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A con .ection between terminal capacities and minimal subsets of a line weighted graph is 
presented. The . connection reduces the computing work of minimal subsets when the terminal 
capacities are known, It is also shown that the minimal subsets constitute a hierarchical clustering 
of the points of a line weighted graph. Thus the determination problem here is a part of a general 
problem: the clustering of the points of a graph. 

1. Minimal cutsets and terminal capacities 

Let G=(V, E) be a connected undirected graph without loops and multiple 
lines. Such a graph with weights on lines and points is called a network. In the 
following we shall consider graphs with nonnegative weights w on lines only. Let 
A, Be V, A nB=f/J and wu be the weight of the line joining the points i and j. 
f(A, B) is a brief notation for the sum >' wii• where i EA and j E B. A nonempty 

. ..;..J 

i,j 

subset S c V is called minimal if for every nonempty susbset R ~f S, R =f. S, it holds: 

f(R, V '-. R) > f(S, V'-.S). 

Moreover, each point of G constitute a minimal subset of G. 

Kacprzyk and Stanczak have derived a great number of properties of minimal 
subsets (called groups) of graphs in their papers [1] and [2]. They have also deve­
loped further the algorithm of Luccio and Sanii [4] for enumerating all the minimal 
subsets of a given graph G. The purpose here is to show how the enumeration work 
can be reduced when it is known the terminal capacity matrix MGt of G and a path 
(a linear tree) realizing that matirx. 

As well known (see e.g. the monograph [3] of Kim and Chien), .the terminal 
capacity tii between the points i and j equals the minimum sum of the weights of 
the lines in a line cut separating the points i and j in G. Such a set is called a minimum 
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cutset separating i and' j, denoted by C (i,j), and the corresponding weight is 
w (C(i,j)). tu :is defined to be=. Thus the terminal capacities can be collected into 
a matrix MG,= [tii], the terminal capacity matrix of G. If [tij] is the terminal capacity 
matrix of a graph G, there exist also trees having [tii] as their terminal capacity 
matrix [3; Part V, Thm. 14 and Cor. 5]: in fact, there is a path realizing [tii]. 

THEOREM 1. Let G=(V, E) be a given ·graph and Me, = [ti1] its terminal capacity 
matrix. IfS is a minimal subset of G, then S is u minimal subset of each path r"ealizing 

MGt· 

Proof. We sb.::tll show that the points of S constitute a subpath of each path PG, 
realizing M Gr· Then there can be at most two lines joining the points of V"'-S to 
the points of Sin a P Gr · The weights of these lines in a P Gt are of interest when pro­
ving S to be a minimal subset in P Gt· We concentrate first on proving S to be a sub­
path of PGr· 

If the lines between S and V"'-S constitute a minimal cutset between a point i 
from S and j from V"'-S, there is nothing to prove. So we assume that the lines 
between . S and V"- S do not constitute a minimal cutset for any pair i, j of points, 
i E S and j t= V"'-S. · · 

Let i E S and j E V"'-S, and let the minimal cutset separating i and j contain 
lines joining a point of S to another point of S (see Figure 1, where the symbols 
a, b, .. . , g denote weights on lines). In Figure 1 we see that the· cutset separating 

Fig. 1 

i and j has the weight a+ b+c+d. According to the properties of minimal sets 
[2, Lemma 1 ], f (R, S "'-R) >f (S"'-R, V"'-S) for each R c S, R "# S. Thus, according 
to the symmetry, a>g+b and a>c+e. But then, because the weights are non­
negative, a+b+c+d>g+c+d. Thus the minimal cutset separating i and j, i E S 
and j E V "'-S , does not contain lines joining two points of S. 
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As well known, a minimal cutset divides G into two connected nonempty sub­
graphs. When cutting G we proceed as follows: Let a minimal cutset separating i E S 
and j E V"'S divide G into two connected subgraphs G (i) and G (j). As shown 
above, the points V(j) of G (j) belong to V "'S. We choose i and j such that the 
number [ V(j) [ of points in V(j) is maximal (i.e. for other pairs s, k of points, sE S 

and k E V"'S, it holds: [V(j)[ ~[V (k) [). After choosing such a point j we denote 
it by }1 and choose another j=j2 according to the same criterion from the set 
V"'S ',Y(.i1); i E S. Because a minimal cutset separates the points V(j1) from 
other points of G, V(j1 )cV(j2 ) or V(j1 )n V(j2)= 0 [3, Part V, Cor. 6]. The case 
V(j,)c V(j2 ) is impossible, because then [V (j,) [ were not maximal as the criterion 
requires. Thus V(j1 )n V(j2)= 0 and as above, V(iz)cV"'S. We continue the 
choosing ofpointsj,, ... ,j111 until V"'S"'V(j,)"' ···"'V(j111)= 0 ; assume that V"'S"' 

""'V (j,)"'· ··"- V (j111 ) = 0 but V"'S"' V (}1 ) "' ··· ""' V Um - 1) # 0. 

