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The practical effective method is developed to solve the c-observation problem for the linear 
nonstationary systems. 

·This method requires that only auxiliary systems of differential equations with known initial 
conditions and system of the algebraic equations are solved for determining the current state of 
the considered systems. 

The block diagram r~alization of the indirect c-observer for the unforced and forced linear 
nonstationary systems has been presented. 

1. Introduction 

When stabilizing controlled systems, or designing optimal feedback controllers, 
etc., it is necessary to have sufficiently complete information on the current state 
of the systems in the phase space. In many control situations, however, direct meas­
urements of some state coordinates are difficult and, sometimes, even impossible. 
In these cases, the problem concerned with determining the current state vector 
from a complete knowledge of the system's input and output history on some finite 
time interval becomes important to be studied. 

In what follows we shall refer to this problem as the c-observation problem. 
The following definitions are used in sequel. 

DEFINITION I. A dynamical system which permits the reconstruction of the current 
state vector from a complete knowledge of the system's input and output history on 
some finite time interval is called c-observable. 

DEFINITION 2. A ccmputing system which performs the calculation of the current 
state vector from a complete knowledge of the object's input and -output history on 
some finite time inte!"'cal is referred to as the indirect c-observer. 

Kalman first has considered the problem of dete1mining the conditions which 
a linear dynamical system must satisfy in order that it be c-observable [1]. Assuming 
that the system's input is zero and that a complete knowledge of the system's output 
on some finite interval is available, he has obtained necessary and sufficient condi-
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tions of c-observability for both continuous and discrete time linear dynamical 
systems. 

Kalman investigations were further developed and extended by Gilbert [2], 
Krasovskii [3], and other authors [4, 5]. 

In the present paper, the practical effective method is prop·osed to solve the 
c-observation problem for the linear nonstationary systems. 

The effectiveness and practicality of the method lies in the fact that only,auxiliary 
systems of differential equations with known initial conditions and system of alge­
braic equations are solved for determining the current state vector of the consi­
dered system from a complete knowledge of the system's input and output history 
on some finite time interval. 

The block diagram realization of the indirect c-observer for the unforced and 
forced linear nonstationary systems has been presented. 

2. Numerical solution of the c-observation problem for the 
unforced linear nonstationary systems ' 

2.1. Problem statement. Consider first a system described , by linear differential 
equations in the following matrix form 

dx 
dt=A (t) x (2.1) 

where x is an n-dimensional vector representing the phase state of the considered 
system at time t, A (t) is a known (n x n)-dimensional matrix. 

Let us assume that the phase state x (t) is inaccessible to direct observation, 
only an m-dimensional output vector 

z (t)=Q (t) X (t), S-h~t~S, (2.2) 

is accessible to noise-free measurement, where m <n, Q (t) is a known (m X n)-di­
mensional matrix. · 

Then, the c-observation problem for the unforced ·linear system (2.1) consists 
in the following: it is required to find the unknown state vector x (t) at the present 
time t=S from a complete knowledge of the output vector z (t) on the finite time 
interval9-h~t~ 9 for some h>O, where 9-h is some past time (S-h<9) because, 
since m< n, equation (2.2) does not allow immediate finding of x (t) from z (t ). 

2.2. Solution technique. It is well known that the solution of differential equation 
(2.1) can be presented in the following form 

x(t)=X(t)X- 1 (9)x(9), (2.3) 

where X (t) is an (n x n)-dimensional fundamental matrix and x - 1 
( ·) is an inverse 

with respect to the matrix X ( · ) . 
Substituting (2.3) into (2.2) we have 

z(t)=Q(t)X(t)X- 1 (9)x(9). (2.4) 
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Multiply (2.4) by [X- 1 (.9)]' X' (t) Q' {t) from the left and integrate from .9-/z 

to .9 to obta in 

8 

o~~ (.9) x (.9)= J rx- l csr x' (t) Q' (t) z (t) dt, (2.5) 
9- 11 

where 

(2.6) 
9 

D11 (.9)= j X'(t)Q'(t)Q(t)X(t)dt. (2.7) 
9 -11 

Here the prime denotes the transposition. 
From Eq. (2.4) we see that a necessary condition for the unf01ced linear sys­

tem (2.1) to be c-observable on the interval .9-h~t~.9 is that the columns of the 
matrix Q (t) X (t) x- 1 (.9) be linearly independent on this interval, otherwise, there 
exists a st~te vector x(.9) such that z(t)=O, .9-h~t~.9. This condition of linear 
independence, expressed mathematically by 

