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Numerical solution of the c-observation problem
for linear nonstationary systems
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The practical effective method is developed to solve the c-observation problem for the linear
nonstationary systems.

This method requires that only auxiliary systems of differential equations with known initial
conditions and system of the algebraic equations are solved for determining the current state of
the considered systems. "

The block diagram réalization of the indirect c-observer for the unforced and forced linear
nonstationary systems has been presented.

1. Introduction

When stabilizing controlled systems, or designing optimal feedback controllers,
etc., it is necessary to have sufficiently complete information on the current state
of the systems in the phase space. In many control situations, however, direct meas-
urements of some state coordinates are difficult and, sometimes, even impossible.
In these cases, the problem concerned with determining the current state vector
- from a complete knowledge of the system’s input and output history on some finite
time interval becomes important to be studiéd.

In what follows we shall refer to this problem as the c-observation problem.

The following definitions are used in sequel. ‘

DErFINITION 1. A dynamical system which permits the reconstruction of the current
state vector from a complete knowledge of the system’s input and output history on
some finite time interval is called c-observable. ‘

DErINITION 2. A cemputing system which performs the calculation of the current
state vector from a complete knowledge of the object’s input and output history on
some finite time interval is referred to as the indirect c-observer.

Kalman first has considered the problem of deteimining the conditions which
a linear dynamical system must satisfy in order that it be c-observable [1]. Assuming
that the system’s input is zero and that a complete knowledge of the system’s output
on some finite interval is available, he has obtained necessary and sufficient condi-
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tions of c-observability for both continuous and discrete time linear dynamical
systems.

Kalman investigations were further developed and extended by Gilbert [2],
Krasovskii [3], and other authors [4, 5].

In the present paper, the practical effective method is proposed to solve the
c-observation problem for the linear nonstationary systems.

The effectiveness and practicality of the method lies in the fact that only auxiliary
systems of differential equations with known initial conditions and system of alge-
braic equations are solved for determining the current state vector of the consi-
dered system from a complete knowledge of the system’s input and output history
on some finite time interval.

The block diagram realization of the indirect c-obéerver for the unforced and
forced linear nonstationary systems has been presented.

2. Numerical solution of the c- observatlon problem for the
unforced linear nonstationary systems - :

2.1. Problem statement. Consider first a system descrlbed by hnear differential

equations in the following matrix form
dx
dr

=A()x 2.1)

where x is an n-dimensional vector representing the phase state of the considered
system at time #, 4 (¢) is a known (nX n)-dimensional matrix.

Let us assume that the phase state x (¢) is inaccessible to direct observation,
only an m-dimensional output vector

z()=0 () x (1), $—h<1<I, 22 .
is accessible to noise-free measurement, where m<n, Q (t) is a known (m x n)-di-
mensional matrix.

Then, the c-observation problem for the unforced linear system (2.1) consists
in the following: it is required to find the unknown state vector x (¢) at the present
time #=39 from a complete knowledge of the output vector z (¢) on the finite time
interval §—A<t< 9 for some 2>0, where 93—/ is some past time (9—4<9) because,
since m<n, equation (2.2) does not allow immediate finding of x (¢) from z (¢).

2.2. Solution technique. It is well known that the solution of differential equation
(2.1) can be presented in the following form

x@)=X@® X1 x D, (223)

where X (¢) is an (nx n)-dimensional fundamental matrix and X~ (-) is an inverse
with respect to the matrix X (-).
Substituting (2.3) into (2.2) we have

z(O)=2 () X () X~ ($) x (9. 2.4)




Numerical solution of the c-observation problem 73

Multiply (2.4) by [X~1 (H)]" X' (¢) Q' (¢) from the left and integrate from $—h
to 4 to obtain

GO x®= [ WX OQ Oz=0)d, 2.5)

where
Gu (D=1X" (D) Dy (%) X~ (9), (2.6)
DW= [X{1Q ®QW®Xw®d. @7

Here the prime denotes the transposition.

From Eq. (2.4) we see that a necessary condition for the unforced linear sys-
tem (2.1y to be c-observable on the interval $—A<7<J is that the columns of the
matrix Q (£) X (1) X~* (9) be linearly independent on this interval, otherwise, there
exists a state vector x ($) such that z (¢)=0, 3—A<t<9. This condition of linear
independence, expressed mathematically by

QM X (@)X~ (9 A0, Vee[d—h,I] for each 150 in R" (2.8)

is also a sufficient one.

