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We shall no.w work out in detail two simple examples. They will illuminate 

several aspects of the abstract constructions discussed so far. In each case, the 

field K will be the real numbers R . We _shall denote polynomials in R[zd by nand 

polynomials in R[z2 ] by a; more explicitly, these polynomials are written as n (z1)= 

= }; n" z~ and a (z2)= .2; a" z; . 
k ~ O k ~ O 

Example 1. Consider the bilinear function f defined by the formal power series 

}; [ak- 1 z;k] [bl- 1 z;'] (c"'- 1 (z1 z2 )-"'], . a, b, CE R. (5.1) 
k,l,m > O 

This power series corresponds to . the tr<1:nsfer function 

(5.2) 

We recognize at once that f may be realized by· the tensor product of the system 

1/(z -a) with the system 1/(z-b), followed by the system 1/(z-c). We shall deduce 

this fact via systematic calCulations: 

a. The equivaience relation E12 • We find that there are precisely two R-inde­

pendentequivalenceclasses, whichmayber,epresented by [1]12 and [(z1 -a)(z2 -b)]12 • 
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To prove this, we note first that n (z1) £ 12 n (a) and a (z2 ) £ 12 a (b); this is immediate 
from (5.1). Moreover (see the denominat01 of (5.2)) 

OE12 (z1 Z 2 - c) (z1 - a)(z2 -b), 

0£12 z~ z; (z1 - a) (z 2 -b) if , k=!=l. 

Consequently, we get by induction 

for all k, l ~ 0. 'r'hus, if we write, 

(where ft is the polynomial ft (z1)=(n (z1)-n (a))/(z 1 - a) and fj is defined similarly), 
it follows that 

where the eo Jrdinate functions are qiven by 

~ 1 (na) = n(a)a(b) (5.3) 

and 

(5.4) 
k ;;, O 

Formulas (5 .3- 4) completely determine the vector-space structure of X12 re)ative 
to the basis [1] 12 and [(z1 -a) (z 2 - b)]12 . Remember that X 12 =Xf®" 

b. The equivalence relation E 1 • There is a single R-independent equivalence class; 
we represent it by [1 ]1 . Clearly 

in other words, the coordinate function is 

11 1 (n)=n(a). (5.5) 

c. The equivalence relation E 2 • The analysis is the same as for £ 1 . We have, 
therefore, 

( 1 (a) = a (b). (5 .6) 

Clearly, N=dim X12 + dim X1 + dim X2 =4. 

d. The map p: R [ztJ x R [z2 ]-+X12 EBX1 EBX2 =RN. From (5.3- 6) we get 

p : (n, a) r-> ( n (a) a (b), ~2 (na), n (a), a (b)). 

We see easily that ~2 (na) = ~2 (ftfj); that is,~; is independent of n(a) and a(b). 
Hence the only relation which exists between the coordinates is the obvious one: 

~ 1 (na) = 11 1 (n) ( 1 (a). (5.7) 
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In particular, we have now proved: The variety Vf off is the 3-dimensional hyper­
surface in R 4 corresponding to the prime principal ideal R [zh z 2 , z3 , z4 ](z1 -z3 z4 )= 
=l(Vf). 

e. The internal equations of motion of the system. In X1 and X 2 they are obtained 
by inspection. We replace the polynomials n, a by 

where p and s respectively are the new input symbols occurring in Channels 1 and 2 
at t=O. In one unit of time we have then the state transitions 

[nJ1 ~---+ [zl n+pL =(an (a)+p) [lh, 

In X 12 the calculations are more intricate: 

[na] , 2 ~---+[(z1 n+p)(z2 a+s)] 12 

• =[z1 z 2 na] 12 +[z1 ns] 12 +[z2 apL 2 +[ps]12· 

=z1 z2 [na] 12 +sz1 [n] 12 +pz2 [a] 12 +[ps] 12· 

=~1 [zl ZzJ1z+~z [zJ Zz(Zl-a) (zz-b)]12+ 

+(as n (a)+bp a (b)+ps)[1]12· 

=((a1JI+P) (h(1 +s)+ab (~ 1 -1Jr. (r.)) [1] 12 + 
+(~1 +c~z) [(z1-a) (zz -b)J12. 

