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A con ection between terminal capacities and minimal subsets of a line weighted graph is
presented. The connection reduces the computing work of minimal subsets when the terminal
capacities are known, It is also shown that the minimal subsets constitute a hierarchical clustering
of the points of a line weighted graph. Thus the determination problem here is a part of a general
problem: the clustering of the points of a graph.

1. Minimal cutsets and terminal capacities

Let G=(V,E) be a connected undirected graph without loops and multiple
lines. Such a graph with weights on lines and points is called a network. In' the
following we shall consider graphs with nonnegative weights w on lines only. Let
A,B<V, AnB=0 and w;; be the weight of the line joining the points i and j.

f (4, B) is a brief notation for the sum _}:’ w;; where i€ A and je B. A nonempty
ij

subset SV is called minimal if for every nonempty susbset R of S, R#S, it holds:
f(R, V\R)>f(S, \S).

Moreover, each point.of G constitute a minimal subset of G.

Kacprzyk and Stariczak have derived a great number of properties of minimal
subsets (called groups) of graphs in their papers [1] and [2]. They have also deve-
loped further the algorithm of Luccio and Samnii [4] for enumerating all the minimal
subsets of a given graph G. The purpose here is to show how the enumeration work
can be reduced when it is known the terminal capacity matrix Mg, of G and a path
(a linear tree) realizing that matirx.

As well known (see e.g. the monograph [3] of Kim and Chien), the terminal
capacity ;; between the points 7 and j equals the minimum sum of the weights of
the lines in a line cut separating the points 7 and j in G. Such a set is called a minimum
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cutset separating i and j, denoted by C(i,/), and the corresponding weight is
w (C(G, j))- t;; is defined to be co. Thus the terminal capacities can be collected into
a matrix Mg, = [t;;], the terminal capacity matrix of G. If [#;,] is the terminal capacity
matrix of a graph G, there exist also trees having [7;;] as their terminal capacity
matrix [3; Part V, Thm. 14 and Cor. 5]: in fact, there is a path realizing [7;;].

THEOREM 1. Let G=(V, E) be a given giraph and Mg =[t;;] its terminal capacity
matrix. If S is a@ minimal subset of G, then S is a minimal subset of each path realizing
MGI.

Proof. We shall show that the points of .S constitute a subpath. of each path Pg,
realizing M,. Then there can be at most two lines joining the points of ¥'\.S to
the points of S in a Pg,. The weights of these lines in a Pg, are of interest when pro-
ving S to be a minimal subset in Ps;. We.concentrate first on proving S to be a sub-
path of Pg,. :

If the lines between S and ¥\ S constitute a minimal cutset between a point i
from § and j from V\/S, there is nothing to prove. So we assume that the lines
between S and V'\S do not constitute a minimal cutset for any pair i, j of points,
ieS and je V\S. = Sk ' o

Let i€ S and je V\S, and let the minimal cutset separating i/ and j contain
lines joining a point of S to another point of S (see Figure 1, where the symbols
a, b, ..., g denote weights on lines). In Figure 1 we see that the' cutset separating

i e

7,

* Fig. 1

i and j has the weight a+b+c+d. According to the properties of minimal sets
. [2, Lemmal], f(R, S\R)>f(S\R, V\S) for each R=S, R#S. Thus, according
to the symmetry, a>g+5b and a>c+e. But then, because the weights are non-
negative, a+b+c+d>g+c+d. Thus the minimal cutset separating i and j, icS
. and je P\ S, does not contain lines joining two points of S.
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As well known, a minimal cutset divides G into two connected nonempty sub-
graphs. When cutting G we proceed as follows: Let a minimal cutset separating i € S
and j< V\S divide G into two connected subgraphs G (i) and G (j). As shown
above, the points V' (j) of G(j) belong to ¥\ S. We choose 7/ and j such that the
number |V (j)| of points in V(j) is maximal (i.e. for other pairs s, k of points, s € S
and ke V\S, it holds: [V (j)|=|V (k)]). After choosing such a point j we denote
it by j, and choose another j=j, according to the same criterion from the set
VNSN\V (j1); ieS. Because a minimal cutset separates the points V(j,) from
other points of G, V(j)=V(j,) or V(j)NV (j,)=2 [3, Part V, Cor. 6]. The case
V(j )< V(J,) is impossible, because then |V (j;)| were not maximal as the criterion
requires. Thus V(j)NV(j,)=2 and as above, V(j,)=¥V\S. We continue the
choosing of points ji, ..., j,, until ¥’\SN\V (j)\...\V (j,)=2 ; assume that '\ S\
NPT (=2 but PSSV (e XF (Jaan) 285

= C(rk)

