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We show that if F, X are two locally convex spaces, I': X—2F a eonvex multifunction, h: F— R
a convex functional and x, € X, then, under suitable assumptions on I" and /%, the computation

of inf £ (y)can be reduced to the.computation of the infimum of / on some larger convex subsets
ver (xo) '
of F, defined with the aid of functionals @ € X*, @#0. We give some applications to the cases

of linear systems and convex systems (F—- X), studied:in [8].

1. Introduction

We recall the following general problem of constrained optimization, which
encompasses a large variety of special cases: Let X, F be two sets, /7: X—2F a multi-
function (where 27 denotes the collection of all subsets of F, including the empty
set 0), xoe X and h:F—R=[—o0, +o0] a functional. Find_conve,nieh.t formulae
- inf h(y), (1.1)

3 €I (x0) ! i ¢ §
under suitable assumptions on X, F, I" and 4. Here I" is also called a constraints
multifunction (see [2]), since {I(x)},cy is a family of constraints; in particular,
I (x,) is the constraint corresponding to the index x, € X. Problem (1.1) has been
studied by S. Dolecki and S. Kurcyusz [3] (see also [2] and the references therein),
who have reduced it to a problem of unconstrained optimizataion, with the aid of
an associated Lagrange function. >

In the present paper we shall give some duality theorems of a different (non-
Lagrangian) type, for the problem of  constrained convex optimization, that is, for
problem (1.1) in which it is assumed that X, F are (real) locally convex spaces and
that the multifunction 7": X —2F and the functional /4: F— R are convex. Let us recall
that if X, F are two linear spaces, a multifunction 7": X—2F is said to be convex
(see e.g. [6]), if 7
Graph I'={(x, y) € XX Fly € I'(x)} : (1.2)
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is a convex subset of X X F, or, equivalently, if we have
AL (x)+(1=2) T (xp)=T (Axy+(1-72) x,) (1.3)

for all x, x, € X and all A with 0<A<1. Note that if I": X—>2* is convex, then I" (x)
is a convex subset of F for each x € X, since (1.3) for x,=x,=x€ X and 0</<1
sl AR+ (=2 F )=l (). (1.4)
Thus, since the set I (x,) is convex, it might seem natural to apply to problem
(1.1) the known duality theorems for the minimization of the convex functional %
on the convex subset /" (x,) of F. For example, from a “‘strip theorem” of [8] (see
[8], Theorem 2.2) it follows that if I'(x,) and the (possibly empty) level sets
{y e Flh (»)<r} (re R) are closed for a topology 7 on F, wecker than or equal to
the initial topology on F, and either I (x,) or sets S, (- € R) are compect for 7, then
inf A(y)= sup inf h(y). (1.5)
veT (xo) O#WeF* yeF

¥ (v)e¥ (I (x0)) !
However, since this result of duality involves only functionals ¥ e F* (the set
of all continuous linear functionals on F) and since we want to obtain, similarly
to the particular case of linear systems and convex systems (see [8]), formulae for
(1.1) involving functionals @ € X *, we shall use a different approach. Namely, con-

sidering the whole family of optimization problems
inf A(y) (xeX) (1.6)
vel(x)

(with the usual conventions inf = +o0, sup §= —co, to be used throughout this
paper), we shall apply, to the associated primal functional f: X—R, defined by
f(x)= inf A(y) (xeX), 1.7) .
yel'(x)

the following duality theorems of [7], [8] (let us observe that one could also apply
other duality theorems, but here we shall consider only thesc):

THEOREM 1.1 ([7], Corollary 2.1). Let X be a locally convex space, f:X—R
a lower semi-continuous convex functional and x,€X. Then

Sf(xo)= sup  inf f(x). (1.8)
0O#PeX* xeX
@ (x)=D(x0)

THEOREM 1.2 ([8],Theorem 4.1). Let X be a locally convex space, f:X—R a convex
unctional and xo € X, such that the set

A, ={x e X| f(x)<f(x0)} ‘ 1.9)
is non-empty and open. Then we have (1.8) and there exists @, X *, ®y#0, such that
Fxe)= mt ) ' (1.10)

xeX
Do (x)=Po(x0)

(i.e., for which the sup in (1.8) is aitained).
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In §2 we shall give some sufficient conditions on /" and /4 in order that the primal
functional (1.7) satisfy. the assumptions of Theorem 1.1 or Theorem 1.2.

