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Stabilization problem for discrete time linear system is solved by approximation method. 
Sufficient conditions for stabilization by finite dimensional feedback operator are c ' >tained. Under 
the relatively weak conditions the existence of a stabilizing operator is proved. 

1. Introduction 

A general discrete time infinite dimensional system is defined by the equation 

(1.1) 

where xk EX, uk E U, X is a Banach space, U is a linear normed space and A E fE (X), 
BE fE ( U, X) are linear bounded operators. The equation ( l.1) can be used as a dis­
crete mcdel for many linear dynamic processes, including those with continuous 
time. The discretization procedure for continuous time linear S)Stem described by 
strongly continuous semigroup of operators is presented in [5], [6]. 

For stabilization problem of syftem (l.l) we use finite dimensional approxima­
tions. Approximation problem for infinite dimensional system was considered by 
Banks and Burns [2], Osborn (4], Trotter [7]. Banks and Burns used finite dimen­
sional approximations to minimization problem for nonlinear time delay system 
with quadratic cost functional. They used semigroup model of time delay system. 
Similar approximation procedure was used by Trotter for control problem of distri­
buted parameter systems. Osborn considered problem of eigenvalues and eigen­
vectors approximation of compact operators in Banach spaces. His results can be 
basically used in stabilization problem but spectral projections onto eigenspaces 
are very difficult to compute in concrete cases. 

The approximation technique ·used in-this paper to stabilization problem does 
not use spectral projection and the constrution of approxi-mating systems is simple. 
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2. Finite dimensional approximations 

We construct a sequence of approximating systems for discrete model (1.1). 

DEFINITION 2.1. The sequence {XN, PN, AN, UN, QN, BN}';= 1 is 
sequence iff the following hypotheses are satisfied: 
(Hl) XN is a finite dimensional subs pace of X for each N. 
(H2) P N: X-+ XN are c~ntinuous projections onto XN such that 

for all x EX. \ 

an approximating 

lim IIPN x-x/l =O 
N-+ oo 

(H3) AN:XN-+XN are linear operators such that lim 1! ,-tNPNx-Ax/1 =0 for all 

UE U. 
The definition of an . approximating sequence given above is related to one 

employed for continuous linear systems by Banks and Burns in [2] and by Trotter 
m [7]. 

The approximating systems will be described for each N=l, 2, ... by equations 

(2.1) 

wherextEX"', ufEUN and {X"',PN,AN,UN,QN,BI\}';=1 is an approximating 
sequence. 

3. Stabilization of infinite dimensional discrete time systems 

Stabilization problem for a general discrete time linear system of the form (1.1) 
will be solved by computing .finite dimensional feedback gain from approximating 
systems (2.1). First we define the notion of r-stability. 

DEFINITION 3.1. A homogeneous discrete time system 

xk+t=Axk> k=0,1,2, ... (3.1) 

where xk EX, A E St (X), is r-stable iff for each x0 EX solution {xk}:'=o is such that 
/[xk /1 = o (rk) as k-+ + =. 11 
LEMMA 3.1. If the spectral radius of an operator A is smaller than r (p(A)<r) then 
system (3 .1) is r-stab!e. 

Proof. 
Jlxn /l = /[A" Xo /l ~ 1/ A" /1 /[Xo /[. 

For each linear bounded operator A we have 

p (A)= lim l/J[A/1 . 
ll-+ 00 
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Hence 

Vs>O 3n0 Vn~n0 JJA"Jl< (p (A)+s)". 

· Choosing s such that p (A)+s<r we obtain for sufficiently large n 

JJx"JI~IlA"llllxo ll <(p (A)+s)"l lxo ll =o (r"). • 
Notice that in general r-stability does not imply that p (A)< r . 

Example 3.1. Let X=U(0,1;R), (Ax)(t)dftx(t) and r=l.Since Jl xn ii = II A"x0 1l ~ 

~ Jlx0 JJ/lhn+l-+O as n-++= then system (3.1) with such operator A is 1-stable. 
However, the spectrum of the operator A is a (A)= [0, 1] hence p (A)= 1. • 

LEMMA 3.2 (Anselone [1]). If A E fi' (X) and there exists a posWve integer k such 
that J[Ak JJ< 1 then there exists (I- A)- 1 E fi' (X) and 

• 
Now we arc. able to prove the main theorem on stabilization of discrete tini.e linear 
systems. 

