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Stabilization problem for discrete time linear system is solved by approximation method.
Sufficient conditions for stabilization by finite dimensional feedback operator are ¢"tained. Under
the relatively weak conditions the existence of a stabilizing operator is proved.

1. Introduction

A general discrete time infinite dimensional system is defined by the equation
Xieaa =Axi+Bug k=0, 1,%. (L.L)

where x, € X, u, € U, X is a Banach space , U is a linear normed space and 4 € £ (X),
Be % (U, X) are linear bounded operators. The equation (1.1) can be used as a dis-
crete medel for many linear dynamic processes, including thoss with continuous
time. The discretization procedure for continuous time linear system described by
strongly continuous semigroup of operators is presented in [5], [6].

For stabilization problem of system (1.1) we use finite dimensional approxima-
tions. Approximation problem for infinite dimensional system was considered by
Banks and Burns [2], Osborn [4], Trotter [7]. Banks and Burns used finite dimen-
sional approximations to minimization problem for nonlinear time delay system
with quadratic cost functional. They used semigioup model of time delay system.
Similar approximation procedure was used by Trotter for control problem of distri-
buted parameter systems. Osborn considered problem of eigenvalues and eigen-
vectors approximation of compact operators in Banach spaces. His results can be
basically used in stabilization problem but spectral projections onto eigenspaces
are very difficult to compute in concrete cases.

The approximation technique used in-this paper to stabilization problem does
not use spectral projection and the constrution of approximating systems is simple.
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2. Finite dimensional approximations

We construct a sequence of approximating systems for discrete model (1.1).

DeFiNiTION 2.1. The sequence {X%, Py, Ay, UY, Oy, By}xv_, is an approximating
sequence iff the following hypotheses are satisfied:

(H1) X~ is a finite dimensional subspace of X for each N.

(H2) Py:X—XY are continuous projections onto X™ such that lim [Py x—x[=0

for all xe X. . o
(H3) Ay:XN—X" are linear operators such that lim |4y PNx Ax||=0 for all
xeX. o

(H4) UY is a finite dimensional subspace of U for each N.
(H5) Qn:U—-UY are continuous projections onto UY such that lim |[|Qyu—u||=0

for all ue U. e
(H6) By:UN—U"N are linear operators such that lim |By Qy u—Bu||=0 for all
ueU. M= B

The definition of an. approximating sequence given above is related to one
employed for continuous linear systems by Banks and Burns in [2] and by Trotter
in [7].

"The approximating systems will be described for each N=1, 2, ... by equations

Ko =y B, | =0,1,2, (2.1

where xy € X¥, ul e UY and {X%, Py, Ay, UY, Oy, By}v_, is an approximating
sequence.

3. Stabilization of infinite dimensional discrete time systems

Stabilization problem for a general discrete time linear system of the form (1.1)
will be solved by computing finite dimensional feedback gain from approximating
systems (2.1). First we define the notion of r-stability.

DeriNiTION 3.1. A homogeneous discrete time system
WAt o= Ol (3.1)

where x, € X, A € & (X), is r-stable iff for each x, € X solution {x;}7_, is such that
[xcl=0 (r¥) as k—+cc.

Lemva 3.1. If the spectral radius of an operator A is smaller than r (p(A)<r) then
system (3.1) is r-stable.
Proof.

lIxal[=1lA" Xol[< [14"]] [[xoll-

For each linear bounded operator 4 we have

p (A)=lim |/ 4] .

n-» o0
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Hence
Ve>0 3n, Yn=n, A" < (p (A)+e)".
- Choosing ¢ such that p (4)+e<r we obtain for sufficiently large n
Il <147 l1xoll < (p (A)+e)" [Ixoll=0 (). |
Notice that in general r-stability does not imply that p (4)<r.