In §3 we shall give the main duality theorems, which reduce the computation
of (1.1) to the computation of the infimum of /# on some larger convex subsets of F,
defined with the aid of functionals @ € X*, ®#0. We shall also show that these
theorems admit natural geometric interpretations. ' :

Finally, in §4 we shall observe that one can associate with the “linear systems”
and with the “convex systems” (F-Y-X), studied in [8], some natural convex
multifunctions I": X —2F, to which we shall then apply the results of §2 and §3.

2. Two lemmas; on the primal functional -

LeMMA 2.1. Let F, X be two linear spaces, I': X—2F a convex multifunction and
h: F»R=[—o0, +00] a convex functional. Then the functional f: X—R, defined by
f()= inf h(y) (xeX) RVAY
ver(x)
is convex.
Proof. Let x;, x, € X and 0</<1, and let £>0. Then, by (2.1), there exist y; € I' (x;)
such that 4 (3)<f (x)+e¢ (i=1, 2). But then, since I is convex,

W1+ (1=2) yy € AL (x)+(1—=2) I (x)) =T (Axy+(1—2) x),
whence, by (2.1) and since % is convex, we obtain
S Oxy+(1=2) x)<h (Ayr+(1=2) y2)
<A (y)+1 =2 h(y)<Af(x)+(1=2) f(x2)+e,

which, since ¢>0 was arbitrary, proves that f is convex. This completes the proof
of lemma 2.1. ]

In order to apply Theorem 1.1 to the functional f: X— R defined by (2.1), we need
to ensure that fis lower semi-continuous. Here we shall use only one lemma in this
direction, giving a sufficient condition which is expressed in terms of simple and
natural properties of I" and % (for some other conditions ensuring the lower semi-
continuity of £, which could be also used, see [4]). We recall that if X, F are two
topological spaces, a multifunction I': X—2F is said to be upper semi-continious,
respectively lower semi-continuous, if the set

Ag={xe X|T'(x) NG9} (2.2)
is closed for each closed subset G of F, respectively open for each open subset G

of F.

Lemma 2.2 ([1], Theorem 2.3). Let F, X be two topological spaces, I':X—2F an upper
semi-continuous multifunction and h:F—R a lower semi-continuous functional. Then
the functional f: X— R, defined by (2.1), is lower semi-continuous.
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Proof. Since in [1] there is given only a proof of a localized version of Lemma 2.2,
let us give here, for the sake of completeness, a direct proof of the above global
version. Let € R and let {x,};., be a generalized sequence in

S,={x e X|f(x)<r}, Wl , '(2.3)

and assume that x;—x,. Then, given¢>0, by x; € S, and (2.1) there exist y; € I" (x;)
with /i (Y5)<r+e(d€ 4). Thus, ysel (x;) NG, (6 € 4), where

G.={yeFlh()<r+a}. SR T

But, since 4 is lower semi-continuous, G,< F is closed and hence, by the upper
semi-continuity of I, so is the set

Ag,={x € X|[(x) N G,#0}; i 2.5)

consequently,. since x; € Ag, (6 € 4) and x;—x,, it follows that x, € Ag. Thus,
there exists y, € I' (xo) N G,;-that is, y, € I' (x,) with & (y,)<r+e. Therefore, by 2.1,
f(xo)<h (y,)<r+e, whence, since e>0 was arbitrary, f(x,)<r, so S, is closed.
This completes the proof of Lemma 2.2. =

i

3. Duality theorems

Along with a multifunction I": X—2F, we shall also use the inverse multifunction
I—t: F-»2%, defined by . » e %,
I'*(y)={xeXlyel(x)} (yeF). J 3.1)

For the set A; defined by (2.2), we have, clearly,
Ag=J {xeXlgeI'x)}= I (9=I"1(0),

geG geG

THEOREM 3.1. Let F, X be two locally convex spaces, I': X—2" an upper semi-conti-
nuous convex .multifunction, h:F—R a lower semi-continuous convex functional,
and xo.€ X. Then we have ' h
inf h(y)= sup  inf KGO = 7 (3.2)
yeT (xo) 0%PeX*  yeF b iy i :
, Dxe®(L~10)) ~ Ty e (s
Proof. Define a functional f: X—R by (2.1). Then, by Lemma 2.1 4nd Lemma 2.2,
[ is convex and lower semi-continuous. Hence, by Theorem 1.1, we obtain

inf A(y)=f(x,)= sup inf  f(x)= sup inf inf A(y). (3.3
yeTl(xo) 0O #DeX* xeX 0£DEeX* xeX yel(x)
@ (x) = (x0) @ (x)= B (x0) ;