Q(t)X(t)X- 1 (.9) kt;O, Vt E [.9-h, ,9] for each k;kO in R" (2.8) 

is also a sufficient one. 
In fact, if the condition (2.8) is fulfilled for the unforced linear system (2.1) , 

then, defining an m-dimensional vector v;. (t, .9) by 

v;. (t, .9) -4. Q (t) X(t) x- 1 (.9) k;,s O, Vt E [.9-h, .9] for each k;kO in R" 

we have 
[) 

Jv~.(t,.9)v;.(t,.9)dt= A.'G11 (.9)A.>0 for each A.,tO in R". 
9 - 11 

The last inequality implies that the Gramian matrix G~r (.9) is positive definite . 
Hence, in this case det G11 (.9)#0 and the state vector x (.9) is defined uniquely from 
algebraic equation (2.5), i.e. system (2.1) is c-observable on the interval .9-h~ t~ .9. 

Thus, the unforced linear system (2.1) is ~::-observable on the interval.9-h~t~.9 
if and only if the condition (2.8) holds, or equivalently, if and only if the Gramian 
matrix G11 (.9) is nonsingular. 

In what follows we shall assume that the condition (2.8) is fulfilled for the consi­
dered system. 

Now, we pass to the computational procedure of determining the state vec­
tor x (.9). -

First, we look at the problem of evaluating the Gramian matrix G,, (.9). Note 
that the formula (2.6) requires to compute the inverse matrix x- 1 (.9) in order to 
obtain the Gramian matrix Gk (.9). 

It turns out, as well known, that the Gramian matrix can be obtained without 
above-mentioned requirement, namely (see Ref. [6]) 

G~r (.9) = ([> (.9) D~r (.9) et>' (.9), (2.9) 
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whete tfJ (t) is an (n x n)-dimensional fundamental matrix of the ad joint differential 
equation 

drp 
dt-= -A' (t) rp. 

Thus, if 8 and h are given, then the Gramian matrix can be predetermined by 
(2.7) and (2.9). 

Further, it is easy to show that the right-hand side of. the equation (2.5) •can be 
evaluated by 

I) 

tjJ (8)= j [X- 1 (9)]' X' (t) Q' (t) z (t) dt. (2.10) 
1)-h 

where tjJ (t) is the solution of the following differential equation 

dt/J 
-d =-A' (t) t/I+Q' (t) z (t) f . (2.11) 

subject to the initial condition 

1/J (9-h)=O. (2.12) 

Clearly, it is very much easier to solve the equation (2.11) with the initial condi" 
tion (2.12) than to evaluate the integral on the right-hand side of the equation (2.5). 

Combining the above results, the formulation of the computational procedure 
is obtained. It entails the following steps. 

Step 0. Predetermine the Gramian matrix Gh (8) by (2.7) and (2.9). 
~ 

Step I. Solve forward equation (2.11) subject to (2.12) fiOm 8-h to 8 and at 
the end of the forward integration obtain vector lfl (9). 

Step 2. Solve algebraic equation 

Gh (9) :X (9)=t/l (9) 

in order to find the state vector x (8). 

2.3. Block diagram realization of the indirect c-observer for 
the unforced linear nonstationary systems 

(2.13) 

From the previous development it is obvious that the indirect c-observer can 
be constructed for the unforced linear nonstationary systems. The block diagram 
realization of this observer is shown in Fig. 1, where the block AC denotes an 
analog computer designed for solving differential equation (2.11) subject to (2.12) 
and the block DC denotes a digital computer designed for solving algebraic equation 
(2.13). 
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Thus, it is concluded that the constructed above indirect c-observar represen­
ting the special purpose hybrid computer connected in parallel with a considered 
object provides automatical calculation of the state vector and can effectively sur­
mount the difficulties associated with a control design when the state is inaccessible 
to direct observation. 

Dynamic 
object ~~~ 

z{t) 

Controller 
x(v') ~~:g:-@1}~ ..._ 

DC Gh{?.J) AC ~p(i)-h}=O ... - . -
'---- . 

The indirect c-abserver 

Fig. 1. Block diagram realization of c-observer for the unforced linear systems 

3. Numerical solution gf the c-observation problem for the 
forced linear nonstationary systems 

3.1. Problem statement. We have previously derived a numerical solution of the 
c-observation problem for the unforced linear nonstationary systems. Now, we con­
sider a linear forced dynamical system represented by the differential equation in 
the following form 

dx 
dt =A (t) x+B (t) u (t) + v (t), (3.1) 

where x is an n-dimensional vector representing the phase state of the considered 
system at time t, A (t) and B (t) are a known, respectively, (n x n)- and (n x m)­
dimensional matrices, u (t) is an m-dimensional vector-valued function representing 
the control parameter and v (t) is a given n-dimensional vector-valued forced function. 