Example 3.1. Let X=L? (0, }; R), (Ax) (1)%tx (¢) and r=1. Since [|[x,]|=l4" x,||<
<[1x0{]/v/ 2n+1-0 as n—+oco then system (3.1) with such operator A is l-stable.
However, the spectrum of the operator 4 is o (4)=[0, 1] hence p (4)=1. =

Lemma 3.2 (Anselone [1]). If A€ % (X) and there exists a positive integer k such

that ||A%| <1 then there exists (I—A)~' € ¥ (X) and

| k=1 |
|
|

2 A
1—[l4%

li=0

-4~ ti<
Now we are able to prove the main theorem on stabilization of discrete time linear
systems.

THEOREM 3.1. If for some N there exists an operator Fye ¥ (X¥, UY) such that
p (Ax+By Fy)<r and there exists a positive integer k such that for each /e A,
={A:|A=r} the inequality |L%, (A)|<1 holds, where

Ly ()= (Ty— (Ax+By Fy) Py) (M —(Ay+By Fy) Py) ™",
A S
then system
Xt ooy Tl 1 LA (3.2)

is r-stable.
Proof. Let A€ A4, be arbitrary chosen. We shall prove that 1 is a regular value
of the operator (Ay+ By Fy) Py. If /.is not a regular value, i.e., A€o ((Ay+By Fy) Py),
then 2 is an eigenvalue of this operator, since (Ay-+By Fy) Py 1s a finite dimensional
operator. Hence there exists a non zero vector x, € X such that [Axo—(An+By Fy)x
x Py x0]=0. But
4xo—(Ax~+By Fy) Py xo=2 (Py Xo+(I—Py) Xo) —(Ax~+By Fy) Py X,
:PN (/1 PNXO)+;‘ ([_PN) 'XO _PN (AN+BN FN) PN .XO
=Py (;J— (Ay+By FN)) Py xo+(I—Py) (4xo).

Since Py (Al —(Ay+By Fy)) P xo€ X~ and (I—Py) (1x,) € (X™) where X=X"@®(X")’
then PN (;..I—(AN"'BN FN)) Pl\ x():o and (I—_PN) xozo-
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Hence Py xo#0 and (A/—(Ay+By Fy)) Py xo=0so A is an eigenvalue of the oper-
ator Ay+By Fy and it contradicts the assumption that p (Ay+By Fy)<r. Thus
we obtained that (A/—(Ay+ByFy) Py)™'€ ¥ (X), Ly(2) is well defined and
Ly () € Z (X). |
Since |L* ()| <1 then by Lemma 3.2 there exists (/—Ly (1)) '€ Z (X).
Simple computation shows that

A-Ty) " '= (}"1—(AN+BN Fy) PN)_I (I_LN )

so (M—Ty)~ ' e £ (X). Hence A is a regular value of the operator Ty. Since 1 was
arbitrary in A,={l: [A|>r} then p (Ty)<r (spectrum of a linear bounded operator
is a closed set) and by Lemma 3.1 we obtain that system (3.2) is r-stable. B
The Theorem 3.1 shows that finite dimensional approximating systems (2.1)
can be used to compute stabilizing feedback operator for system (2.1). In the next
section we prove under additional assumptions that there exist operators stabilizing
approximating systems and satisfying assumptions of Theorem 3.1.

4. Sufficient conditions for the existence of a stabilizing
finite dimensional feedback operator

We shall formulate sufficient conditions for existence of operator Fy such that
p (Ay+By Fy)<r. The following notions will be used.

DEerINITION 4.1. System (1.1) is r-stabilizable iff for each x, € X there is a sequence
of controls {u ;L such that [ju,|=0 (") and |x,[|=0 (r") as n—+occ. |

The notion of r-stabilizability and relations between this property and other
controllability properties were discused in [3].

DEFINITION 4.2. Operator Te % (X, Y) is compact iff the set 74, ={ye Y:y=Tx,
lx||<1} is relatively compact, i.e. the set ¢/ T#, is compact. &

DEerFINITION 4.3. The set A =% (X, Y) is collectively compact iff the set K#,
={Kx:KeA =% (X, Y),|lx]|<1} is relatively compact. The sequence of operators
is collectively compact iff the set of the elements of this sequence is collectively
compact. B

Properties of collectively compact sets and sequences can be found in Anselone
[1]. We mention here only one theorem.