We shall show that for each @ € X* we have

S T@=DEFRE)e@ (TG i o (34)

@ (x) =2 (x0)
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which, together with (3.3), will yield (3.2), completing the proof. Indeed, if x € X,
D (x)=® (x0), yel(x), then @(x)=D (x)e ®(I'"'(y)). Conversely, if yeF,
®(x0) € @ (I'~'(y)), then @ (x,)=D(x') for some x' € I'~' (y), so yeI'(x’) and
therefore y belongs to the left-hand side of (3.4), which proves (3.4). This completes
the proof of Theorem 3.1.

REMARK 3.1. a) Formula (3.2) admits the following geometric interpretation:

inf A(y)=sup inf | A(y); \ (3.5)
yeTI(xo) Hewx yeF
Xo€H I'~'(WnNH# 3

where # denotes the collection of all hyperplanes in X. Indeed 1f ® e X o q5,+_0
then the hyperplane’

H=H. b= {xeX|¢>(x) @(xo)} : “[3.6)
contains x, and we have '
DeFlo()ed (T O)={yeFIT ' (NHAG, (37

so (3.2) implies (3.5); conversely, if (3.5) holds, then, since every He # with xXoe H
is of the form (3.6) for some @ e X*, @0, from (3.7) we obtain (3.2).

b) If I:X—2F is a convex multifunction (as in the case of Theorem 3.1), then
for each y € F and each @ € X*, ®+#0, the sets I'~* (y) and (3. 7) are convex. Indeed,
if x,,x, € ~1(y) and 0<A<I, then, by (1.3), "

y=y+(1 =) ye Al (x)+(1=2) I'(x))<I (Ax;+(1—2) x,),

s0 Ax; +(1—2) x, €I ~1(p). On the other hand, if =1 (y)NH#0, say x;e '~ (y)n
AH (i=1,2) and if 0<A<], then, by (1.3),

Iy H(1=2) p2 € AF(x)+(1 = 2) T(x2) =T (3, +(1 = 2) x,).

$0 Ax; +(1—2) x, e '~ (Ay;+(1—4) y,) and, clearly, Ax, +(1—41) x, € H; therefore,
I~ (A1 +(1=2) y2) " H#.

THEOREM 3.2. Let F, X be two locally convex spaces, I': X—2F a lower semi-contin-
uous convex multifunction, satisfving | ) I'(x)=F, h a finite and continuous convex

functional on- F and x,€ X such that *<¥
inf h(y)< inf h(y). (3.8)
£ Y€EF yerI(xg) .’ . :
Then we have ‘(3,2) and there exists @, € X*, @o#0, such that
Wf hO)= af RO (3.9)
yel(xo) yeF

Do (x0) Do (I =1 ()

(i.e., for which the sup in (3.2) is attained).

Proof. Define a functional f: X—>R by (2.1). Then, by (q 8) and since h is finite
and continuous, the set

No={y € Flh (y)<f(x0)} i (O (3.10)
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is non-empty and open. Hence, by |_J I" (x)=F and since I"is lower semi-continuous,
the set iaad :

Ay, ={x € X| I () "\No#0} (3.11)
is non-empty and open We claim that ‘
Ay,={x € X f(x)<f(x0)}. (3.12)

Indeed, if x€ Ay,, then, by (3.11) and (3.10), there exists y € I'(x) such that
h(y)<f(xo), whence f(x)= inf A(y)<h(y)<f(x,). Conversely, if xeX,
y'er(x)

f(x)= inf h(p")<f(x,), then there exists y € I' (x) such that A (»)<f (x,), whence

Y el (x) :
yeI (x) "No#0, so xe Ay, which proves the claim (3.12). Thus, the set
{xe X|f(x)<f(xo)} is non-empty and open, whence, by Theorem 1.2 and (3.4),
there exists @y,e X*, @y+#0, such that

inf 2(y)=f(x,)= inf Jx)= iHE W T nf h(y)=
verI(xg) xeX xeX yel'(x)
Do (x)=Po(x0) Do (x)=Do(x0)