The read-out function, which has played no role in these computations, is given by 

(5.8) 

f. The reduced internal equations. In view of the algebraic relation (5.7) and the 
fact that ( 1 is not involved in the computation of the output (see (5.8)), we can 
write a set of minimal equations for the system in the form 

I 
(a) 
(b) 
(c) 
(d) 

( 2 (t+l)=c ( 2 (t)+1Jl (t) (1 (t), 

1Jr. (t+l)=ar,r1 (t)+p, 

C1 (t+l)=b ( 1 (t)+s, 
y (t)=~2 (t). 

(5.9) 

The "mechanization" of these equations requires precisely one multiplier (in 
(5.9a)). Notice that the realization provided by (5.9) corresponds to what we expec­
ted to obtain, given the special form of the transfer function (5.2). The system is 
shown in Fig. 5.1. This realization is characterized· by the fact that two stored (state) 
variables occur before the multiplier and one after. 
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2 

F igure 5.1 

Under certain circumstances, a minimal realization may not be unique; in this 
example, the property mentioned iri the last sentence . above is not preserved when 
b= O. For, if b= O, we can write an alternate set of state equations : 

l 
(a) 
(b) 
(c) 
(d) 

(t (t+1) = (a1J1 (t)+p)s, 
(2 (t+1) = c ( 2 (t) + ( 1 (t), 
1] 1 (t+ 1) = a1J1 (t) +p, 

y (t)=(2 (t). 

(5 .10) 

This system is shown in Fig. 5.2. Notice that the transfer function for Fig. 5.1 
(with b= O) is " .. 

whereas for Fig. 5.2 it is 

(The dot indicates the position of the multiplier.) 
In the second case a cancellation (ztfz1 z2 ) takes place across the multiplier. 

Because of the possibility of such cancellations (reminiscent of similar difficulties 
in linear systems), the "structural" properties of multilinear systems relative to 
the position of the multipliers are not unique, even for minimal realizations. 
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Example 2. We consider now a bilinear function which is the product of two linear 
· functions. Here the expected form of the realization is obvious and yet the details 

of the systematic calculation will reveal some surprising features. The transfer func­
tion of the input/output function is given by 

[ 
z;+z1 +1 Jl z2 

] l 1 1 ]I z2 
] 

zi + 2zi - z 1 -2 z~- 1 = z 1 + 2 + zi - 1 l z~ - 1 . 
(5.11) 

(Since no terms involving z 1 z2 appear in the denominator, this is obviously 
a tensor product of two input/output functions. The function in Channel 1 has 
a 3-dimensional minimal realization, while the function in Channel 2 has a 2-dimen­
sional minimal realization. These facts should be kept in mind in doing the deductive 
computations which follow.) 

a. The equivalence relation E 12 • The output IS a linear combination of four 
basic sequences, as follows 

cz. = (l, 0, 1, 0, 1, 0, ... ) ' 
/3 = (2°, 0, 22

, 0, 2\0, ... ) ' 
y= (O, 1, 0, 1, 0, 1, ... ) ' 
0 = (0, 21, 0, 23

, 0, 25 
' 

... ) . 

Easy calculations show which input polynomials (in R [z1 , z2 ]) correspond to 
which output sequences. We find, for.all k~O, 

r zik/4k~f3, 
I zik+ 1 ~cx.-2·4kj3, 
~ 2k 4k.~ I z1 z2 ~y - u, 

(5.12) 

I z;k+ 1 z2/4k~2J. 

It is clear that dim X 12 = 4. Notice that we have a degeneracy here; if we realize 
each factor in (5.11) separately and then take their tenspr product, we would get 
a 6-dimensional system. The trouble is that the latter system is not a minimal reali­
zation of the (abstract linear) function f 59 • 

An obvious (and useful) choice of coordinates for X 12 is one in which each 
coordinate gives rise to exactly one of the output sequences ex., ... , J. So we let 

x=~1 [z1 +2]12+~2 [lJ12+~3 [fcz1+2) z2 t
2 
+~4 l+ z1 z2 t2. 

