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5. Examples

We shall now work out in detail two simple examples. They will illuminate
several aspects of the abstract constructions discussed so far. In each case, the
field K will be the real numbers R. We shall denote polynomials in R[z,] by = and |
polynomials in R[z,] by o; more explicitly, these polynomials are written as z (zl)=‘

. W 3
= Z ezt and o (z,)= Z T B

k=0 k=0
Example 1. Consider the bilinear function f defined by the formal power series

[~ ;"1 [B'~* 2 '] [e"~* (21 22)™™], . a@,b,cER. (5.1)
k,1,m>0
This power series corresponds to the transfer function
1
(z1—a)(z22=b)(z12,—0)

(5.2)

We recognize at once that / may be realized by the tensor product of the system
1/(z— @) with the system 1/(z—b), followed by the system 1/(z—c). We shall deduce
this faet via systematic -calculations.

a. The equivalence relation E;,. We find that there are precisely two R-inde-
pendent equivalence classes, which may be represented by [1];, and [(z; —a)(z, — b)]1,.
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To prove this, we note first that 7 (z;) E;, # (@) and o (z,) £, o (b); this is immediate
from (5.1). Moreover (see the denominator of (5.2))

OE,; (z1 2,—¢)(z,—a)(z:—b),
OFE;, 2t 2} (z,—a) (z,—-b) if . k#l.
Consequently, we get by induction .
(z1 2) (z,—a)(z,—b) E1, * (zy—a)(z,—b)
for all k, / = 0. 'thus, if we write,
7 (21) 0 () =[7 (@+(z:1—a) & ()] [0 B)+(z2—b) 6 (2,)]

(where 7 is the polynomial # (z,)=(% (z;)— 7 (@))/(z; —a) and § is defined similarly),
it follows that

n{z) 0 (2:) E1z (€14 (21.—0) (2, —b) &),

where the co yrdinate functions are qiven by

¢y (mo)=m(a) o (b) (5.3)
and
&, (no)= Z - #y 6. (5.4)

Formulas (5.3-4) completely determine the vector-space structure of X, relative
to the basis [1],, and [(z; —a) (z,—b)];,. Remember that X, =X.

b. The equivalence relation E,. There is a single R-independent equivalence class;
we represent it by [1];. Clearly

n(z,) E, 7 (@);
in other words, the coordinate function is
1 (W=7 (a). ' (5.5)

c. The equivalence relation E,. The analysis is the same as for E;. We have,
therefore,

¢ (0)=0 (B). | (5.6)

Clearly, N=dim X, +dim X, +dim X, =4.
d. The map p: R[z]X R [2,]>X,® X, ®X,=R". From (5.3-6) we get

p:(m o) > (2 (@) 0 (b), & (n0), 7 (@), & ().

We see easily that &, (ro)=¢&, (£6); that is, &, is independent of 7 (a) and o (b).
Hence the only relation which exists between the coordinates is the obvious one:

&1 (mo)=ny (w) {; (o). (5.7
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In particular, we have now proved: The variety V; of f is the 3-dimensional hyper-
surface in R* corresponding to the prime principal ideal R [z, 75, z5, z4)(21 — 23 z4) =
= (Vf)-

e. The internal equations of motion of the system. In X and X, they are obtained
by inspection. We replace the polynomials 7, ¢ by
L (Zl 7[+p) C}
ot (z,0+s).

where p and s respectively are the new input symbols occurring in Channels 1 and 2
at t=0. In one unit of time we have then the state transitions

[7]; = [z, n+pli=(ar (@)+p) [1];,
[0]: = [z20+s5]i=(bo (b)+5)[1]..
In X 1> the calculations are more intricate:

[ro]z =[(z1 n+p)z2 0+9)]12
o =[zy z, mol o+ [z, wslio+ [z, oplia+1ps]ia
=z, 7, [7o] 4521 [7]12+ Pz, [0)12+[Ps]1o
= [z1 22012+ [21 22 (21— a) (Zz_b)]12+
+(as 7 (@)+bp o (b)+ps)[1];2
=((an,+p) (s +5)+ab (&1 —n. {0) [ia+
+(&1+cds) [(zi—a) (22— D)]iz -