Fig. 2 

Let us separate now two points k and r of S by a minimal cutset. Such a cutset 
separates G into two disjoint connected subgraphs G (r) and G (k) with pointsets 
V (r) and V(k) , respectively. Because minimal cutsets separate the sets V(j1 ) , V(}z), ... 
... , V(j111 ) from G, then either V(j,,)c V(r) or V(j,) n V(r)= 0 (and thus either 
V(jh)nV(k)= 0 0r V(j1,)cV(k)because V(r)nV(k)= 0 and V(r)uV(k)=V), 
h= 1, ... , m. This minimal cutset C (r , k) may so contain lines joining a point of S 
to a point of V"'S as well as lines joining two points of V"'S. We denote by R 
the setS n V (r) and by S"'R the setS n V (k). Accordingly, the weight w ( C (r, k)) 
= t,k of the cutset satisfies the inequality: w ( C (r, k)) ~ f(R, S"'R). The separation 
of the points of S can now be continued in R = V (r) n S and in S"'R =V (k) n S 
until all terminal capacities t,k of pairs, r, k E S are determined. 

Let t,k be the least terminal capacity between two points r and k of S. Then, 
according to the properties of S, a= f(R, S"'R) > g+b, c+e (see Figure 2). On the 
other hand, t,k=a+b+c+d>g+c+d, b+d+e. Moreover, for each w(C(i,j")), 

4 . 



50 J. NIEMINEN 

j 11 EA, g+c+d~w(C(i,j11)), and similarly, d+b+e~w(C(i,j11)) for each 
w(C(i,j11)), j~zEB, because the line sets C(i, j 11) are minimal cutsets separating a 
point i E S from a point j 11 E V"'S. But then also the least t,k~ w ( C (i, j 11 ) ), h = 1, ... , m, 
and so the points of S constitute a subpath of each path realizing M 6 ,. 

As shown above, every point of V"- S belongs to one of the pointdisjoint sets 
V(j1), .. . , V(jm) separated from G by a minimal cutset C(i,j11), i E Sand j 17 E V""-S, 
h=l, ... ,m. But then the points of V"'S are joined in every path realization P6 , 

of M 6 , to the subpath of S by a line having the capacity of at most w(C(i,j11)), 

i E Sand j 11 E V""-S, h= 1, ... ,m. Because the least capacity of a line in the subpath 
realizing the points of S is properly greater than the capacities of the lines joining 
the points of S to the points of V"'S in every path realization P 6 ,, S .is a minimal 
set in every P 6 , of M 6 ,. This completes the proof. • 

The converse does not hold. This can be seen from the graphs of Figure 3, where 
G is the given tree and P 6 , a path realization of M 6 ,. The set {a, b, c} is a minimal 
set in P6 , but it is not a minimal set of G, because /({b}, V"'{b})=4 =f({a, b, c}, 

>-~ 
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G Pat 
Fig. 3 

V""-{ a, b, c}) in G. Thus the path realization shows the sets, the minimality of which 
is reasonable to check in G. According to the very simple structure of paths, their 
minimal sets is very easy to find. 

By using a similar proof technique, a partial converse can be proved; according 
to the similarity, the proof is omitted. 

THEOREM 2. IfS is a minimal set in every tree realization T Gt of the terminal capacity 
matrix M 6 , of a given graph, then S is a minimal set in G. 

By denoting in Figure 3 the path P 6 , as a given graph G* and G as a tree reali­
zation T 6 • , of the matrix M 6 *, one sees that the converse of Theorem 2 does not 
hold: {a, b, c} is a minimal set of the given graph G* but it is not a minimal set 
in every tree realization of M 6 * ,. 

2. A new interpretation 

We like to point out a character not noted before when considering minimal 
sets of a graph: The minimality property induce a hierarchical clustering of the 
points of G. 

Let i andj be two points of G. We define a binary operation ton V,as follows: 

t (i,j)={kl the terminal capacities t;k, tik~t;i}. 
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Moreover, we define .. that t (i, i)={i} for every point i E V; this is consistent 
with the definition of t (i, j) if the graph G in question contains lines with finite 
weights only. The definition implies that i, jEt (i, j). When I and J are two nonempty 
subsets of V 

t (I, J)={k ik E t(i,j) for some pair i and j, i Eland j E J}. 

A subset I is t-closed when t (I, l)=l. 
According to the definition ever:y point of G is t-closed and trivially, t (V, V)= V, 

because t (i, i)={i} and i E V. The definition implies also that when I and J are 
t-closed subsets of V and In J = K #- 0 , then K is !-closed. But then there is for any 
two t-elosed subsets I and J of V a least t-closed subset containing I and J; this 
is denoted by Jv J and it is n {M!t(M, M)=M and I, JcM}. Thus the t-closed 
subsets of G constitute a joinsemilattice H. 

LEMMA 1. Each minimal set S of a graph G is t-c/osed. 

Proof. We should show that t (S, S) = S. Because t (i, i)={i} for each i E S, S 
c t (s; S), and thus it remains to prove that t (S, S) c S, i.e. if i, j E S then t (i, j) c S. 

