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We show that if F, X are two locally convex spaces, T: X -+2~' a !COnvex multifunction, h: F-+ R. 
a convex functional and Xo EX,: then, under suitable assumptions on T and h, the computation 
of inf h (y) can be reduce.d to.the.computation of the infimum of h on some larger convex subsets 

YE l (xo) . ' ' ' . . . 

of F, defined 'with the· aid of functionals <PE X*, <P#O. We give some applications to the cases 

of linear systems and convex syste~s (F...'!.__, X), studiecL ·.in· [8]. 

1. Introduction 

We recall the following general problem of constrained optimization, which 
encompasses a large variety of special cases: Let X, F be two sets, r: X _,.2F a multi­
fu nction (where 2F denotes the collection of all subsets ofF, including the empty 
set f/J), x 0 EX and h:F-"R=[~oo, +oo] a functional. Find conv.enient formulae 
for 

inf h(y), (1.1) 
yE1(xo) . ' 

under suitable assumptions on X, F; r and h . Here r is also called a constraints 

multifimction (see [2]), since {r(x)}xEx is a family of constraints; in particular, 
r (xo) is the constraint corresponding to the index Xo EX. Problem (Ll) has been 
studied by S. Dolecki and S. Kurcyus~ [3] (see also [2] and the references therein), 
who have reduced it ..to a problem of un<;:<;mstrained optimizataion, with the aid of 
an associated Lagrange function. . , 

In the present paper we shall give some duality theorems of a different (non­
Lagrangian) type, fOI: the problem of ' constrained convex optimization, that is , for 
problem (1.1) in which .it is assumed that X, Fare (real) locally convex spaces ~nd 
that the multifunction r: X__,. Y and the functional h: F _,.R are convex. Let us recall 
that if X, F are two linear spaces, a multifunction r: X _,.2F is said to be convex 

(see e.g. [6]), if 

Graph F= {(x, y) E Xx F ly E r(x)} (1.2) 
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is a convex subset of X x F, or, equivalently, if we have 

).T(x1 )+(l-},) T(x2)cT(h1 +(1-.lc) x 2 ) 

I. SINGEH 

(1.3) 

for all x 1, x 2 EX and all .le with 0::;:;; .le:;:; 1. Note that if r: X~ 2F is convex, then r (x) 
is a convex subset ofF for each x EX, since (1.3) for x1 = x2 =x EX and O:;:;;J,:;:;; 1 

yields 
).T(x)+(l-.lc) T(x)cT(x). (1.4) 

Thus, since the set T (x0 ) is convex, it might seem natural to z.pply to problem 

(1.1) the known duality theorems for the minimization of the convex functional h 

on the convex subset r (x0 ) of F. For example; from a " strip theorem" of [8] (see 

[8], Theorem 2.2) it follows that if T(x0 ) and the (possibly empty) level sets 

{yE F /h (y):;;;; r} (rE R) are closed for a topology T on F, wer.ker than or equal to 

the initial topology on F, and either T (x0 ) or sets S, (rE R) <:re comp:::.ct for T, then 

inf h(y)= sup inf h(y). (1.5) 
YEF(xo) O;"'I' E F* y E F 

'l'(y)E'I'(F(xo)) 

However, since this result of duality involves only functionals PE F* (the set 

of all continuous linear functionals on F) and since we want to obtain, similarly 

to the particular case of linear systems and convex systems (see [8]), formulae for 

(1.1) involving functionals lP EX*, we shall use a different approach. Namely, con­

sidering the whole family of optimization problems 

inf h(y) (x EX) (1.6) 
yEF(x) 

(with the usual conventions inf 0= + oo, sup 0= -oo, to be used throughout this 

paper), we shall apply, to the associated primal functional f: X --+R, defined by 

f(x)= inf h(y) (x EX), (1.7) 
y E F(x) 

the following duality theorems of [7], [8] (let us observe that one could also apply 

other duality theorems, but here we shall consider only thes~.): 