The read—out‘ function, which has played norole in these computations, is given by
[70]12 ¢, (m0)=(fg (n0)): € R. (5.8)

f. The reduced internal equations. In view of the algebraic relation (5.7) and the
fact that &, is not involved in the computation of the output (see (5.8)), we can
write a set of minimal equations for the system in the form

@ &E+HD=cé&O+n ()8 @),

(b) "1 (I+1)=a771 (t)+p3 (5 9)
(€ L (@+D=bl (O)+s, '
(d) y()=2¢, ().

. The “mechanization” of these equations requires precisely one multiplier (in
(5.9a)). Notice that the realization provided by (5.9) corresponds to what we expec-
ted to obtain, given the special form of the transfer function (5.2). The system is
shown in Fig. 5.1. This realization is characterized by the fact that two stored (state)
variables occur before the multiplier and one after.
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Channel_7 | 1 A b
1 z—a :
! €2 Qutput
z—¢C
Channel _ o] 1
2 l z=b ‘C1=G”(b)
Figure 5.1

Under certain circumstances, a minimal realization may not be unique; in this
example, the property mentioned in the last sentence above is not preserved when
b=0. For, if b=0, we can write an alternate set of state equations:

(@ & @+D=(an O+p)s,
() & @+D)=c& O+ (1),
© n(@+D=an, (O+p,

(d) y®)=¢&(@).

This system is shown in Fig. 5.2. Notice that the transfer function for Fig. 5.1
(with 5=0) is %

el
zi—al\ z, zyz,—c¢]
whereas for Fig. 5.2 it is :

e e e

(The dot indicates the position of the multiplier.)

In the second case a cancellation (z,/z, z,) takes place across the multiplier.
Because of the possibility of such cancellations (reminiscent of similar difficulties
in linear systems), the “structural” properties of multilinear systems relative to
the position of the multipliers are not unique, even for minimal realizations.

(5.10)

Chonn_e% 5 | 11=7L8) (ot utilized)
1 z

€4

B+ 1 %2 outpus

Channel o
2

Figure 5.2




Pattern recognition properties 25

Example 2. We consider now a bilinear function which is the product of two linear
functions. Here the expected form of the realization is obvious and yet the details
of the systematic calculation will reveal some surprising features. The transfer func-
tion of the input/output function is given by

b bl
Z§+2Z%_Z1_2 Z;—l " z,+2 z.f—] Z;-l - ‘ (5.11)

(Since no terms involving z, z, appear in the denominator, this is obviously
a tensor product of two input/output functions. The function in Channel 1 has
a 3-dimensional minimal realization, while the function in Channel 2 has a 2-dimen-
sional minimal realization. These facts should be kept in mind in doing the deductive
computations which follow.)

a. The equivalence relation E,,. The output is a linear combination of four
basic sequences, as follows

PR ) 6 T
F={29.0, 92,0, 250, ),
I e [t BB
6=(0, 21,0, 23,0, 25 ..).

Easy calculations show which input polynomials (in R [z, z,]) correspond to
which output sequences. We find, for all >0,

‘ Z%k/4kjﬁ:

I 22kl g2 458,
i 9 (5.12)

ka Z,=y—455,
l giithg 4008,
It is clear that dim X,,=4. Notice that we have a degeneracy here; if we realize
each factor in (5.11) separately and then take their tensor product, we would get

a 6-dimensional system. The trouble is that the latter system is not a minimal reali-
zation of the (abstract linear) function f.