THEOREM 3.l. If for some N there exists an operator FN E fi' (XN, UN) such that 
p(Ar-:+BNFN) < r and there exists a positive integer k such that for each },E Ar 

= {).: I .?c l ~ r} the inequality IlL~ (J,) Il < 1 holds, where 

LN (.le) df (TN-(AN+BN FN) PN) (U-(Ai'i+BN FN) PN)-I, 

df 
TA ~- A+BFNPN, 

then system 

(3.2) 

is r-stable. 

Proof. Let }, EAr be arbitrary chosen. We shall prove that }, is a regular value 
of the operator (AN+ EN FN) PN. If}, is not a regular value, i.e., A Ea ((AN+BN FN) PN), 
then A is an eigenvalue of this operator, since (AN+BN FN) PN is a finite dimensional 
operator. Hence there exists a non zero vector x 0 E X such that [.lcx0 -(AN+BN FN) x 
xPr; x0 ]=0. But 

ho-(AN+BN FN) PN Xo=A (PN X0 +(I-PN) xo)-(AN+BN FN) PN Xo 

=PN (J, PNxo)+ J, (I-PN) x 0 -PN (AN+ EN FN) PN Xo 

=PN (JJ-(A N+BN FN)) PN xo+U-PN) (ho)-

Since l?N(AI-(AN+BN FN)) P 11 x 0 EXN and (I-PN) (h0) E (XN) where X = XNEB(XN)' 

then PN(U-(AN+Br-:FN))PNx0 =0 and (l-P"')x0 =0. 
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Hence PN x 0 i=O and (JJ-(AN+BN FN)) PN x 0 =0 so}, is an eigenvalue of the oper­
ator AN+BN FN and it contradicts the assumption that p (AN+BN F,v)<r. Thus 
we obtained that (JJ-(AN+BNF,v)P,v)- 1 E 2'(X), LNO) is well defined and 
LN (),) E 2' (X). 

Since IILk (),)11 < l then by Lemma 3.2 there exists (1-LN (J,))- 1 E 2' (X). 
Simple computation shows that 

so (Jc/- T,v)- 1 E 2' (X). Hence }, is a regular value of the operatm TN . Since ). was 
arbitrary in A,={Jc: I Jc l ~r} then p (TN)<r (spectrum of a linear bounded operator 
is a closed set) and by Lemma 3.1 we obtain that system (3.2) is r-stable. • 

The Theorem 3.1 shows that finite dimensional approximating systems (2.1) 
can be used to compute stabilizing feedback operator for system (2.1). In the next 
section we prove under additional assumptions that there exist operators stabilizing 
approximating systems and satisfying assumptions of Theorem 3.1. 

4. Sufficient conditions for the existence of a stabilizing 
finite dimensional · feedback operator 

W6 shall formulate sufficient conditions for existence of operator F',v such that 
p (AN +BN FN)<r. The following notions will be used. 

DEFINITION 4.1 . System (1.1) is r-stabilizable iff for each x 0 E X there is a sequence 
of controls { uk}:'= 

0 
such that llu, ll = o (r") and llx, IJ = o (r") as n ~ +=. • 

The notion of r-stabilizability and relations between this property and other 
controllability properties were discused in [3 ]. 

DEFINITION 4.2. Operator TE !!' (X, Y) is compact iff the set TfYJ 1 ={y E Y:y=Tx, 
l[xii:S; l} is relatively compact, i.e. the set cl Tf!J 1 is compact. • 

DEFINITION 4.3. The set ::1{ c 2' (X, Y) is collectively compact iff the set KPJJ 1 

={Kx:KE%c2'(X, Y), llxii :S;1} is relatively compact. The sequence of operators 
is collectively compact iff the set of the elements of this sequence is collectively 
compact. . • 

Properties of collectively compact sets and sequences can be found in Anselone 
[1]. We mention here only one theorem. 

THEOREM 4.1 (Anselone [I]). Let T, T, E 2' (X), n = 1, 2, .... Assume that for each 
x EX, lim liT, x-Txii =O and the sequence [T,-T},~= l is collectively compact. 