To compute the coordinate map fnCJ] 12 f---+ (~n ... , ~4) we write 

1 1 ) 
+ ~ d3l z 2k z21 z (z +2)+~ aC4l z2 ~' z21 z z /4kl. (5.13). 2 kl 1 2 2 1 2 kl 1 2 1 2 J. ' 
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(The reader should verify that the coefficients aW, ... , aiiJ are in fact uniquely 
determined by na.) With the aid of this special representation of the elements of 
R [z11 z2 ] , we find immediately that 

. - ~ (i) ( . (;(na)- L..J aq no') , i = 1, ... , 4. (5 .14) 
k , 1;, 0 

b. · The equivalence relation E 2 . lt is very easy to see that X 2 is 2-dimensional ; 
every~hing is explained by. the relations 

z~k E2 1 and z~k+ 1E2 Z 1 . 

In other wo;·ds 

where 

( ) ~, ( 2 k + 2k + 1) 
a Zz = L..J O'zk Zz O'zk + 1 Zz , (5.15a) 

k;.O 

(5.15o) 
k ~ O k ~ O 

c. The equil .:dence relation E 1 . This is much more complicaterl. Let us note 
first that 

or, more usefully, 

and 
z; (z;- 4) E 1 (z;- 4). 

This suggests using the basis [l]r, [z1 +2] 1 , and [zi-4]1 for X1 . If we now write 

n (z1) = ~ {a~ll+ai2J zik (z1 +2)+ak3J zik (zi-4)} (5.16a) 
k;::::O 

(the ak0 are clearl:y unique!) then 

( ) 
(1) 

1Jl n =ao ' 

iJ3 (n) = ~ a~2l, 
k ;. O (5.16b) 

1J3 (n)= .2; ai3J. 
k ;. O 

Important remark: Notice (from (5.12)) that [z;-4]12 = 0 but [zi-4]1 =FO! In 
other words, the module X1 has a more complicated structure than the correspon­
ding submodule {[n]12 :nE R [zr)} c X 12 ; the projection [n]1 H[n]12 is a nontrivial 
operation; the module structure of X1 gives more information than the module 
structure of x12. 

Clearly, N = 9. 
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Here the relationships between coordinates are rather complex. We shall utilize 
some special tricks related to the definitions of the various bases. Notice that 

1 
zik [zi- 4]1 2 =0 ~nd zik [(zi -4) z2J12 =- 3 · 2 zik [(z1 +2) z2]r 2 for all k~O. Re-

membering this, we see by easy calculations from (5.13), (5.15), and (5.16) that . 

(5.17) 

So our variety Vf is 9-4=5-dimensional, as expected. Moreover, the first 4 
coordinates may be eliminated: the map is realizable as a product of linear systems. 
Conclusion: the ideal I(Vf) of the variety off is generated by 

e. The internal equations of motion of the system. Since the readout function is 

[naJ12 ~---+~ 1 (na)+~z (na)=f0 (na)t. 

= [171 (n)+112 (n)Kt (a), 

it suffices (and it is necessary) to mechanize the computation of 17 1 (n)+172 (n) and 
C1 (a). 

The linear system in Channel 2 

00 

f2:a~---+}.; Ct (zt 1 a)z-i 
j=l 

is 2-dimensional and described by 

Since the output of this system is given by Yz = ( 1 (t), its realization can be seen 
by inspection to be 

The corresponding transfer function is 
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This is the same as the second factor in (5.11). Note that we have discovered this 
factor by a strictly deductive procedure, using only the power series (5.11) 16

) . 

The linear system in Channel I 

00 

/1: m-+}; [171 (zt 1 n)+ 1Jz (z{- 1 n)] z-i 
j = 1 

reguires a more elaborate analysis. On X1 the transition equations give (with re­
spect to the basis fixed earlier) 

z 1 ;;:::;;Fl = [-~ ~ -~], 
0 1 -2 . 

H 1 = [1 0], 

This system is minim.al. Hence dim j 1 = 3. 