An obvious (and useful) choice. of coordinates for X;, is one in which each
coordinate gives rise to exactly one of the output sequences «, ..., d. So we let

1 1
x=C&; [z:42]1,+E [1]1,44; l:? (z,+2) Zz]lz+‘f4 [721 22]12~

To compute the coordinate map [no]i, > (&4, ..., &) we write.
n() @)= Y (a2 @) afl 2 e
- k, 120 g P

1 1 ¥
t —z'affl) oad a0 +2)-I—7 a2 22 g 22/4"}- (5.13)




26 R, E. KALMAN

* (The reader should verify that the coefficients a(!’, ..., &* are in fact uniquely

determined by no.) With the aid of this special representation of the elements of
R [z, z,], we find immediately that

¢ (no)= Z’ d? (ro), i=1,...,4. (5.14)
k, 120

b. The equivalence relation E,. It is very easy to see that X, is 2-dimensional;
everything is explained by the relations

z2F ol voand.  zP AR g,
In other words

[el,=C 11+, [2200,

where
0(z,) = Z (2 Z§k+0'2k+1 Z§k+l), (5.15a)
k>0
{i(o)= Z O (2 (0')=2 O2k+1- (5.150)
k=0 k=0

c. The equii alence relation E,. This is much more complicated. Let us note
first that
(zi—1)(z,+2)E; 0
or, more usefully,
2} @+ E; (1+2),
and
22 (Z2—4) E, (z2-9).

This suggests using the basis [1];, [z;+2];, and [z —4], for X;. If we now write

m(z)= Y {0 +d2 23 (z,+2)+a z3* (23— 4)} (5.16a)

k=0

(the @ are clearly unique!) then

71 (m)= “(1)
773 (7[) 2 a§c2)>
kad (5.16b)

UE! (ﬂ)=2 2.

k=0

Important remark: Notice (from (5.12)) that [z} —4],,=0 but [zZ2—4],#0! In
other words, the module X, has a more complicated structure than the correspon-
ding submodule {[7],,:7 € R [z;]} = X,; the projection [7], —[x];, is a nontrivial
operation; the module structure of X; gives more information than the module
structure of X ,.

Clearly, N=9.
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d. The map p: R [z;1X R [2,]>X,®X,®X,=R". Formally, we have that

- P o) (i e Ca N W T La )

Here the relationships between coordinates are rather complex. We shall utilize
some special tricks related to the definitions of the various bases. Notice that

1
22 [22—4],,=0 and z}* [(z—4) z,];,=—3 s z3¥ [(z,4+2) z,], for all k>0. Re-
membering this, we see by easy calculations from (5.13), (5.15), and (5.16) that

¢y (ro)=1n, (n) {; (o),

&, (mo)=ny (%) {4 (0),

&5 (ro)=(1: (M) +2n2 (m) =375 (m)) {2 (0),
&4 (mo)=—11 (m) {5 (0).

(5.17)

So our variety V, is 9—4=>5-dimensional, as expected. Moreover, the first 4
coordinates may be eliminated : the map is realizable as a product of linear systems.
Conclusion: the ideal I (V) of the variety of f is generated by '

{2126 25, 2,25 25, 23— (25+226—327) 29, Za+26 2o}
e. The internal equations of motion of the system. Since the readout function is
[ro]i, =&, (no)+<, (”U)Zf@) (7o),
=[n: (W)+n (D] (0),

it suffices (and it is necessary) to mechanize the computation of #, (z)+#, (r) and
¢4 (o).

The linear system in Channel 2
fz:m——»Z Lol VYalz?
i=1

is 2-dimensional and described by

22:{C1H§2’

Ly b3y .

Since the output of this system is given by y,={, (¢), its realization can be seen
by inspection to be

01 1 :
ZzzF;z:[l 0], G2=[0], H,=[1 0].

The corresponding transfer function is

4
Hz(Zzl_Fz)-1G2= 7.
Zy—
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This is the same as the second factor in (5.11). Note that we have discovered this
factor by a strictly deductive procedure, using only the power series (5.11)16).