Let us assume that the system's input u (t) and forced function v (t) are either 
known a priori or can be measured exactly and that phase state x (t) is inaccessible 
to direct observation, only an m-dimensional output vector 

Z (t)=Q (t) X (t), fJ-h~t~[) (3 .2) 

is accessible to noise-f1ee measurement, where m<n, Q (t) is a known (m x n)­
dimensional matrix. 

Then, the c-observation problem for the forced linear system (3.1) consists in 
the following: it is required to find the unknown state vector x (t) at the present 
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time t = 9 from a complete knowledge of the system's input u (t), forced func­
tion ~ ~ (t) and output vector z (t) on the finite time interval B-h'(t'(f). for some 
h> O. where 9-h is some past time (9-h<9) because, since m<n, equation (3 .2) 
doe~ not allow immediate finding of x (t) from z (t) , 

3.2. Solution technique. It is well known that the solution of the differential equation 
(3.1) can be presented in the following form 

a. 

x(t) = X(t)X- 1 (.if)x(9) - J X(t)X- 1 (()[B(()u.(()+v(~)]d~, (3.3) 

where X (t) is an (n X n)-dimensional fundamental matrix and x- 1 (.) is an inverse 
with respect to the matrix X ( • ). 

Substituting (3.3) into (3.2) we have 

Q (t) X(t) x-l (9) X (B)=z (t)-Q (t) A (t), (3.4) 

where A (t) denotes the following n-dimensional vector-valued function 

.~ 

A.(t)=- J X(t)X- 1 (()[B(()u(()+v(()]d(, B- h'(t'(9. (3.5) 

Multiply (3.4) by [X- 1 (B)]' X' (t) Q' (t) from the left and integrate from B-h 
to f). to obtain 

a. 

Gh (9) x ( 9) = J [X- 1 (9)]' X' (t) Q' (t)[z(t)- Q (t) ). (t)] dt, (3.6) 
11- 11 

where Gh (9) is the Gramian matrix which was defined by (2.7) and (2.9). 
If the condition (2.8) is fulfilled for the considered system (3.1) or equivalently, 

if det G11 (9) ,tO, then the state vector x (B) is defined uniquely from algebraic equa­
tion (3.6). 

From (3.5) and (3.6) it is plain that computer implementation requires the com­
putation of the (n x n)-dimensional matrix x- 1 (t). In many cases, however, analy­
tical evaluation of the inverse matrix x- 1 (t) is difficult and, sometimes, impossible 
too. Moreover, for determining the state vector we must take definite integral in 
the right-hand side of the equation (3.6) and indefinite integral (3.5) that is not 
convenient and requires a lot of computer time. Therefore, it is of interest to find 
the practical effective computer procedure which avoids these difficulties. 

It is easy to show that the vector-valued function A. (t) defined by (3.5) is the solu- · 
tion of the following equation 

dA. 
dt =A (t) A.+ B (t) u (t)+v (t) (3 .7) 

subject to 

A. (B) = O. (3.8) 
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Since here only the terminal condition (3.8) is known, in order to evaluate }, (t) 
on the interval 9-h~t~.9 we first must find the corresponding missing initial con­
dition for ), (t) under which the terminal condition (3.8) is satisfied. Furthermore, 
it is required that a process of determining this condition must be finished at time 
t = 9-h. 

The requirements indicated above can be fulfilled by integrating equation (3.7) 
backward -in an accelerated time, i.e. in.troducing a new independent variable r 
by means of .the following relation 

] 
1 =p (r) J'·-9-h- - [r-(9 - h)], s>O. 

e 

Form (,3.7) and (3.9) we obtain the following equation 

dX . 
e dr=- A (r) X-B tr) iJ (r)-v (r), 

where 

(3.9) 

(3.10) 

X (r)=}, (p (r)) , A(r)=A (p (r)) , B(r)=B (p (r)), iJ(r)=u (p (r)), .Zi (r)=v (p (r)). 

Solving equation (3.10) forward from r0 =9-h-eh to r1 =9-h subject to the 
foilowing initial condition 

(3.11) 

we obtain at the end of the forward integration the vector X (r1 ) which is a requisite 
missing initial condition for A. (t). 