THEOREM 4.1 (Anselone [1]). Let T, T, € & (X), n=1, 2, ... . Assume that for each
xeX, lim |T, x—Tx||=0 and the sequence {T,—T}”_, is collectively compact.

Then for each open set Q>a (T) there exists N such that Q>o (T,) for each
n=N. [ |

Sufficient conditions for r-stabilizability for approximate systems (2.1) can be
formulated in the following theorem.
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THEOREM 4.2. If the system (1.1) is r-stabilizable, A and B are compact operators,
sequences {Ay Py}i— 1, {By On}_, are collectively compact then there exists positive
integer N, such that for each N>=N, system (2.1) is r-stabilizable. The integer N,
depends of approximating sequence

{XN> PN: AN, UN} QN9 BN}F\?zl &

Proof. Since the operator A is compact then there exists an operator Fe % (X, U)
such that p (4+BF)<r, (see [3]), hence o (4+BF)=D,={i:|A|<r}. Let G * A+BF
and By XN UY, N=1,2, ..., B0y Flxv, and ' G 25 (A4y+By Er) Py, N=1,2, ..
Then Gy=Ay Py+By Q) FPy. By Banach-Steinhaus theorem and condition (H2)
of Definition 2.1 the sequence {Py}y_, is bounded and the sequence {FPy}y_,
also is. Hence the sequence of operators {By Qy FPy}w_, is collectively compact
(see Anselone [1]) and the sequence {Gy}y_, is collectively as compact a sum of
the two collectively compact sequences. Similarly the opreator G is compact and hence
the sequence {Gy—G}7_, is collectively compact. For each xe X we have

lim [|G, x—Gx|/= lim |(Ay Py x— Ax)+(B, Ox FPy x—BFx)|

N—w N-ow
= lim [[(Ay Py x—Ax)+(By Qy FPy x—By Qy Fx)4(By OQFx—BFXx)||
N-
< lim (l4y Py x—Ax||+ 1By Qn FIl [Py x — x|+ 1By Oy (FX)—B (Fx)[) =0,
N-o o

by (H2), (H3), (H6) and boundedness of the sequence {By Oy F}x_, as a conse-
quence of (H6) and Banach-Steinhaus theorem. Hence the sequence {G, }y_, is
pointwise convergent to G and by Theorem 4.1 there exists N, such that for each
N=N,, o (Ay+By Fy) Py)<D,. Similarly as in the proof of Theorem 3.1 we can
show that o ((4y+By Fy) Py)=0 (Ay+By Fy) and hence the system (2.1) is r-stabi-
lizable for N>N,.

REMARK 4.1. If for spaces X and operators Py conditions (K1) and (H2) of Defi-
nition 2.1 hold an A is a compact operator then the sequence {4y Py}y_, Where
Ay Py 2" Py APy, is collectively compact. .

Proof. By Banach-Steinhaus theorem and condition (/2) we obtain that the sequence
{Py}x-1 is bounded. Let {xy}y_, be an arbitrary sequence of elements from the
unit ball #,={x:||x|<1}<=X. Operator A is compact, hence the set of elements
of the sequence {yy}x_,={Axy}7_, is relatively compact and there exists a con-
vergent subsequence {yy j;_;. Let y S im Vv, We shall prove that the sequence
{Py, ¥n }iz, converges to y. e

In fact,

Py, Yu,— Y| =I1Px, yn,—Pn, y+Pn, y—YlI<
<Py, ¥x, —Pn, VI+1Px, y = VIS Py )l lyn, — Il +

Py, y—y|—-0 as i—»+oco.
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Hence the set of elements of the sequence {Py Axy}x_, is relatively compact. Since
this is true for an arbitrary sequence {xy}y_, <%, then the sequence {Py A}_,
is collectively compact and hence the sequence {Py APy}v_, is also collectively
compact (see Anselone [1]).

ReMARK 4.2. Let U be a Banach space. If for spaces UY and operators Py and Qy
conditions (H4), (H2), (HS5) of Definition 2.1 hold and B is a compact operator
then the sequence {ByQOy}w., where By Oy Py BQy, is collectively compact.