Fig. 2

Let us separate now two points k and » of S by a minimal cutset. Such a cutset
separates G into two disjoint connected subgraphs G (r) and G (k) with pointsets
V (r)and V (k), respectively. Because minimal cutsets separate the sets V' (j,), V' (},), ...
ooy V(ju) from G, then either V (j,)<V (r) or V(j,)NV (r)=2 (and thus either
V(ij)nVk)=gaor V(j)=V (k) because V(r)NV(k)=o and V(r)uV(k)=V),
h=1, ..., m. This minimal cutset C (r, k) may so contain lines joining a point of S
to a point of V'\.S as well as lines joining two points of V'\S. We denote by R
the set SN V (r) and by S\ R the set SN V (k). Accordingly, the weight w (C(r, k))
=t,, of the cutset satisfies the inequality: w (C (r, K))=f (R, S\R). The separation
of the points of S can now be continued in R=V (r)N S and in S\R=V (k)N S
until all terminal capacities 7., of pairs, r, k € S are determined.

Let t,, be the least terminal capacity between two points » and k of S. Then,
according to the properties of S, a=f (R, S\R)>g+b, c+e (see Figure 2). On the
other hand, t,,=a+b+c+d>g-+c+d, b+d+e. Moreover, for each w(C(i,j,,)),

4




50 J. NIEMINEN

Jn€ A, g+ec+dzw(C(,jn), and similarly, d+b+e=w(C(,j,)) for each
w (C(, Jjn)s ju € B, because the line sets C (7, j,) are minimal cutsets separating a
point ;€S from a point j,€ '\S. But then also the least t,>w (C (), k=1, ..., m,
and so the points of S constitute a subpath of each path realizing Mg,.

As shown above, every point of V'\ § belongs to one of the pointdisjoint sets
V(jy), --» V(jm) separated from G by a minimal cutset C(7, j,), i € S and j, € V\S,
h=1, ..., m. But then the points of '\ § are joined in every path realization Pg,
of M, to the subpath of S by a line having the capacity of at most w(C (5 jw)»
ieSand j,e V\S, h=1, ..., m. Because the least capacity of a line in the subpath
realizing the points of S is properly greater than the capacities of the lines joining
the points of S to the points of ¥\ § in every path realization Pg,, .S is a minimal
set in every Pg, of Mg, This completes the proof. B

The converse does not hold. This can be seen from the graphs of Figure 3, where
G is the given tree and Py, a path realization of Mg,. The set {a, b, ¢} is a minimal
set in Pg,, but it is not a minimal set of G, because f({b}, V\{b})=4=f({a, b, ¢},

Fig. 3

V\\{a, b, c}) in G. Thus the path realization shows the sets, the minimality of which
is reasonable to check in G. According to the very simple structure of paths, their
minimal sets is very easy to find.

By using a similar proof technique, a partial converse can be proved; according
to the similarity, the proof is omitted.

THEOREM 2. If S is a minimal set in every tree realization T, of the terminal capacity
matrix Mg, of a given graph, then S is a minimal set in G.

By denoting in Figure 3 the path Pg, as a given graph G* and G as a tree reali-
zation Tg., of the matrix M., one sees that the converse of Theorem 2 does not
hold: {a, b, ¢} is a minimal set of the given graph G* but it is not a minimal set
in every tree realization of Mg« ;.

2. A new interpretation

We like to point out a character not noted before when considering minimal
sets of a graph: The minimality property induce a hierarchical clustering of the
points of G.

Let 7 and j be two points of G. We define a binary operation # on V as follows:

t(i,j)={k| the terminal capacities #;, ?;=>?;}.
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Moreover, we define that ¢ (i, i)={i} for every point i € V; this is consistent
with the definition of #(i, j) if the graph G in question contains lines with finite
weights only. The definition implies that 7, j€ ¢ (7, j). When 7 and J are two nonempty
subsets of V' '

t(I,J)={klk et(i,j) for some pair i and j, i€l and jeJ}.
A subset 7 is t-closed when ¢ (7, I)=1.

According to the definition every point of G is #-closed and trivially, ¢(V, V)=V,
because 7 (i,i)={i} and ie V. The definition implies also that when I and J are
t-closed subsets of V and INJ=K%z, then K is #-closed. But then there is for any
two r-closed subsets 7 and J of V a least #-closed subset containing I and J; this

is denoted by IvJ and it.is () {M|t(M, M)=M and I,J=M }. Thus the z-closed
subsets of G constitute a joinsemilattice H.

LeEMMA 1. Each minimal set S of a graph G is t-closed.

Proof. We should show that (S, S)=S. Because 7 (i,i)={i} for each ie S, S
s (S; S), and thus it remains to prove that ¢ (S, S)c S, i.e. if i, je S then 7(j, j) = S.