THEOREM 1.1 ([7], Corollary 2.1). Let X be a locally com·ex space, f: X--+R 
a lower semi-continuous convex functional and x 0 EX. Then 

f(xo)= sup inf f(x). (1.8Y 
O;"<f> E X* xEX 

<f>(x)=<J>(xo) 

THEOREM 1.2 ([8], Theorem 4.1). Let X be a locally convex space, f :X--+R a convex 
unctional and x 0 E X, such that the set 

(1.9) 

is non-empty and qpen. Then we have (1.8) and there exists I'P0 EX~'; I'P0 #0, such that 

inf f(x) 
xEX 

<f>o(x)=<J>o(xo) 

(i.e., for which the sup in (1.8) is attained) . 

(1.10) 
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In §2 we shall give some sufficient conditions on rand h in order that the primal 
functional (1. 7) satisfy the assumptions of Theorem 1.1 or_ Theorem 1.2. 

In §3 we shall give the main duality theorems, which reduce the computation 
of (1.1) to the computation of the infimum of h on some larger convex subsets ofF, 
defined with the aid of functionals lP EX* , lP ¥:0. We shall also show that these 
theorems admit natural geometric interpretations. 

Finally, in §4 we shall observe that one can associate with the "linear systems" 
and with the "convex systems" (F ~-+X), studied in [8], some natural convex 
multifunctions F: X --+2F, to which we shall then apply the results of §2 and §3. 

2. Two lemmas, on the primal functional · 

LEMMA 2.1. Let F, X be two linear spaces, F: X --+2F a convex multi/unction and 
h: F -+R= [ -oo, +oo] a convex functional. Then the functional f: X --+R, defined by 

f(x)= inf h(y) (x EX) (2.1) 
ye r (x) 

is convex. 

Proof. Let x 1 , x 2 EX and 0::;),:;::; I, and let a>O. Then, by (2.1), there exist Y; Er (x;) 
such that h (y;):;:=;f(x;)+a (i= 1, 2). But then, since r is convex, 

AY1 + (1 - },) Y2 E },F(x1 )+(1-A) F (x2)cF(h1 +(1 - 2) x 2), 

whence, by (2.1) and since h is convex, we obtain 

f (hl +(I- A) X2):;::;h CJ•Y1 +(1- },) Y2) 

:;::; Jch(y 1 )+(1- A) h (y2):;::; },j(x1)+(1- A) j(x2)+a, 

which, since a> 0 was arbitrary, proves that f is convex. This completes the proof 
of lemma 2.1. • 

In order to apply Theorem 1.1 to the functional f: X--+ R defined by (2.1 ), we need 
to ensure that f is lower semi-continuous. Here we shall use only one lemma· in this 
direction, giving a sufficient condition which is expressed in terms of simple and 
natural properties of rand h (for some other conditions ensuring the lower semi­
continuity of J, which could be also used, see [4]). We recall that if X, Fare two 
topological spaces, a multifunction r: X --+2F is said to be upper semi-contim.ous, 

respectively lower semi· continuous, if the set 

A 6 = {x E X IF(x) n Gi:~} (2.2) 

is closed for each closed subset G of F, respectively open for each open subset G 
of F. 

LEMMA 2.2 ([1], Theorem 2.3). Let F, X be two topological spaces, r:x --+2F an upper 
semi-continuous multi function and 1]. :F--+ R a lower semi-continuous functional. Then 

the functional f:X--+R, defined by (2.1), is lower semi-continuous. 
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Proof. Since in [1] there is given only a proof of a localized version of Lemma 2.2, 
let us give here, for the sake of completeness, a direct proof of the above global 
version. Let r i:: R and let {x6}o ~LJ be a generalized sequence in · 

Sr={x E Xlf(x)~r}, ' (2.3) 

and assume that x 6 ->x0 • Then, givene > 0., by x 6 E Sr and (2.1) there exist y6 Er (x0) 

with h(.Yo}~r+e(JELI). Thus, J 0 ET(x0)nG,(JELI), where 

. G.={yEFih(y)~r+s}. (2.4) 