In fact, if the condition (2.8) is fulfilled for the unforced linear system (2.1),
then, defining an m-dimensional vector v, (7, 3) by

0, (1, L0 () X (£) X~ (§) A0, Vie[9—h, ] for each 1#0 in R"

we have
&

fv; (t, Do, (t, Hdt=1" G, (9 2>0 for each 1#0 in R".
S—h

The last inequality implies that the Gramian matrix G, ($) is positive definite.
Hence, in this case det G, ($)#0 and the state vector x (9) is defined uniquely from
algebraic equation (2.5), i.e. system (2.1) is c-observable on the interval 3 —A<z< 9.

Thus, the unforced linear system (2.1) is c-observable on the interval §—A<1< 3
if and only if the condition (2.8) holds, or equivalently, if and only if the Gramian
matrix Gy, (9) is nonsingular.

In what follows we shall assume that the condition (2.8) is fulfilled for the consi-
dered system. ’

Now, we pass to. the computational procedure of determining the state vec-
tor x (). -

First, we look at the problem of evaluating the Gramian matrix G, ($). Note
that the formula (2.6) requires to compute the inverse matrix X' (J) in order to
obtain the Gramian matrix Gy (9).

It turns out, as well known, that the Gramian matrix can be obtained without
above-mentioned requirement, namely (see Ref. [6])

Gy ($)=2 (9) Dy (9) 2" (), 2.9)




74 s NGUYEN THANH BANG

whete @ (¢) is an (nxn)-dimensional fundamental matrix of the adjoint differential
equation

d

@ y
S —A' ) ¢.

Thus, if $ and /£ are given, then the Gramian matrix can be predetermined by
(2.7) and (2.9). :

Further, it is easy to show that the right-hand side of.the equation (2.5) can be
evaluated by

5
Yy (9= f[X“‘ D" X' (1) 0" (1) z (r) dt. (2.10)
8—h :
where 1 (¢) is the solution of the following differential equation
dw 7 £
== AR e -(2.11)
subject to the initial condition
W (9—h)=0. \ @.12)

Clearly, it is very much easier to solve the equation (2.11) with the initial condi-
tion (2.12) than to evaluate the integral on the right-hand side of the equation (2.5).

Combining the above results, the formulation of the computational procedure
is obtained. It entails the following steps. onnd

Step O. Predetermine the Gramian matrix Gy, ($) by (2.7) and (2.9).

Step 1. Solve forward equation (2.11) subject to (2.12) fro/m S—h to & and at
the end of the forward integration obtain vector w (9).

Step 2. Solve algebraic equation

Gy (D x (H=Y (S ; (2.13)

in order to find the state vector x ().

2.3. Block diagrdm realization of the indirect c-observer for
the unforced linear nonstationary systems

From the previous development it is obvious that the indirect c-observer can
be constructed for the unforced linear nonstationary systems. The block diagram
realization of this observer is shown in Fig. 1, where the block AC denotes an
analog computer designed for solving differential equation (2.11) subject to (2.12)
and the block DC denotes a digital computer designed for solving algebraic equation
(2.13). :
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Thus, it is concluded that the constructed above indirect c-observar represen-
ting the special purpose hybrid computer connected in parallel with a considered
object provides automatical calculation of the state vector and can effectively sur-
mount the difficulties associated with a control design when the state is inaccessible
to direct observation.

| pynamic [ X() z(t)
i 3/b/ecr > Q1) fii
) ) y
Conftroller s - vl <—{ Qt) [=
BE e |10 | gpinpo

The indirect c-observer

Fig. 1. Block diagram realization of c-observer for the unforced linear systems

3. Numerical solution ef the c-observation problem for the
forced linear nonstationary systems

3.1. Problem statement. We have previously derived a numerical solution of the
c-observation problem for the unforced linear nonstationary systems. Now, we con-

sider a linear forced dynamical system represented by the differential equation in
the following form

dx
——=AOX+BOuO+0 @), (3.1)

where x is an n-dimensional vector representing the phase state of the considered
system at time 7, 4 () and B (¢) are a known, respectively, (nxn)- and (nxm)-
dimensional matrices, u (¢) is an m-dimensional vector-valued function representing
the control parameter and v (¢) is a given n-dimensional vector-valued forced function.