The linear system in Channel 1

Jrims D @ m A, @ w2

i=1
reguires a more elaborate analysis. On X, the transition equations give (with te-
spect to the basis fi xed earlier)

This system is minimal. Hence dim f; =3.
The transfer function corresponding to this system is

224z +1

N

Hi o I-F)y G-

Thus we have also deduced the first factor in (5.11).

It is instructive to calculate also the tensor product of (F,, —, H,) with
(F2, —, H,), as a check on the preceding calculation of fi;. We have

Hyo=H, @H,=[1"0 1 0 0 0]
and :

F®=F1 Q F,=

SO = OO
— O OO O

S oo~ o

Forming the observability matrix, we see at once that the system.is reducible
and that its observable part is of dimension 4. Using as a basis for the dual space
the row vectors Hg, ..., Hg F%, we can recompute Hg and Fg in reduced form
and obtain

H®=[1 0 0 0]

15) This paragraph was added in 1978.
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and

red —
F@

BE 8
N o= o
_— o O

1
0
0
-4 0

This shows that the characteristic polynomial is yz(xy)=((xy)>—1) ((xy)* —4).
The same result is obtained if we compute yy from (5.13) or from (5.12).19

Conclusion. The simplest realization of f is given by X XX,, as may have been
expected from the form of (5.11).

6. Concluding Remarks

While a deeper mathematical investigation of the results discussed here is yet
to be made, it is appropriate to comment on certain features of the situation which
have obvious intuitive significance.

Nature of the state set. Our fundamental result is that the state set of a multilinear
map f'is an n-dimensional algebraic variety fembedded in the affine space KV, where N
is the total number of coordinates (in the ordinary sense of the word) which are
sufficient to parametrize the Nerode equivalence relation. The “coordinates” cor-
responding to the Nerode classes define a point on the variety V. Therefore some of
them may be expressible in terms of the others via algebraic relationships. In other
words, we may visualize the state of the system as described by N coordinates, of which
only n need be stored and the remaining N—n can be quickly computed (if needed)
since they are given by simple functions of the first n coordinates'”). While the
total memory involves N quantities, the possibility of rapid, real-time corhputa.tion
reduces the actual storage requirement to » quantities. It is tempting to speculate
that something similar is happening in the brain. It may be that, instead of storing
everything in the memory, only essential quantities are stored since the others may
be recovered quickly by computation when they are needed.

Note, for instance, that a bilinear machine X, has potentially all the capabilities
of the corresponding tensor machine X,y (since X;, = X;~K"), and usually much
more (as expressed by the other state sets X; and X, in X,). However, to utilize
explicitly the inherent possibility of the tensor machine it may be necessary to add
to the system read-out maps (belonging to K [zy, ..., zy]/I (V})). In Example 1, such
aread-out map would be given by the relation (5.7); in Example 2, the appropriate

16) The last two paragraphs were added in 1978.

17) This intuitive description turns out to be essentially correct, although it does not follow
immediately from the results presented earlier. It is shown in Kalman [16] that V;, viewed here as
embedded in &%, is isomorphic with k* or a Zariski-dense subset of it.
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relations are (5.17). In short, our present analysis, while incomplete, already indi-
cates that the capabilities of multilinear machines may be quite wide, provided sui-
table read-out maps are available from the n basic state variables.

Structural elements of the system. If a polynomial g€ K [z, ..., zy] belongs to the
ideal I (V;), then any (polynomial) read-out map 4:K"—-K may be replaced by the
map g+h, since g=0 on V; by definition. Consequently the read-out map may be
modified at will modulo 7 (V). So we may interpret I (V) abstractly as the collection
of different operations which can be utilized to build a given system. Similar comments
apply also to the actual mechanization of the equations of motion. Thus the asso-
ciation f—V, throws some light on the amount of freedom we have in building
a given f and the kind of components which aie required. This is, of course, a very
basic question of system theory.