But, since h is lower semi-continuous, G, c F is closed and hence, by the upper 
semi-continuity of r, so is the set 

(2.5) 

consequently;. since x., E AG, (JELl) and X 0 ->x0 , it follows that x 0 E AG,- Thus, 
there exists y, ET (x0 ) n G,; ,that is, y, ET (x0 ) with h (y,) ~ r.+e. Therefore, by (2.1 ), 
f(x0)~h (y,)~r+ s, whence, since s>O was arbitrary, f(x0)~r, so Sr is closed. 
This completes the proof of Lemma 2.2. • 

3. Duality theorems 

Along with a multifunction T: X ---> 2F, we shall also us:! the inverse multifunction 
r- 1 : F->2x, defined by 

r- 1 (y)={xEX IyET(x)} (yEF). (3.1) 

For the set AG defined by (2.2), we have, clearly, 

AG= u {x,E' X lg E r(x)}= u r- 1 (f{)=r- 1 (G). 
gEG g E G 

THEOREM 3.1 . Let F, X be two locally convex spaces, T:X->2F an upper semi-conti­
nuous convex .multifunction, h:F-+R a lower semi-continuous convex functional, 
and x 0 .E' X. Then we ha·ve 

inf h(y)= sup inf h(y). (3.2) 
yEf'(xo) 0 #<PE X* y E F 

<li(xq) E<I>.(r- 1(y)) 
l.• . 

Proof. Define a functionalf:X->R by (2.1). Thei1, by Lemma 2.1 ·and Lemma 2.2, 
f is convex and lower semi-continuous. Hence, by Theorem 1.1, we obtain 

inf h(y)=f(x0 )= sup inf f(x)= sup inf inf h (y). . (3.3) 
yEf'(x 0 ) O #<liEX* xEX 

<ll(x)~<I>(xo) 
O#<ll<'X* xEX yEf'(x) 

<li(x)~<ll(xo) 

We. shall show that for each cJ> EX':' we have 

T(x)= {y E F IIP(Xo) E lP cr-l (y))}; ~ " {3.4) 
'. ~ - ~·q':, X. ;_ , - I ' 

<l>(x)~<I>(xo) 
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which, together with (3.3), will yield (3.2), completing the proof. Indeed, if x EX, 
w(x)=W(xo), yET(x), then W(Xo)=W(x)Ew(r-L(y)). Conversely, if yeF, 
<J> (xo) E cp (T- 1 (y)), then cp (xo) = cp (x ') for some x' E r- 1 (y), SO yET (x') and 
therefore y belongs to the left-hand side of (3.4), which proves (3.4). This completes 
the proof of Theorem 3.1. i!l 

REMARK 3.1. a) Formula (3.2) admits the following geometric interpretation: 

inf h(y)=sup inf h(y), (3.5) 
YE T(xo) H EJ{' Y E F . 

Xo E H r-•(,v)nH* 0 

where :If denotes the collection of all hyperplanes in X. Indeed, if cp EX*, Wi=O, 

then the hyperplane• 

H=Hxo,<P={x E XI w(x)~ w(xo)} 

contains x 0 and we have 

{y EFI w.(x0)EW(T- 1 (y))}={y EFI r- 1 (y)nHt=.~}, . (3.7) 

so (3.2) implies (3.5) ; conversely, if (3.5) holds, then, since every HE Jlf with x0 EH 

is of the form (3.6) for some cp E X':', cp i= 0, from (3. 7) we obtain (3.2). 