Then for each open set Q :::o u (T) there exists N such that .Q :::o u (T,) for each 

n~~ • 

Sufficient conditions for r•stabilizability for approximate systems (2.1) can be 
formulated in the following theorem. 
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THEOREM 4.2. If the system (1.1) is r-stabilizable, A and B are compact operators, 
sequences {AN Prv}'/:= 1' {Brv Qt.}'!/= 1 are collectively compact then there exists positive 
integer N 0 such that for each N~N0 system (2.1) is r-stabilizable. The integer N 0 

depends of approximating sequence 

Proof. Since the operator A is compact then there exists an operator FE .!t' (X, U) 
suchthatp(A+BF)<r, (see [3]), hence a(A+BF)cD,={A: j)" j<r}. Let G.'!! A+BF 
and FN:X~~'~UN, N=l,2, ... , FN<l! QNFlxN, and G"dr(AN+BNFN)Prv, N=l,2, ... 
Then Grv=Arv P"'+BN Q" FPN. By Banach-Steinhaus theorem and condition (H2) 
of Definition 2.1 the sequence {Prv} '!:= 1 is bounded and the sequence {FP"'} '!:= 1 

also is. Hence the sequence of operators {BN QN FPN}'/:= 1 is collectively compact 
(see Anselone [1]) and the sequence {GN}'!/= 1 is collectively as compact a sum of 
the two collectively compact sequences. Similarly the opreator G is compact and hence 
the sequence {GN - G} '!:= 1 is collectively compact. For each xEX we have 

lim II G, x-Gxj[ = lim ll(ArvPN x-Ax)+(B, Qrv FPrv x-BFx)ll 
lV-Jo OO 

= lim !!(A N P"' x-Ax)+(BN Qrv FP"' x-BN Q!v Fx)+(BN QFx- BFx) IJ 
N~ :o 

:::;; lim (llAN PN x-Axl[ + llBN QN F ll llPN x-xll + llBN QN (Fx)-B (Fx) ji) =O, 
N- oo 

by (H2) , (H3), (H6) and boundedness of the sequence {BN QN F}'(:= 1 as a conse­
quence of (H6) and Banach-Steinhaus theorem . HenLe the sequence {G1 }~= 1 is 
pointwise convergent to G and by Theorem 4.1 there exists N 0 such tha.t for each 
N~N0 , a((A"'+BrvF,.,) PN)cD,. Similarly as in the proofofTh.eorem 3.1 we can 
show that a ((A" +Brv F:v) PN) =a (AN+BN F:v) and hence the system (2.1) is r-stabi­
lizable for N~N0 • B 

REMARK 4.1. If for spaces XN and operato rs PN conditions (HI) and (H2) of Defi­
nition 2.1 hold an A is a compact operator then the sequence {A NPN} '/:=P where 
AN P rv ~r Prv A PN, is collectively comp8.ct. 

Pro of. By Banach-Steinhaus theorem and condition (H2) we obtain that the se;quence 
{Prv}~= 1 is bounded. Let {xrv}~= 1 be an arbitrary sequence of elements from the 
unit bail .'?&,={x : IJx iJ <l}cX. Opetator A is compact, hence the set of elements 
of the sequence {yN}'!/= 1 ={AxN} ,~= 1 is relatively compact and there exists a con­
vergent subsequence {YN,};': 1 . Let y dr lim Yrvi' We shall prove that the sequence 
{ PN, YN.} ;': 1 converges to y . h oo 

In fact , 

:IPN, YN, -y!J= IJPN, YN,-PN, y+PN, y-yiJ ::=; 

:::; !lP,, YN, - PN, YII + IJPN, y-yll :s; IIPN,Ii IIYN,- Yll+ 

+ liPN,y-yiJ -+0 as i~ +oo. 
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Hence the set of elements of the sequence {PN AxN}~; 1 is relatively compact. Since 
this is true for an arbitrary sequence {xN}~; 1 c PJ t then the sequence {PN A}~; 1 
is collectively compact and hence the sequence {PN APN}~; 1 is also collectively 
compact (see Anselone [1]). · 1J 

REMARK 4.2. Let U be a Banach space. If for spaces UN and operators PN and QN 
conditions (H4), (H2), (HS) of Definition 2.1 hold and B is a compact operator 
then the sequence {BNQN}~; 1 where BNQNdrpNBQN, is collectively compact. 