Pattern recognition aspects. The examples in Section 5 show that the state coordi-
nates in K¥ correspond to rather complicated parameters of the input signals. In
particulat, a bilinear machine can perform quadratic Fourier analysis (the linear
resolution of the product 7o, namely the set X,,) as well as linear Fourier analysis
(the sets X; and X,). In the multilinear case, the complexity of the situation is of
course much greater. If we are interested, for instance, in nonlinear prediction and
filtering (where nonlinear = finite sum of multilinear) then we must not only solve
such problems for all [, computed from finite products of linear maps, but must then
recombine the results into a minimal system in which the relevent quantities are efficiently
stored. The piesent theory gives some indications as to how all this might be accom-
plished: Turning again to biological speculation, it is quite clear that Fourier analysis
(of, say, brain-wave patterns) must certainly include the resolution of tensor products
and their recombination into a minimal system. The first problem seems to be barely
understood by experimental investigators at present; as to the second, the author
is not aware of any prior suggestions, theoretical or practical, in that direction.

Evidently enormously more remains to be done, but it seems that the correct
directions of research are now clear.
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Odpowiedzi wieloliniowych ukladow dynamicznych
a rozpoznawanie obrazow

Teoria liniowych (dyskretnych w czasie) ukladéw dynamicznych zostala z punktu widzenia
algebraicznego w sposdb definitywny ustalona dzieki fundamentalnym rezultatom autora [3],
ktore pozwalaja identyfikowaé ,,stan‘ uktadu dynamicznego ,,z pamiecia‘, jaka uktad zachowuje
w okreSlonym wejsciu. Innymi stowy, ,,stan‘ jest specjalng cecha ,,obrazu wejciowego®, ktora
uklad jest w stanie zidentyfikowac.

Niniejsza praca stanowi naturalna probe przeniesienia tych rezultatéw na teorie ukfadow wielo-
liniowych.

Podane sa zasadnicze elementy algebraicznej teorii ukiadow wieloliniowych, ktore wskazuja
na wielka zlozono$¢ takich uktadow. Krotko przedstawiono pewne konsekwencje dotyczace nieli-
niowej filtracji, rozpoznawania obrazéw oraz nieliniowej analizy Fouriera.

BpemeHHasi XapaKTepACTHKA MHOIOJHHEHHBIX JIUHAMHYECKHX
CHCTEM, a pacHo3HABaHHe 06Pa3oB

Teopusi MIHEHHABIX (JUCKPETHRIX BO BPEMEHM) OUHAMMYECKHAX CHCTEM ObIa, ¢ anrebpamyuecKkoit
TOYKM 3PEHMS, OKOHYATENBHO OmpelesieHa Omaromaps (GpyHIaMeHTaTbHBIM pe3ynbTaTaM aBTopa
[3], mo3BonsroIMM WAEHTHGUIMPOBATEL ,,COCTOSHHAE NOUHAMHIYECKON CHCTEMBI C ,,IAMSTHIO”,
KOTOPYIO. COXPaHSeT CHCTeMa 00 OmpenelleHHOM BXxoae. JApyruMu CIIOBaAMH ,,COCTOSIHEE’ SIBIISIETCS
0coboit 4epToi BXOOHOrO ,,00pa3a’, KOTOPYIO CHCTEMA MOXET UIEHTAPUIKPOBATH.

Haunast paboTta sBISETCS €CTECTBEHHOM IOMBITKONM IEPEHOCAa JTHX PE3YJIbTATOB B TEOPUEQ
MHOTOJIMHEUHBIX CHUCTEM.

JIatoTCsl OCHOBHBIE 3JIEMEHTHI anreOpamveckoil TEOpHH MHOTOJMHENHBIX CHCTEM, KOTOPbIE
YKa3pIBAIOT HA 3HAYATENBHYIO CIOKHOCTh TaKMX cHcTeM. KpaTKo IpencTaBieHsl HEKOTOPhIE Cllel-
CTBHs, KacaroUIMecs HEMHEWHOM (QUIbTpalle, Pacno3HaBaHUA 00pa30B M HEIMHEWHOTO aHau3a
Dypoe. <
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