b) If T:X--+2F is a convex multifunction (as in the case of Theorem 3.l), then 
for each yE F and each cp E X':>,' cp i= 0, the sets r- 1 (y) 'mid (3. 7) ai·e conveX. Indeed, 
if x 1,x2 ET- 1 (y) and (}~A.~l, then, by ' (l.3), ' . ' 

y=A.y+(l-A.) yE A.T(x 1 )+(1 :-A.) T(x2)cT(h1 +(l- A.) Xz), 

soh, +Cl- A.) x 2 ET - 1 (y). On the other hand, if r:- 1 (y;)nHi=C/J, say· x; ET - 1(yJn 

nH (i=1, 2) and if O~A.~ l , then, by (1.3), 

A.y , +(l-A.) y 2 E A.r(xJ+(l-A.) T(x2)cT(h, +(I- },) Xz), 

so A.x 1 +(1- A.)x2 ET- 1 (J,y 1 +(l- A.)Yz) and, clearly, A.x ,+(l -},)x2 E H ; therefore, 
r-1 (A.y1 +(1- A.) Yz) nHt=C/J. 

THEOREM 3.2. Let F, X be two locally convex spaces, T: X --.2F a lower semi-contin­

uous convex multtfunction, satisfying U T(x)=F, h .a finite and continuous convex 

functional on F and x 0 EX such that x ~x 

infh(y)< inf h(y). (3.1\) 
yEF yE T (xo) · · ' 

Then we have ' (3.2) and there exists W0 Ex:.,· iJ>0 i=O, such that 

inf h(y)= inf (3.9) 
y E r (xo) yEF 

<Po (xo) E <Po (r - ' (y)) 

(i.e., for which the sup in (3.2) is .:attained). 

Proof. Define a: functionaJ f:X--.R by (2.1) . Then, by (3 .8) a nd since his finite 
and continuous, the set 

... .,-

N 0 ={y E F lh (y)<f(x0 )} (3.10) 
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is non-empty and open. Hence, by UT (x) = Faod since Tis lower semi-continuous, 
the Set x E X 

AN
0
={xEX\ T(x)nN0 #f/J} 

is non-empty and open We claim that 

(3.11) 

(3.12) 

Indeed, if xEANo• then, by (3.11) and (3.10), there exists yET(x) such that 
h (y)<f(x0 ), whence f(x) = inf h (y')~h (y)<f(x0 ) . Conversely, if x EX, 

y' ET(x) 

f (x) = inf h (y') <f (x0 ), then there exists yE r (x) such that h (y) <f (x0 ), whence 
y' ET(x) 

yET(x)nN0 #f/J, so xEANo• which proves the claim (3.12). Thus, the set 
{ x EX If (x) <f(x0 )} is non-empty and open, whence, by Theorem 1.2 and (3.4), 
there exists t:P0 EX':', t:P0 # 0, such that 

inf h (y) = f(xo) = inf 
x E X 

IPo(x) = IP o lxo) 

f(x) = inf '- inf h(y)= 
x EX yET(x) 

1Po(x) = <1lo(xo) 

jnf h(y) . (3.13) 
yEF 

<1lo (xo) E IPo (r- 1 (y)) 

Thus, (3 .9) holds, which, together with the obvious inequality ~ in (3 .2), yields 
(3.2). This completes the proof of Theorem 3.2. • 

REMARK 3.2. The conclusion of Theorem 3.2 admits the following geometric inter­
pretation: There exists a hyperplane H 0 in X such that x 0 E H0 and that 

inf h(y)= 
y ET(xo) 

inf 
y E F 

r- 1(y)nHo # 0 

h(y). 

4. The cases of linear systems and convex systems 

(3.14) 

We recall (see [8]) that a triple (F ~-+X) consisting of two (real) locally convex 
spaces F, X and a continuous linear mapping u ofF into X is called a linear system 
(this generalizes the terminology of [5], where it has been assumed that X, F are 
Banach spaces). Similarly (see [8]), a triple (F~-+X) consisting of a locally convex 
space F, a partially ordered locally convex space X and a convex mapping u of F 
into X (i.e., such that u(A.y1 +(1-A.)Yz)~J,u(y1 )+ (1-A.)u(Yz) for all JI,y 2 EF 
and all A. with 0~},~ 1), is called a convex system. 

