arbib (see next several footnotes). 

10) In the case of the functions 1/i or (k linear dependence is avoided by the standard procedures 
for the realization of a single input/single output linear system. In the case of the functions .;, how­
ever, the situation is much more subtle. This point is overlooked by Arbib [13], whose universal 
realization of a bilinear input/output function (see [13, Fig. 1]), may not have the minimal number 
of state variables. In our Example 1 of Sec. 5 the realization built according the preceding equations 
has four state variables, but these can be reduced to three because the functions .;1 and .;2 are 
algebraically dependent on 17 1 and ( 1 via the identity .;1 =111(1 • The realization equations given 
above always work but have no canonical (intrinsic) significance. 
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REPRESENTATION THEOREM . To know the Nerode equivalence class of (n 1 n 2 ) it is 
necessary and sufficient to know 

This theorem is the appropriate generalization of the theorem called by the 
same name in Section 2 11 l. It extends to arbitrary r, m, and p . 

Strictly speaking, [zi n;]i = [zJt;]i does not imply [n;]i = [niL but nevertheless 
this implication is true (for various reasons) in most practical cases. Instead of the 
state parametrization provided by the Representation Theorem, it is therefore often 
more convenient to use the equivalence classes [n 1 n2 ] 12 , [n1 ]t. and [n2]/2 l. (This 
is actually how we have defined above, in Step 3, the parametrized state space Xf.) 
In any case, we have the following result, corresponding exactly to the same-name 
theorem in Section 2: 

FINITE REALIZATION CRITERION. A bilinear input/output fimction f has a finite­
dimensional realization if and only if each of the K-vector spaces of equivalence 
classes 

Xu = {[w]12 : wEK [z1 ] Q9 K[z2 ]}, 

X 1 ={[ni]; : niEK[z;]} , i=1,2, 

is finite dimensional. 

The sufficiency of this criterion is proved by our construction procedure sk~tched 
above. Its necessity is a rewording of the representation theorem 13 l. It should be 
pointed out that dim X 12 < oo by no means implies that either dim X1 < oo or dimX2 < 
<oo . Again, this theorem extends to arbitrary r, m, and p. 

The most important single result of the theory can now be stated in a way that 
does not even require specific reference to r, m, or p: 

FUNDAMENTAL THEOREM OF MULTILINEAR SYSTEMS. The state set of a multi/inear 
input/output function f is an affine variety Vr which is intrinsically defined by f More­
over, Vf is abelian and admits the structure of a K [z]-module. 

11 ) The reader who has difficulty in performing the easy verifications required to prove this 
theorem may refer to Arbib [13] where the complete argument is given. 

1 2
) There is a very subtle point involved here. The determination of the equivalence classes 

according to the Representation Theorem implies that all these equivalence classes are observable­
an important remark which should have been included in the 1968 version. If we replace [z, n,], , 
by [n,],, then observability may be lost (see Kalman [14]). 

13) This is a seriously incorrect statement. Since the equivalence relations £ 1, £ 2, and £,2 were 
introduced arbitrarily (not canonically), it is conceivable that the desired finiteness property of the 
Nerode equivalence is· not inherited by the E,. For example, a finitely realizable (bilinear) system 
may have a Hankel matrix of infinite rank. Nevertheless, the Finite Realizabi lity Criterion is still 
a necessary conditon. A through discussion of the subtleties involved here will be found in Kalman 
[14]. ' 
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The abelian structure on Vf is obvious: it is induced directly from the abelian 
structure on the input space K"'' [z1 ] x ... x K"'' [z,]. The fact that Vf admits a K [z]­
module structure on Vf is basically a consequence of the fact that the passage of 
time t H t+ 1 induces a one-step state transition which sends Vf into itself. Intuiti­
vely, this result means that algebra can decompose the structure of multilinear 
systems abstractly into two pat ts: the dynamical part is always linear and is given 
by the K [z]-module structure on Vf; the nonlinear part is ''orthogonal" to dynamics 
and is given by the ideal of the variety Vf. In other words, the module gives at once 
all the dynamical ''modules" (boxes) embedded in the &ystem, while the variety 
tells us how they are interconnected 14J. 

14
) The statement of this theorem and the discussion of the last paragraph are much too impre­

cise. However, the basic idea is correct (see Kalman [16]). 