Because S is a minimal set of G, it is a minimal set in every path realization 
P Gt of M Gt· Let k E V"'-S. In a path realization P Gt the points of S are joined by 
at most two lines to the points of V"'-S; let the weights of these lines be ta and tb. 
Because k E V"'-S, tik> tik~max {ta, tb}. As shown in the proof of Theorem 1, 
tij > ta, tb for any two points i, j E S. Thus V"'-S n t (i,j) = 0 and so t (i,j) c S. This 
completes the proof. 

Kacprzyk and Stanczak [1] proved that if S 1 and S2 are two minimal sets of 
a graph G, then S 1 n S2 = 0 or one of the sets contains another. But then the minimal 
sets of G constitute a substructure T(S) of the joinsemilattice H of !-closed subsets 
in G, which is a tree (two elements have a common lower bound only if one contains 
another). This tree T(S) is a hierarchical clustering •of the points of G, because 
the greatest element ofT (S) is V and every point i of V belongs to the lowest level 
of T (S) . . The points of a set R c V constitute a cluster whenever R is a minimal 
set of G. 

As a final observation we prove another lemma which shows that two t-closed 
subsets have a common lower bound only if one contains another. Accordingly 
His a tree and it determines also a hierarchical clustering of the points of G. T (S) 
is usually a proper su bst1 ucture of H: e.g. in the graph G of Figure 3, the set {a, b, c} 
is !-closed but not minimal. On the other hand, as the definition of !-closed subsets 
shows, (they are determined by terminal capacities), all t-closed subsets can easily 
be determined by any path PGt realizing the capacity matrix of the given graph G. 
Thus there must always be good reasons for choosing the hierarchical clustering 
of V determined by minimal sets and not that determined by !-closed subsets because 
!-closed subsets can be detected easily and directly by means of termial capacities 
but the minimal sets not. 

LEMMA 2. Let I and J be two t-closed subsets of a graph G such that In J #- 0 . Then 
either le] or Jcl. 
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Proof. Tbe terminal capacity matrix MGr of G has a path realization PGr· In this 
PGt any two points i andj are joined bX a path; let it be i=h0 , h,, h2 , ... , h'", h111 + 1 =j. 
Because the path is unique, t;1·=min {t1, 11 lp=O, ... , m}. 

p p+ 1 

Let c E In J. If I= { c} or J = { c }, there is nothing to prove, whence we assume 
that I, J#{c}. There is a unique path of PGt joining two outermost points of I and 
every point of I is on this path. Thus there is a point i * E I such that tc; * 
=m in {tisli, SE I}; fimilarly, there is a point j':' EJ such that tcj* = min { tjr lj, rE J}. 
Because tci* and tci* are real numbers, tci*~ tcj* (or tcj*~fci•). But then t (c, i*) 
={klkE V and tki*• tkc);tci*} contains every point k from I and every point k 
from J, and thus J c t (c, i':'). Because t (I, I) =I, t (c, i*) c I and consequently, 
J c I. If tcj* ~ tci •, I cJ. This completes the proof. • 
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0 zespolach minimalnych sieci 

Przedstawia sice zale:i:nosc micedzy pojemnokiami koncowymi i zespolami minimalnymi liniowego 

grafu wazonego. Zaleznosc ta zmniejsza naklad obliczet'l przy wyznaczaniu zespol6w minimalnych, 

gdy znane S<! pojemnosci koncowe. Pokazuje sice taki:e, :i:e zespoly minimal ne stanowi<t . hierarchiczne 

zgrupowanie punkt6w liniowego grafu wa:i:onego. A zatem, zagadnienie wyznaczania zespol6w 

minin1alnych jest cz~esci<t og61nego problemu grupowania punkt6w grafu. 

0 MHHIIMaJILHLIX KOMUJiei.:cax CeTeH 

Tipe,l(CTaBneHa 3aBHCHMOCTb MeJK,l(y KOl!e<fHhiMH eMKOCTHMii H MHHHManhHbiMH KOMnJieKCaMF< 

JIHHefu.!oro B3BellleHl!oro rpaQJa. 

3ra 3aBHCI£MOCtb CHHJKaet KOJII{'!eCtBO Bbi'IHCITeHHH llpU orrpe)J.eJieHHH MHHHMaJibHI>!X KOM­

riJieKCOB, KOf,l(a H.3BeCTHbl KOl!e'l'Hbie eMKOCTH. TioKa3aHO taKJKe, '!TO MHHHMafibl!hie KOMnJieKCbi 

l!BmtiOTCl! nepapxnqecKoti rpyrrrroti to'ieK m£Hei1Horo B3BellleHHoro rpa<jJa. TaKHM o6pa3oM, 

3a,l\a'la orrpepeneHHl! MHFiHMarrhHhiX KOM11JleKCOB l!BJil!etcl! 'laCTbiO o6mei1 rrpo6neMbt rpynrurpo­

Bal!Hl! TO'!eK rpa<jJa. 