Let us assume that the system’s input u () and forced function v (¢) are either
known a priori or can be measured exactly and that phase state x (¢) is inaccessible
to direct observation, only an m-dimensional output vector

z(O=0@Ox®), I-h<t<I (3.2)
is accessible to noise-fiee measurement, where m<mn, Q (¢) is a known (m xn)-

dimensional matrix.

Then, the c-observation problem for the forced linear system (3.1) consists in
the following: it is required to find the unknown state vector x (¢) at the present
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time =3 from a complete knowledge of the system’s input u (), forced func-
tion © (¢) and output vector z () on the finite time interval 9—A<r< 3 for some
h>0, where 9—h is some past time ($—/4<8) because, since m <n, equation (3.2)
does not allow immediate finding of x (¢) from z (7).

3.2. Solution technique. It is well known that the solution of the differential equation
(3.1) can be presented in the following form

X=X (X" (%) x (9~ f XOX'QBOuO+o @1,  (33)

where X (7) is an (n < n)-dimensional fundamental matrix and X~* (+) is an inverse
with respect to the matrix X (-).
Substituting (3.3) into (3.2) we have

QXM X () x(H=2(1)-0 ()4 (t), (3.4)

where A () denotes the following n-dimensional vector-valued function
3 g
A== [X@OX @B u@+0@)d, I-h<i<8. (3.5)
t

Multiply (3.4) by [X=' ($)]” X" (¢) Q' (¢) from the left and integrate from 3—#h
to & to obtain

3
Gy (9) x (H= f X1 X ()2 @) [z2(D-2(1) (D] 4t (3.6)
N S—h
where G, (9) is the Gramian matrix which was defined by (2.7) and (2.9).

If the condition (2.8) is fulfilled for the considered system (3.1) or equivalently,
if det G}, ()#0, then the state vector x (3) is defined uniquely from algebraic equa-
tion (3.6).

From (3.5) and (3.6) it is plain that computer implementation requires the com-
putation of the (1 x n)-dimensional matrix X! (¢). In many cases, however, analy-
tical evaluation of the inverse matrix X ~* (¢) is difficult and, sometimes, impossible
too. Moreover, for determining the state vector we must take definite integral in
the right-hand side of the equation (3.6) and indefinite integral (3.5) that is not
convenient and requires a lot of computer time. Therefore, it is of interest to find
the practical effective computer procedure which avoids these difficulties.

It is easy to show that the vector-valued function 2 (#) defined by (3.5) is the solu-"
tion of the following equation

7
— = A O 2+B @O u O+ () G.7)

subject to

2 (9)=0. (3.8)
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Since here only the terminal condition (3.8) is known, in order to evaluate 4 (¢)
on the interval 9—A<1<9 we first must find the corresponding missing initial con-
dition for A (¢) under which the terminal condition (3.8) is satisfied. Furthermore,
it is required that a process of determining this condition must be finished at time
t=9—h. '

The requirements indicated above can be fulfilled by integrating equation (3.7)
backward in an accelerated time, i.e. mtrodumng a new independent variable 7
by means of .the following relation '

1
1=p (M LI—h——[—(9-h), 0. (3.9)

Form (3.7) and (3.9) we obtain the following equation

d7 = } .
géz—g(f>z_§(f)a(f)—ﬁ<r>, e (3.10)

where
F@O=2(p @), A@=4(p@). B@=B(p @), 1@=u(p @), 7@=(p ().

Solving equation (3.10) forward from t,=8—h—eh to 1,=9—h subject to the
following initial condition :

A (1)=0 (3.11)

we obtain at the end of the forward integration the vector Z (z,) which is a requisite
missing initial condition for 1 (7).

Now, the vector-valued function A(7) can be evaluated by solving forward
equation (3.7) from $—4 to 9 subject to the following initial condition

A ($—h)=1 (z)). (3.12)

Further, it is easy to show that the right-hand side of the equation (3.6) can be
then determined by

Y (= f[X"‘ @' X' )0 ) [z@)—0 (1) A ()] dt, (3.13)
where W (¢) is the solution of the following differential equation
dy
—= = A (VO (O (-0 () 2 (0] (3.14)

subject to
Y (8—nh)=0. (3.15)

Combining the above results, the formulation of the computational procedure
is obtained. It entails the following steps:

Step 0. Determined the Gramian matrix G, ($) by (2.7) and (2.9).
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Step 1. Solve forwaid equation (3.10) subject to (3.11) from 7o=9—rh—-eh to
t,=9—h and at the end of the forward integration obtain the vector 4 (z;).