Proof. The same as, for Remark 4.1. • If operators A and B are compact then by Theorem 4.2 and Remarks 4.1 and 
4.2 we obtain the construction procedure for approximating sequence such that 
approximating systems (2.1) are r-stabilizable.Jor sufficiently large N. Thus we can 
use this approximations to comuputation of stabilizing feedback operators FN. 

Now we prove that for suffic;iently large N ,it is P?ssible to choose fee<l.back 
operators FN such that the closed loop system (3.2) is r-stable. We will use the 
following theorem. 

THEOREM 4.3. If the sequence of operators LN (),)-.0 as N-. + oo uniformly with 
respect to ), E Ar ={k l ?d ~r} and the set {LN (?,) :N= I, 2, ... , i)d ~r} is collectively 
compact then IlL~ (?,)li -->0 uniformly with respect to }, E A r. 

Proof. We will use the following property of a pointwise convergent stquence. 
A pointwise convergent sequence in Banach space X is uniformly convergent in 
each totally bol.lnded subset oCX. We say that the set if' is totally bounded iff for 
each s> O there exists a finite subset Y , cX such that for each x E Y there exists 
x, E Y . such that 1/x; - x/1 <e. In Banach space the set is totally bounded iff it is re­
latively bounded [1]. 

The condition that LN (),) ~o uniformly with respect to AEA r can be written as 

This convergence is uniform with respect to x from any totally bounded set. Since 
the set {LN(?c) : N=1 , 2, ... , / 2 / ~r} is collectively compact then Ydf{LN(A.)x: 
N =I, 2, ... , /?,1 ~ r, 1/x !l < l} is 'telatively compact and therefore totally bounded. 
Hence 

and this 1s equivalent to 

Ve>O 3N0 Vx E {x: /fxl/ < 1} V}, E Ar VN~/'10 /lL~ (?,) .XIf < e. 

We see that the sequence {L~ (),) x}~; 1 converges to zero unifo1mly with respect 
to ?c E Ar and x E {x: 1/x /1 < 1 }. Hence I/L 2 0 .)1/ -.0 uniformly with respect to 2 EAr· B 

Let R (T) denote the set of ·regular values of operator T E 2! (X), R (T) 
={}. E C: 3 (U-T)- 1 E 2! (X)} and let R (T) denote the extended set of n.gular 
values, i.e. the smallest compact set in C _dr C u {oo} in which R (T) is contained. 
The following property holds. 
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LEMMA 4.1 (Anselone [1]). Let T, T,, E fl! (X), n= 1, 2, ... ,X is a Banach space. 

IfT,.--+T pointwise and {T11 -T},~~ 1 is collectively compact then for each closed subset 

AcR(T) there exists Nsuch that the set {(.U-r,,)- 1
: }, EA, n~N} is bounded . • 

THEOREM 4.4. If the system (1.1) is r-stabilizable, operators A and B are compact, 

{XN,PN,AN, UN,QN,BN}';/= 1 is an approximating sequence such that {ANPN}';/= ~ 

and {BN QN}';/=1 are collectively compact then there exists a finite dimensional feed­

back operator FNo which stabilizes approx imating system (2.1) such that system (3.2) 
with the operator TN=A+BFNop No is r-stable. 

Proof. We shall construct the sequence of operators {FN} ';/=1 such that the assump­
tions of Theorem 3.1 hold for sufficiently large N. Since system (1.1) is r-stabilizable 
there exists an operator FE fl! (X, U) such that p (A +BF)<r. Let FN dr QN F lxN· 
By Theorem 4.2 there exists N 1 such that for each N~Nl> p (AN+BN FN)<r. Hence 
the operators FN r-stabilize, systems (2.1). 

Let GN ~! (AN+BNFN)PN, N=1, 2, . .. , G j_r_A+BF. In the proof 01.· The01em 
4.2 it was shown that G,.--+G and the set {GN-G}';/= 1 is collectively compact. 
So assumptions of Lemma 4.1 are satisfied and the set {(U-GN)- 1

: I J- I ~r, N~NJ 

is bounded for some N 2 ~N1 • Let L N (),) be the operator defined in Theorem 3.1. 
For N~N2 we obtain 

uniformly with respect to AE{J, : I A. I ~r} as N --+ + = , because ANPN--+A , BN QN--+B 
and the sets {FN PN:N~N2 }, {(A!-GN)- 1 : IJ, I~ r,N~N2 } are bounded~ Since 
the operators A and B a re compact sequences 