The transfer function corresponding to. th,is system is 

zi+zt + 1 
Ht (zl I -F1) - 1 Gt = 3 2 z 2 

z1 + zl -z1-

Thus we have also deduced the first factor in (5.11). 

lt is instructive to calculate also the tensor product of (Fl> -, H1 ) with 
(F2 , -, H 1 ), as a check on the preceding calculation of f 0 . We have 

Forming the observability matrix, we see at once that the system. is reducible 
and that its observable part is of dimension 4. Using as a basis for the dual space 
the row vectors H 0 , ... , H 0 F~ , we can recompute H 0 and F0 in reduced form 
and obtain 

15
) This paragraph was added In: 1978. 
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and 

Frect = r ~ ~ ~ ~~ 
@ 0 0 0 1 ° 

-4 0 5 1 

This shows that the characteristic polynomial is XF(xy) =((xy)2 -1) ((xy) 2
- 4). 

The same result is obtained if we compute x1 from (5.13) or from (5.12). 16
) 

Conclusion. The simplest realization off is given by Lfl XL12, as may have been 
expected from the form of (5.11). 

6. Concluding Remarks 

While a deeper mathematical investigation of the results di&cussed here is yet 
to be made, it is _appropriate to comment on certain features of the situation which 
have obvious intuitive significance. 

Nature of the state set. Our fundamental result is that the state set of a multilinear 
map f is ann-dimensional algebraic variety /embedded in the affine space KN, where N 
is the total number of coordinates (in the ordinary sense of the word) which are 
sufficient to parametrize the Nerode equivalence relation. The "coordinates" cor­
responding to the Nerode classes define a point on the variety V1 . Therefore some of 
them may be expressible in terms of the others via algebraic relationships. In other 
words, we may visualize the state of' the system as described by N coordinates, of which 
only n need be stored and the remaining N- n can be quickly computed (if needed) 
since they are given by simple functions of the first n coordinates17 ). While the 
total memory involves N quantities, the possibility of rapid, real-time computation 
reduces the actual storage requirement to n quantities. It is tempting to speculate 
that something similar is happening in the brain. It may be that, instead of storing 
everything in the memmy, only essential quantities are stored since the others may 
be recovered quickly by computation when they are needed. 

Note, for instance, that a bilinear machine L1 has potentially all the capabilities 
of the corresponding tensor machine L10 (since X 12 c X1~KN), and usually much 
more (as expressed by the other state sets X 1 and X 2 in X1 ). However, to utilize 
explicitly the inherent possibility of the tensor machine it may be necessary to add 
to the system read-out maps (belonging to K [i 1 , ... , zN]/1 (V1)). In Example 1, such 
a read-out map would be given by the relation (5 .7); in Example 2, the appl'opriate 

16
) The last two paragraphs were added in 1978. 

17
) This intuitive description turns out to be essentially correct, although it does not follow 

immediately from the results presented earlier. It is shown in Kalman [1.6] that Vh viewed here as 
embedded in kN, is isomorphic with k" or a Zariski-dense subset of it. 
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relations are (5.17). In short, our present analysis, while incomplete, already indi­
cates that the capabilities of multilinear machines may be quite wide, provided sui­
table read-out maps are available from the n basic state variables. 

Structural elements of the system. If a polynomial g E K [z1, ... , zA J belongs to the 
ideal I (Vf), then any (polynomial) read-out map h:KN ~K may be replaced by the 
map g+h, since g = O on Vf by definition. Consequently the read-out map may be 
modified at will modulo l(Vf). So we may interpret l(Vf) abstractly as the collection 
of different operations which can be utilized to build a given system. Similar comments 
apply also to the actual mechanization of the equations of motion. Thus the asso­
ciation f-+ Vf throws some light on the amount of freedom we .have in building 
a given f and the kind of components which are required. This is, of course, a very 
basic question of system theory. 