Step 2. Solve forward equation (3.7) sabject to (3.12) from &—4 to 3. During the
forward integration evaluate vector-valued function /A (z), §—hA<t<9. ‘

Simultaneously solve forward equation (3.14) subject to (3.15) from 3—4 to 9
and to end of the forward integration obtain vector ¥ (9).

Step 3. Solve algebraic equation
G () x D=y (9 . 316

in order to find the state vector x (9).

3.3 Block diagram realization of the indirect c-observer for
the forced linear nonstatiomary systems

From the above developments it is plain that the indirect c-observer can be
constructed for the forced linear nonstationary systems. The block diagram realiza-
tion of this observer is shown in Fig. 2, where the block AC-1 denotes an analog

uft)| Dynamic  |x(t)

z(t)
B gbhject Lt

q(t)

x() w() LR

+
— Coniroller = Dugital compuler G: % Y TAn: | S — 4_(¥4._
h Pt
|

u(t) u(m) o

A Lol s IR Alt)

DU \yt) sioh il mme GOk e
! -2 = .

qrt)

The indirect c-observer

Fig. 2. Block diagram realization of c-observer for the forced linear systems

computer designed for solving differential equation (3.10) subject to (3.11), the block
AC-2—an analog computer designed for solving the differential equation (3.7)
subject to (3.12), the block AC-3-—an analog computer designed for solving the
differential equation (3.14) subject to (3.15) and the block DC—a digital computer
. designed for solving algebraic equation (3.16). Besides in this figure the block DU
denotes a driver unit and the blocks C-1 and C-2 denote converters.
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Thus, the indirect c-observer for the forced linear nonstationary system (3.1)
representing special purpose hybrid computer connected in parallel with a controlled
object guarantees automatical calculation of the current state vector from a complete
knowledge of the system’s input and output history on the finite time interval.

4. Conclusions

The paper proposes the practical effective method by which the current state of
the unforced as well as forced linear nonstationary systems can be evaluated from
a complete knowledge of the system’s input and output history on the finite time
interval.

The method requires that only auxiliary systems of differential equations with
known initial conditions and system of algebraic equation are solved for determining
the current state vector of the considered systems.

From the obtained results we have constructed the indirect c-observers for the
unforced as well as forced linear systems. These observers representing the special
purpose hybrid computer connected in parallel with a controlled object guarantee
automatical calculation of the current state vector and can effectively surmount
difficulties associated with control design when the state is inaccessible to direct
observation.
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Numeryczne rozwiazanie zagadnienia c-obserwacji dla
liniowych ukladéw niestacjonarnych

Przedstawiono efektywna metode praktyczna rozwigzania zagadnienia c-obserwacji dia linio-
wych uktadow niestacjonarnych.
Dla okreSlenia aktualnego stanu rozpatrywanych systemow metoda wymaga rozwigzania
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pomocniczych uktadow réownan rézniczkowych ze znanymi warunkami poczatkowymi i uktadu
rownan algebraicznych.

Przedstawiono w postaci schematu blokowego realizacje c-obserwatora posredniego dla linio-
wych uktadow niestacjonarnych z wymuszeniem i bez wymuszenia.

YyciienHoe pelieHne 3amayi C-HAGUIOTeHuil JIs JIMHeHHbIX
HECTAUHOHAPHBIX CHCTEM

TpeacTaBiien >GMOEKTUBHbIN TPAKTHIECKAN METO PELICHIS 38041 C-HAOIIOAeHI T ;111}{ TIMHEH-
HbIX HECTALMOHAPHBIX CHUCTEM. :

C uenpro onpenenéﬁuﬁ TEKYILEro COCTOSIHUS MCCIIENYyeMbIX CHCTEM METOoH TpelyeT peleHHs
BCOOMOTATEIbHBIX CHCTEM I GepeHIMATEHbIX YPABHEHKI C M3BECTHBIMH HAYaIbHBIMI YCITOBUS-
MU, 4 TaKXKe CHCTeMbl anre0paudecKdx ypaBACHHA.

TipencraBiieHa, a Byje OJIOK-CXEMBbI, pean3alist KOCBEHHOH CHCTEMBI c-HAGIoNeHIH 1St
JMHENHBIX HEeCTAMOHAPHBIX CHCTEM C BO3MYILCHUSMI ¥ 6€3 BO3MYIIICHHMIA,