REMARK 4.1. If (F ~-+ X) is a linear system and Q a convex subset of X or if (F ~-+X) 
is a convex system and il = {x E X \x~O}, the convex cone of all non-positive elements 
in X, then the multijimction r:x~2F defined by 

(4.1) 



Duality theorems 43 

is convex. Indeed, if (F _!!_-;.X) is a linear system and QcX is convex, then for any 
.Xt, x2 EX and O~.A~ 1 we have 

.Ar (x1)+(1-J,) r (x2 ) 

= {AYt +(1-.A) Y21Yi E F, U (yi) E xi+Q (i= 1, 2)} 

c{y E Flu (y) E h 1 +(1-.A) x2 +fl} 

= r (.Axl +(1- ..1.) x2). 

On the other hand, if (F _!!_-;.X) is a convex system and fl= {x E Xlx~O}, then 
9 

.Ar (xt)+(1-.A) r (xz) 

={Ayt +(1-),) YziYi E F, u (y;)~xi (i= 1, 2)}c 

c {yE F lu (y)~h1 +(1-.A) x2}=T (h1 +(1-.A) x 2), 

which proves our assertions. Thus, we can apply the results of §3, to the situation 
of Remark 4.1. Note that for the multifunction r:X--+2F defined in Remark 4.1, 
the optimization problem (1.1) becomes 

inf h (y) 
YEF 

u(y) Exo +J? 

if (F _!!_-;.X) is a linear system and Q a convex subset of X, respectively 

inf h(y) 
yEF 

u(y)<>xo 

(4.2) 

(4.3) 

if (F _.:!_--+X) is a convex system and Q = { x E Xlx~ 0}. In these cases it is convenient 
to assume that x 0 =0 in (4.2) and (4.3) (see [8]). 

Rf:MARK 4.2. In the cases considered in Remark 4.1, we have 

r-l (y)=u(y)-Q (yE F), (4.4) 
whence 

Indeed, 

r- 1 (y)={x E XI yE u- 1 (x+Q)}= {x E XI u(y) E x+fl}=u(y)-Q (yE F), 

so (4.4) holds. Consequently, 

{yE Fl 4l (x0 ) E 4l (r~ 1 (y))}= {yE Fl 4l (x0 ) E 4l (u(y))- <1J (Q)} 

={yEFI 4l(u(y))E4J(x0 +fl)}, 

so we have (4.5). In the case when (F_!!_--;.X) is a linear system and QcX is convex, 
(4.5) yields 

{yE Fl 4J(x0) E 4l (r- 1 (y))}={y <=Flu* (4J) (y) E 4l(x0+fl)}, (4.6) 
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which is a "strip?' in F (indeed, since Q is convex, et> (x, +Q) is an interva'l cin R, 

finite or infinite, closed or open at either end). On the other han'd, if (F ~~X) is 
a convex system, Q= {x E Xlx~O} and ct>~O, then (4.5) becomes 

{yE F l ct>(~0)E ct>(r-J (y))} ={yE Flct> (u(y))~ et> (x0)}. (4.7) 

Thus, in both cases, the, conclusions of Themems 3.1 and 3.2 above, with x 0 =0, 

are the same as those of the corresponding results in ~8]. 

REMARK 4.3, In the cases .considered in Remark 4.1, for any subset G ofF and for 

the set Ac defined by'(2.2) we have 

Ac=u(G)-Q. (4.8) 
' Indeed, 

Ac = {x E Xlr(x) n G#Q)} 

= {x EXj:Jy E G, u(y)E x +Q}=u(G)....:.'Q, 

so (4.8) holds. Consequently, T is upper semi-continuous, respectively, lowe1: semi­

continuous, if and only if u (G)- Q is closed for each closed sub~et G of F, respect­
ively open for each open subset G of F. Let us observe that if u (G) and Q are closed 

for a topology r on X weaker than or equal to the initial topology on X, and if one 
of them is compact for r, then u (G) - Q is closed for rand hence also for the initial 

topology on X. In [8] , Lemma 2.2, we have shown that these conditions, only 
for the sets G=G,={y E Flh(y)~r} (r~inf h(y)) and Q, are already sufficient to 