Proof. The same as for Remark 4.1. B

If operators A and B are compact then by Theorem 4.2 and Remarks 4.1 and
4.2 we obtain the construction procedure for approximating sequence such that
approximating systems (2.1) are r-stabilizable for sufficiently large N. Thus we can
use this approximations to comuputation of stabilizing feedback operators Fy.

Now we prove that for sufficiently large A it is possible to choose feedback
operators Fy such that the closed loop system (3.2) is r-stable. We will use the
following theorem.

THEOREM 4.3. If the sequence of operators Ly (A)—0 as N—+o0 umformbr with
respect to A€ A,={l:|A|=r} and the set {Ly(A):N=1,2, ..., |Al=r} is collectively
compact then ||L2 (A)||—0 uniformly with respect to A€ A,.

Proof. We will use the following property of a pointwise convergent sequence.
A pointwise convergent sequence in Banach space X is uniformly convergent in
each totally bounded subset of X. We say that the set & is totally bounded iff for
each ¢>0 there exists a finite subset &, =X such that for each x € & there exists
x, € &, such that ||x,—x||<e. In Banach space the set is totally bounded iff it is re-
latively bounded [1].

The condition that Ly(4)—0 uniformly with respect to A€ 4, can be written as

Ve>03xe XIN,Vie A, YN=N, ||Ly (1) x||<e.

This convergence is uniform. with respect to x from any totally bounded set. Since
the set {Ly(4):N=1,2,..., |A|=r} is collectively compact then -& SL{Ly (1) x:
N=1,2, .., [Al=r, ||xl|<1} is telatively compact and therefore totally bounded.
Hence

Ve>03IN, VYxe SVie 4, VN=N, ||[Ly () x||<e
and this is equivalent to

Ve>03N, Vx e {x: [Ix]| <1} Vie 4, VN=N, |IL} (A) x|/ <e.

o

We see that the sequence {L2 (1) x}v_, converges to zero uniformly with respect
to A€ A, and x € {x: ||x||<1}. Hence ||L* (1)||—0 uniformly with respect to 1€ 4,. Bl

Let R(T) denote the set of regular values of operator Te % (X), R(T)
={/eC:3(A-T)"'e Z(X)} and let R(T) denote the extended set of regular
values, i.e. the smallest compact set in C%" CU {eo} in which R (T) is contained.
The following property holds. ]
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LemMA 4.1 (Anselone [1]). Let T, T,e % (X), n=1,2, .., X is a Banach space.
If T,—T pointwise and {T,,—T},_, is collectively compact then for each closed subset
A<R(T) there exists N such that the set {(AI—T,)~": A€ A, n=N} is bounded. |

THEOREM 4.4. If the system (1.1) is r-stabilizable, operators A and B are compact,
{X™, Py, Ay, UY, Oy, Byly_, is an approximating sequence such that {Ay Py}7_,
and {By Qn}x_. are collectively compact then there exists a finite dimensional feed-
back operator Fy which stabilizes approximating system (2.1) such that system (3.2)
with the operator Ty=A+BFy Py, is r-stable.

Proof. We shall construct the sequence of operators {Fy}5_, such that the assump-
tions of Theorem 3.1 hold for sufficiently large N. Since system (1.1) is r-stabilizable
there exists an operator Fe % (X, U) such that p (4+BF)<r. Let Fy2LQy Flyn.
By Theorem 4.2 there exists Ny such that for each N>N,, p (Ay+ By Fy)<r. Hence
the operators Fy r-stabilize systems (2.1).

Let Gy (Ay+By Fy) Py, N=1,2, ..., G2 A+BF. In the proof o’ Theotem
4.2 it was shown that G,—»G and the set {Gy—G}v_, is collectively compact.
So assumptions of Lemma 4.1 are satisfied and the set {(AT—Gy)~1: |A|=r, N>N,}
is bounded for scme N,>N;. Let Ly (1) be the operator defined in Theorem 3.1.
For N>=N, we obtain