= > Lninf h(y). (3.13)

YEF
Do (x0) €D (I ~1(»)

Thus, (3.9) holds, which, together with the obvious inequality > in (3.2), yields
(3.2). This completes the proof of Theorem 3.2. ||

ReMARK 3.2. The conclusion of Theorem 3.2 admits the following geometric inter-
pretation: There exists a hyperplane H, in X such that x, € H, and that

inf h(y)= inf h(p). (3.14)
y eI (xo0) yeF -
I—-*(»)nHo# &

4. The cases of linear systems and convex systems

We recall (see [8]) that a triple (F % X) consisting of two (real) locally convex
spaces F, X and a continuous linear mapping u of F into X is called a linear system
(this generalizes the terminology of [5], where it has been assumed that X, F are
Banach spaces). Similarly (see [8]), a triple (F*-.X) consisting of a locally convex
space F, a partially ordered locally convex space X and a convex mapping u# of F
into X (i.e., such that u(Aiy,+(1—2) yz)slu(yl)+(1—/1) u(y,) for all y,,y,€F
and all 2 with 0</<1), is called a convex system.

REMARK 4.1. If (F* X) is a linear system and Q a convex subset of X or if (F2,X)
is a convex system and Q={x € X|x<0}, the convex cone of all non-positive elements
in X, then the multifunction I': X—2F defined by

I'x)=u"*(x+2)={ye Flu(y)e x+Q} (xe X) 4.1)
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is convex. Indeed, if (F,X) is a linear system and Q<X is convex, then for any
X1, X, € X and 0<A<1 we have

AT (x)+(0—=2) I'(x,)
={1+A =D plyie Fu(y)ex+Q (i=1,2)}
c{yeFlu(y)eix;+(1—2) x,+ 2}
=I (Ax;+(1-2) x,).
On the other hand, if (F*5 X) is a convex system and ‘Q={x € X|x<0}, then
AL (x)+(1—2) I'(x,)
={y+A=-D y:lyie Fu(p)<x; (i=1,2)}<
c{ye Flu(n<ix,+(1—2) x;}=T (x,+(1=1) x;),

which proves our assertions. Thus, we can apply the results of §3, to the situation
of Remark 4.1. Note that for the multifunction I": X—2F defined in Remark 4.1,
the optimization problem (1.1) becomes ‘

inf  Ah(y) 4.2)

YEF
u()exo+2

if (F¥5X) is a linear system and £ a convex subset of X, , respectively

inf /() (4.3)

yeF
u(y)<xo

if (FX5X) is a convex system and Q={x € X|x<0}. In these cases it is convenient
to assume that x,=0 in (4.2) and (4.3) (see [8]).
REMARK 4.2. In the cases considered in Remark 4.1, we have

Ir'~')=u(y)-2 (yeF), (4.4)
whence

YeF| @(x0)e ®(I' 1 (»)}={y e F|® (u(y)) € P(x,+2)}. 4.5)
Indeed, k .
r*()={xeXlyeu ' (x+Q)}={xeX|u(ex+Q}=u(»)-2 (yeF),
so (4.4) holds. Consequently,
Ve F| D(xo)e (I (M)} ={y e F| ®(x,) € D (u(3)—P(Q)}
={yeF| ®(u(y) e P(x,+2)},

so we have (4.5). In the case when (F*, X) is a linear system and Q =X is convex,
(4.5) yields

WeF| @(x)) e d (I 1 (M)}={y e Flu*(®) (y) € D(xo+2)}, 4.6)
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which is a “strip” in F (indeed, since Q is convex, @ (x,+2) is an interval iin R,
finite or infinite, closed or open at either end). On. the other hand, if (F %, X) is
a convex system, Q={xe€ X|x<0} and ®>0, then (4.5) becomes

e FlO(xo) e @ (I~ (1)} ={y e FI® («(»)< P (x0)}. (4.7)

Thus, in both cases, the conclusions of Theorems 3.1 and 3.2 above, with x,=0,
are the same as those of the corresponding results in [8].