{ANPN}';/= 1 and {B~ QN}';/= 1 
are collectively compact and the sets {FNPN : N~N2 } and {(U-GN)- 1 : I Jd ~r, 
N~N2 } are bounded then the Pet {L,.. (J,): N ~N2 , j},l ~ r} is collectively compact 
tsee [1]). By Theorem 4.3 we obtain that there exists N0~N2 such that IIL~o 0.)11 < 1 
for each k j },l ~ r. So assumptions of Theorem 3.1 hold and system (3.2) for N=N0 

is r-stable. • 

Using Remarks 4.1 and 4.2 and Theorem 4.4 we obtain 

CoROLLARY 4.1. If system (l.l) is r-stabilizable, operators A and B are compact, 
X and U are Banach spaces, the sequence of approximations satisfy conditions (Hl), 
(H2) , (H4), (HS) and operators AN PN and BN QN are defined by 

then there exists a finite dimensional feedback operator FNo which stabilites, for 
N =N0 , approx imating system (2.1) such that system (3.2) with operator 

is r-stab!e. • 



60 A. SOSNOWSKI 

5. Concluding remarks 

Application of finite dimensional approximation theory to stabilization problem 
of discrete time system has been presented. Approximation used in solution of 
stabilization problem require relatively weak assumptions. This makes the method 
presented much more useful than spectral approximation methods of stabilization. 
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Zastosowanie aproksymacji skonczenie wymiarowych do 

stabilizacji dyskretnych .ukladow liniowych 

Problem stabilizacji nieskonczenie wymiarowego dyskretnego ukladu liniowego zostal rozwiq­

zany przy wykorzystaniu metody aproksymacji. Do konstrukcji regulatora stabilizujqcego uklad 
nieskonczenie wymiarowy zostaly uzyte operatory sprz~zenia zwrotnego stabilizujqce skonczenie 

wymiarowe uklady aproksymujqce. Przy stosunkowo slabych zalozeniach odnosnie skonczenie 
wymiarowych aproksymacji uzyskano warunki dostateczne zapewniajqce stabilnosc ukladu nieskon­

czenie wymiarowego ze skonczenie wymiarowym operatorem w p~tli sprz~zenia zwrotnego. Dla 

pewnej klasy uklad6w, cz~sto spotykanych w zagadnieniach p:.;a ktycznych, wykazano istnien ie 
skonczeriie wymiarowego operatora stabilizujqcego. 

IlpuMeHite · KOHe'fHOMepHhlX annpOKCHMa~HH K CTa6HJHI3a~IIU 

,LIHCKpeTHhiX JIIIHeiiJihiX CIICTeM 

3a)l,a'la CTa6J.imOaUml 6eCKOHe'!HOMepttoi1: )l,HCKpeTHOH nHHeHHOH ClfCTeMhl 6btna pellleHa npJ-t 
Hcrronb30Bamrn MeTO.!\a arrnpoKCHMauHH. ,[(mr pa3pa6oTK!f perymnopa cTa6MM31-tPYJOIJ..(ero 6ecKo­

He'IHOMepHyJO CHCTeMy HCTIOflb30BaMCb Oriepal'Opbl o6pal'I{Otf CB5!3lf, CTa6J1HH3J{py10ll.(J-te KOHe'lHO­

MepHble annpOKCJ-tMJ-tpyJOUlHe Cl-tCTeMhT. flpH OTHOCHl'eJibHO cna6biX rrpe)l,TIOCbJnKaX 0 KOHe'!HO­
MepHbiX annpOKCJ-tMaUHi!X rrony'leHbl ,[\OCTaTO'IHhle ycnOBJ{i! )l,fli! o6ecne'!effil;{ CTa6HnhHOCTH 

6eCKOHe'!HOMepHOH CHCTeMbl C KOHe'IHOMepHblM OIIepaTOPOM B uemr o6pal'HOit CBi!31-t. ,[(nil HeKO­

TOporo Knacca ·cMCTeM, '!aCl'O BCTpecraeMblX B npaKTJ-tKe, ,!l.OKa3aHO CylUeCTBOBaHife KOHe'fHOMep­

HOrO cTa6HnH311PYJOll.(ero onepaTopa. 