Because S is a minimal set of G, it is a minimal set in every path realization
Pg, of Mg,. Let k€ V\S. In a path realization P, the points of S are joined by
at most two lines to the points of V'\.S; let the weights of these lines be 7, and #,.
Because k€ V\S, fy, tx<max {t, t,}. As shown in the proof of Theorem 1,
1>t , for any two points i, je S.Thus V\SNt(i,j)=2 and so ¢ (i,j)<S. This
completes the proof.

Kacprzyk and Stanczak [1] proved that if S, and S, are two minimal sets of
agraph G, then S; N S, =@ or one of the sets contains another. But then the minimal
sets of G constitute a substructure 7°(S) of the joinsemilattice H of r-closed subsets
in G, which is a tree (two elements have a common lower bound only if one contains
another). This tree 7'(S) is a hierarchical clustering°of the points of G, because
the greatest element of 7'(S) is V and every point i of ¥ belongs to the lowest level
of T (S). The points of a set R< V constitute a cluster whenever R is a minimal
set of G.

As a final observation we prove another lemma which shows that two #-closed
subsets have a common lower bound only if one contains another. Accordingly
H is a tree and it determines also a hierarchical clustering of the points of G. T (S)
is usually a proper substiucture of H: e.g. in the graph G of Figure 3, the set {a, b, ¢}
is t-closed but not minimal. On the other hand, as the definition of 7-closed subsets
shows. (they are determined by terminal capacities), all 7-closed subsets can easily
be determined by any path Pg, realizing the capacity matrix of the given graph G.
Thus there must always be good reasons for choosing the hierarchical clustering
of V determined by minimal sets and not that determined by #-closed subsets because
t-closed subsets can be detected easily and directly by means of termial capacities
but the minimal sets not.

LeEMMA 2. Let I and J be two t-closed subsets of a graph G such that INJ+# . Then
either I<J or JcI.
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Proof. The terminal capacity matrix Mg, of G has a path realization Pg,. In this
P, any two points 7 and j are joined by a path; let it be i=hg, hy, hay ooy By By 1 =]
Because the path is unique, #;;=min {r,,p,,p+llp=0, vees M

Let ce INJ. If I={c} or J={c}, there is nothing to prove, whence we assume
that 7, J#{c}. There is a unique path of P, joining two outermost points of 7 and
every point of [ is on this path. Thus there is a point i* €/ such that f,«
=min {#,i, s I}; similarly, there is a point j*eJ such that #,;+=min {z,,|j, r €J}.
Because 7.;+ and 7« are real numbers, 7.+<f.;+ (or #.,+<f,+). But then ¢ (c,i¥)
={klkeV and ty, t,.>1,+} contains every point k from I and every point k
from J, and thus J<=t(c, i¥). Because f(I,I)=1, t(c,i*)=I and consequently,
JoI If t.;+<t,+, IcJ. This completes the proof. L]

\
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O zespolach minimalnych sieci

Przedstawia si¢ zalezno$¢ miedzy pojemnogciami koficowymi i zespotami minimalnymi liniowego
grafu wazonego. Zalezno$¢ ta zmniejsza naktad obliczen przy wyznaczaniu zespoldéw minimalnych,
gdy znane sa pojemnosci koncowe. Pokazuje si¢ takze, ze zespoly minimalne stanowia hierarchiczne

zgrupowanie punktoéw liniowego grafu wazonego. A zatem, zagadnienie wyznaczania zespolow
minimalnych jest czescia ogolnego problemu grupowania punktow grafu. v

O MUHIMAJNBHBIX KOMILUIEKCAX CeTei

IIpencraBnexa 3aBUCHMOCTb MEXAY KOHEYHBIMH EMKOCTSMHU ¥ MUHMMAIBHBIMIA KOMILUTEKCAME:
JIMHEHHOTO B3BELLEHHOTO Tpada.

3Ta 3aBUCHMOCTb CHIKAET KOJMYECTBO BLIYMCICHHI IPH OUPEISTCHUH MHHHMAIBHBIX KOM-
IJIEKCOB, KOT/1a M3BECTHbI KOHEYHble EMKOCTH. [Toka3zaHO TakxKe, YTO MHHEMAJIBHBIC KOMIUIEKCHI
SIBIISIFOTCS MEPAPXHYECKON TPYIIOM TOYeK JIHHEHHOro B3BemieHHOro rpada. Taxum oGpaszom,
3aa4a ONPECTIEHsT MARUMAJIBHBIX KOMILIEKCOB SBIISETCS 4ACThIO 0OIel mpobieMsl rpynmapo-
BaHUS TOYEK rpada.