REMARK 4.3. In the cases considered in Remark 4.1, for any subset G of F and for
the set Ag defined by*(2.2) we have

Ae=u(G)~Q. | (4.8)
Indeed, i
C Ag={xe XIT(x)NG#0}

{xeXfyegq, u(y)ex—l—!)‘—u(G) @,

SO (4 8) holds. Consequently, " is upper semi-continuous, respectively, lower semi-
continuous, if and only if u (G)—Q is closed for each closed subset G of F, respect-
ively open for each open subset G of F. Let us observe that if u(G) and Q are closed
for a topology t on X weaker than or equal to the initial topology on X, and if one
of them is compact for v, then u (G)—Q is closed for v and hence also for the initial
topology on X. In [8], Lemma 2.2, we have shown that these conditions, only
for the sets G=G,={ye Flh(y)<r} (r>infh(y)) and Q, are already sufficient to

y€F
ensure that the primal functional f defined by (2.1) is lower semi-continuous, so

the conclusion of Theorem 3.1 above holds; moréover, in [8], Lemma 2.2, it has not
been assumed a priori that / is lower semi-continuous, i.e., that the sets G, are closed.
Similarly, let us observe that if either u(G) or Q is open, then so is u(G)—Q
= @(@-0)=_ (u(g)—2). In [8], Lemma 4.1, we have shown that this'con-

[OX 9] geG

dition, only for the set G=G,={ge Flh(g)< inf h(y)=a} (provided that G, #‘D)

YEF
u(y)eR

or Q, is aheady sufficient to ensure that for the primal functional f the set A,
defined by (1.9) with x,=0 is non-empty and open, so in this case the conclusion
of Theorem 3.2 above holds, with x,=0 (indeed, | J I'(x)=J u™' (x+Q)=F,

xeX xeX
since for any y € F and any w,&Q we have yeu™* (u(y)—wo+Q)); moreover,

in [8], Lemma 4.1, it has not been assumed a priori that /4 is finite and continuous,
or that the set G, is open. Finally, let us note that in the partlcular case when F=X
and u=/Ip, the identity mapping, (4.1) becomes

Tx)=x+0 (xeX= Fj, (4.9)

‘and Ag=1u(G)—Q=G—Q is open for each open subset G of F, so [ is loWef semj-
continuous and Theorem 3.2 works; if £ is compact, then I is also upper semi-
continuous, so Theorém 3.1 applies as well.
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Twierdzenia o dualnosci dla wypuklych zadan optymalizacji
z ograniczeniami

Niech F i X beda dwiema lokalnie wypuklymi przestrzeniami, 7': X—2F— wypukia multi-

funkcja, a h:F—»I_Q—funkcjona}em wypuktym i niech xo € X.

Pokazuje sig, ze przy odpowiednich zalozeniach na I"i 4 wyznaczenie inf /4 (y) moze byc
y€T (xo)
sprowadzone do wyznaczenia infimum /4 na pewnym wigkszym podzbiorze wypuktym przestrzeni

F, ktory jest zdefiniowany przy wykorzystaniu funkcjonatow @ € X* ®#0. Omowione sa pewne
zastosowania do uktadow liniowych oraz ukladéw wypuklych (F-Y- X) badanych w [8].

TeopeMm 0 JIBOHCTBEHHOCTH JIJISt BBINYKJIBIX 3aa4 COHTHMM3AIHUN
C OrpaHHYCHUAMN

Ilycte F u X Oynyr OByMs JOKAJbHO BBIIyKJIbIMA IpocTpaHcTBamu, I': X—2F —ppmryk-
noit mynmeTHGYHKIMEH, a /: F—R —BBIIyKIsM (OYHKIHOHAIOM ¥ IyCTh Xo€X. Iloka3aHo, 4TO
TpH HAIUIGKALIMX NPUATONOXKEHUsSX o I m h Berumcennme wuubutyta h(p), (vl (xo)), MOIKHO
CBECTH K BBIYHCIICHWIO WHOHUTYTA /i HA HEKOTOPOM OOJILIIOM BBIIYKJIOM IOAMHOMECTBE IIPOCT-
parcTBa F, KOTOPOE OIIPEeIessieTCs C MOMOINbI0 (GyHKUHOHAIIOB @ € X *, @+£0. Paccmarpusarorcs

* ., u
HEKOTOpble IPUMEHEHHs ISt Cllydas JIMHEWHBIX W BBILYKIbIX cucreM (F——>X) uccnenyeMbix B [8
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