Pattern recognition aspects. The examples in Section 5 show that the state coord i­
nates in KN correspond to rather complicated parameters of the input signalf. In 
particular, a bilinear machine can perform quadratic Fourier analysis (the linear 
resolution of the product na, namely the set X 12 ) as well as linear Fourier analysis 
(the sets X1 and X 2 ) . In the multilinear case, the complexity of the ~ituation is of 
course much greater. If we are interested, for instance, in nonlinear predictiOn and 
filtering (where nonlinear = finite sum of multilinear) then we must not only solve 
such problems for all f 0 computed from finite products of linear maps, but must then 

recombine the results into a minimal system in which the rele·vent quantities are efficiently 
stored. The present theory gives some indications as to how all this might be accom­
plished~ Turning again to biological speculation, it is quite clear that Fourier analysis 
(of, say, brain-wave patterns) must certainly include the resolution of tensor products 
and their recombination into a minimal system. The first problem seems to be barely 
understood by experimental investigators at present; as to the second, the author 
is not aware of any prior suggestions, theoretical or practical, in that direction. 

Evidently enormously more remains to be done, but it seems that the correct 
directions of research are now clear. 
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Odpowiedzi wieloliniowych ukladow dynamicznych 
a rozpoznawanie obrazow 

0 

Teoria liniowych (dyskretnych w czasie) uklad6w dynamicznych zostala z punktu widzenia 
algebraicznego w spos6b definitywny ustalona dzit;ki fundamentalnym rezultatom autora [3], 
kt6re pozwalaj'l identyfikowac ,stan" uk!adu dynamicznego ,z pami~eci<l", jak<l uk!ad zachowuje 
w okreslonym wejsciu. Innymi slowy, ,stan" jest specjaln'l cech'l , obrazu wejsciowego", kt6r'l 
uklad jest w stanie zidentyfikowac. 

Niniejsza praca stanowi naturaln'l pr6b~ przeniesienia tych rezultat6w na teorite uklad6w wielo­
liniowych. 

Podane S<l zasadnicze elementy algebraicznej teorii uklad6w wieloliniowych, kt6re wskazuj'l 
na wielk<l zlo:i:onosc takich uklad6w. Kr6tko przedstawiono pewne konsekwencje dotycz'lce nieli­
niowej filtracji, rozpoznawania obraz6w oraz nieliniowej analizy Fouriera. 

BpeMeuuaH xapaKTepucnrn:a MnoroJiuueiiuhlx )J.IIHaMH'fec..:ux 
cucTeM, a pacno3uaBauue o6pa30B 

TeopH!! mmeihibrx (,n;HCKpeTIIh!X BO BpeMeHH) ,[(HHaMJI'feCKHX CHCTeM 6Lma, C arrre6paJPJeCKOH 
TO'!KR 3peHJUl, OKOH'!areJibHO orrpe,n;erref(a 6rraro,[(ap!! cjJyH,n;aMeHraJibHhiM pe3yJibraraM asropa 
[3), li03BOmllO!UliM H,[(eHTHQJIHl;I-lpOBa1'b , COCTO!!f(He" ,D;Hf(aMll'feCKOH Cll:CTeMbl C ,liaM!!Tb!O", 
KOTOpyiO. COXpaHlieT CHCTeMa 06 Orrpe,[(eJieHHOM BXO,[(e. ,[l;pyrHMH CJIOBaMH , COCTO!!f(l{e" l!BJlileTCli 

OCo6oii: '!epTOH BXO,[(HOfO ,o6pa3a", KOTOPYIO CHCTeMa MO)!(eT H,[(eHTHQJHU:HPOBa1'h. 
,[l;aHHali pa6ora !!BJI!!eTC!! ec1'eCTBeHHOH liOlihiTKOH rrepeHoca 3THX pe3yJJhtatOB B teOpl110 

MHOfOJ1J1Heihl:biX CHCTeM. 
,[l;alOTC!! OCHOBHbie 3JieMeHThl ame6paR'!eCKOH TeOpHH MHOfOJIJ1HeihlblX CI{CTeM, KOTOpbie 

YKa3hiBaiOT Ha 3Ha'!HTeJibHYIO CJJO)!(HOCTh TaKHX CHCTeM. KpatKO rrpe,n;C1'asrreHbl HeKOTOPLie CJJe,n;­
CTBHli, Kacaro!UlleCH HerrHHeii:HoH: cjlrrrrnrpau;Hil:, pacrro3HaBaHHli o6pa3os H HeJIJ1Heii:Horo aHaJIJ13a 
<f>yphe. • 
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