Ly () =(Ty—Gp) (A Gy)~* = ((A— Ay Pa)+(B—By Oy) Fy Py) (A~ Gp)~'0

uniformly with respect to A€ {A:[A|=r} as N—+oo, because Ay Py—A, By Qy—B
and the sets {FyPy:N=N,}, {(M—Gy)~':|Al=r, N>N,} are bounded: Since
the operators A and B are compact sequences

Ay Py}y—: and {By Oy}3_,

are collectively compact and the sets {FyPy:N>=N,} and {(AI—Gy)~':|A>r,
N=N,} are bounded then the set {L, (1): N>=N,, |A|>r} is collectively compact
(see [1]). By Theorem 4.3 we obtain that there exists No>N, such that ||L} (1)]|<1
for each A: |2|=>r. So assumptions of Theorem 3.1 hold and system (3.2) for N=N,
is r-stable. B

Using Remarks 4.1 and 4.2 and Theorem 4.4 we obtain

CorOLLARY 4.1. If system (1.1) is r-stabilizable, operators A and B are compact,
X and U are Banach spaces, the sequence of approximations satisfy conditions (H1),
(H2), (H4), (HS) and operators Ay Py and By Qy are defined by

APy L Py APy By Oy Py B0y, N=1,2..

then there exists a finite dimensional feedback operator Fy which stabilites, for
N=N,, approximating system (2.1) such that system (3.2) with operator

Ty=A+BFy Py,
is r-stable. =
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5. Concluding remarks

Application of finite dimensional approximation theory to stabilization problem
of discrete time system has been presented. Approximation used in solution of
stabilization problem require relatively weak assumptions. This makes the method
presented much more useful than spectral approximation methods of stabilization.
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Zastosowanie aproksymacji skonczenie wymiarowych do
stabilizacji dyskretnych ukladéw liniowych

Probiem stabilizacji nieskonczenie wymiarowego dyskretnego uktadu liniowego zostat rozwia-
zany przy wykorzystaniu metody aproksymacji. Do konstrukcji regulatora stabilizujacego uktad
nieskonczenie wymiarowy zostaly uzyte operatory sprzezenia zwrotnego stabilizujace skonczenie
wymiarowe uktady aproksymujace. Przy stosunkowo slabych zalozeniach odno$nie skonczenie
wymiarowych aproksymacji uzyskano warunki dostateczne zapewniajace stabilnos¢ uktadu nieskon-
czenie wymiarowego ze skonczenie wymiarowym operatorem w petli sprzezenia zwrotnego. Dla
pewnej klasy ukladow, czgsto spotykanych w zagadnieniach praktycznych, wykazano istnienie
skonczenie wymiarowego operatora stabilizujacego.

Iipumvenne  KOHEYHOMEPHBHIX ANNPOKCHMANKH K CTa0MIH3aLHK
JMCKPETHSIX JIHHEHHBIX CHCTEM

3anava crabunu3amid 6eCKOHEUHOMEPHOW NMCKPETHOW JIMHEHHOM cucTeMbl Oblia pEllena IpH
MCIIOJIb30BAHMI METO/A aruipokcumaimu. Jisi pa3paboTku peryisiropa crabuin3upyroLero 6ecko-
HEYHOMEPHY KO CHCTEMY HCITO/IB30BAIMChL OIEPATOPLI 0OPaTHOI CBSI3H, CTAOUIM3UPYFOIMe KOHEYHO -
MepHbIe AMIPOKCUMUPYIOLIUE CUCTEMBI. [Ipy OTHOCHTENBHO ClaObIX IIPEAIOCHUIKAX O KOHEYHO-
MEPHBIX aIIIPOKCUMALMAX IIOJIYYEHbl JOCTATOYHBLIE YCIIOBUS [t OOecreyeHusi CTaOMIbHOCTH
GECKOHEYHOMEPHOI CHCTEMBI ¢ KOHEYHOMEDPHBIM OIEPaTOPOM B Lemn obpaTHoii cBs3u. st Heko-
TOPOTO KJIacCa CHCTEM, YACTO BCTPEYAEMBIX B NPAKTHKE, HOKA3aHO CYLIECTBOBAHUE KOHEYHOMED-
HOTro CTabM/IM3UPYIOLIETO ONepaTopa.