y E F 

ensure that the primal functional f defined by (2.1) is lower semi-continuous, so 
the conclusion of Theorem 3. I above holds; moreover, in [8], Lemma 2.2, it h.as not 
been assumed a priori that h is lo\Ner semi-continuous, i.e., that the sets G, are closed. 
Similarly, let us observe that if either u (G) or Q is open, then so is u (G)-Q 
=U (u(G)-w)= U (u(g)'-Q). In [8] , Lemma 4.1, we have shown that this 'ton-
w~ n gEG 

dition, only for the set G = G a= {i E F lh (g) < inf h (y) =a} (provided that G a=!= 0) 
y E F 

u(Y) E Q 

or Q, is already sufficjent to ensure . that for the primal functional f the set A 0 

defined by (I. 9) with x 0 = 0 is non-empty and open, so in this case the conclusion 
of Theorem 3.2 above holds, with x 0 =0 (indeed, U r(x)=U u- 1 (x + Q) = F, 

XE X x E X 

since for any yEF and ariy W 0 EQ we have yEu- 1 (u(y) - w0 +Q)) ; moreover, 
in [8], Lemma 4.1, it has not been assumed a prio ri that h is finite and continuous, 
or that the set G" is open. Finally, let us note that in the particular case when F= X 

and u=IF, the · identity mapping; (4.1) becomes · · 
! ' , . · . 

r(x)~x+Q ' (x E X=F), (4.9) 

and Ac = u (G)- Q = G- Q is open for each open subset G ofF, so r is la\~er se~j­
continuous and Theorem 3.2 works; if Q is compact, then r is also upper semi­
continuous, so Theorem 3.1 applies as well. 
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Twierdzenia o dualnosci dla wypuklych zadan optymalizacji 
z ograniczeniami 

Niech F i X bced<l dwiema lokalnie wypuklymi przestrzeniami, T:X->2F- wypukl<l multi­

funkcjq , a h:F->R-funkcjonalem wypuklym i niech x0 EX. 
Pokazuje sice, :i:e przy odpowiednich zalo:i:eniach na r i h wyznaczenie inf h (y) mo:i:e bye 

YET (xo) 

sprowadzone do wyznaczenia infimum h na pewnym wicekszym podzbiorze wypuklym przestrzeni 
F, kt6ry jest zdefiniowany przy wykorzystaniu funkcjona16w <P E X*, <P-#0. Om6wione Sli pewne 

zastosowania do uklad6w liniowych oraz uklad6w wypuklych (F ~--+X) badanych w [8]. 

TeopeMhl 0 )J,BOHCTBeHHOC1H )J,JIH BhlllYKJihiX 3a)J,a'f OUTHMH3af.IHH 
C orp2HH'feHHHMII 

IIycTb F H X 6y.[lyT .!IBYMH JIOICaJJbilO BbiiiYKJJblMH npOCTpaHCTBaMU, r: X-+2F - BhlilyK­
JIOM MYJibTHi}>YHKI.\HeM, a h:F-+R-BhillyKJibiM i}>yHKI.\HOHaJIOM H nyCTb XoEX. IloKa3aHO, 'iTO 
llpH Ha.une)!(all.IUX npH,!IITOJIO)!(eH}[l!X 0 T li h Bbl'iHCeHHe llHi}>UTyTa h (y), (yE T(xo)), MO)!(HO 
CBeCTH K Bbl'illCJieHHEO HHi}>HTYTa h .Ha HeKOTOpOM 60Jibill0M BblilyKJIOM IIO,LIMHO)!(eC1'Be npoC1'­
paHCTBa F, KOTopoe onpe.r~errHeTcll c noMOfl.lhiO l}>yHKI.IHOHarros <PE X*, <P*O. PaccMaTPHBaiDTCll 

. u 
.HeKOTOph!e I!p!IMeHeHHl1 ,!IJIH CJiy'ial! JIH.HellHhlX H BhlilYKJih!X CHCTeM (F- --+X) HCCJie.[lyeMbJX B [8 