Now, the vector-valued function ..1 (t) can be evaluated by solving forward 
equation (3. 7) from 3- h to 3 subject to the followiilg initial condition 

(3 . 12) 

Further, it is easy to show that the right-hand side of the equation (3.6) can be 
then determined by 

IJ. 

t/1(9)= J [X- '(3)]' X'(t)Q'(t)[z(t)-Q(t)A.(t)]dt, 
IJ.- Ir 

where t/1 (t) is the solution of the following differential equation 

subject to 

dt/J . 
-d = -A' (t) t/J+Q' (t) [z (t) -Q (t) ), (t)] 

t 

t/1 (9-h)=O. 

(3 .1 3) 

(3.14) 

(3.1 5) 

Combining the above results, the formulation of the computational procedure 
is obtained. It entails the following steps: 

Step 0. Determined the Gramian matrix Gh ([)) by (2.7) and (2.9). 
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Step 1. Solve forward equation (3.10) subject to (3.11) from r0 =3-h--eh to 
r 1 = 9- h and at the end of the forward integration obtain the vector ~ ( r 1 ). 

Step 2. Solve forward equation (3.7) subject to (3.12) from 3-h to 3. During the 
forward integration evaluate vector-valued function Jl (t), 3-h~ t~ 9. 

Simultaneously solve forward equation (3.14) subject to (3.15) from B-h to 3 
and to end of the forward integration obtain vector lj; (B). 

Step 3. Solve algebraic equation 

G}J (9) X (9)=lf; (3) 

in order to find the state vector x (9). 

3.3 Block diagram realization of the indirect c-obsener for 
the forced linear nonstationary systems 

(3.16) 

From the above developments it is plain that the indirect_ c-observer c~n be 
constructed for the forced linear nonstationary systems. The block diagram rdtliza­
tion of this observer is shown in Fig. 2, where the block AC-1 denotes an an~log 

u(t) Dynamic 
r---------t-1--t object 

z(t) 

-------- ----------' 

Controller 

- -- -------- -- - ----------,---------------, 
1/)('lJ-h)=O 

8) -
IPt' AC-3 ----; 

I Gh(zJ 

, ~(t.!.__~ff) e~ 
·1 ~ ;..rrr) ?.(t) 

DU v(t~) AC-1 AC-2 Q(t) 

l _______ Th_e_i_ndirr:_~!_L_--_o_b_se_r_ve_r _ ____ · · 

Fig. 2. Block diagram realization of c-observer for the forced linear systems 

computer designed for solving differential equation (3.10) subject to (3.11), the block 
AC-2-an analog computer designed for solving the differential equation (3.7) 
subject to (3.12), the block AC-3-an analog computer designed for solving the 
differential equation (3.14) subject to (3.15) and the block DC-a digital computer 

. designed for solving algebraic equation (3.16). Besides in this figure the block DU 
denotes a driver unit and the blocks C-l and C-2 denote converters. 
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Thus, the indirect c-observer for the forced linear nonstationary system (3.1) 
representing special purpose hybrid computer connected in parallel with a controlled 
object guarantees automatical calculation of the current state vector from a complete 
knowledge of the system's input and output history on the finite time interval. 

4. Conclusions 

The paper proposes the practical effective method by which the current state of 
the unforced as well as forced linear nonstationary systems can be evaluated from 
a complete knowledge of the system's input and output history on the finite time 
interval. 

The method requires that only auxiliary systems of differential equations with 
known initial conditions and system of algebraic equation are solved for determining 
the current state vector of the considered systems. 

From the obtained results we have comtructed the indirect c-observers for the 
unforced as well as forced linear systems. These observers representing the special 
purpose hybrid computer connected in parallel w_ith a controlled object guarantee 
automatical calculation of the current state vector and can effectively surmount 
difficulties associated with control design when the state is inaccessible to direct 
observation. 
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Numeryczne rozwil!zanie zagadnienia c-obserwacji dla 
liniowych ukladow niestac,jonarnych 

Przedstawiono efektywn<'t metodt< praktyczn<'t rozwi<'tzania zagadnienia c-obserwacji dla linio­
wych uklad6w niestacjonarnych. 

Dla okreslenia aktualnego stanu rozpatrywanych system6w metoda wymaga rozwi01zania 
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pomocniczych uk!adow rownaii rozniczkowych ze znanymi warunkami poczqtkowymi i ukladu 
r6wna11 algebraicznych. 

Przedstawiono w postaci schematu blokoweg0 realizacj~ c-obserwatora posredniego dla linio­
wych ukladow niestacjonarnych z wymuszeniem i bez wymuszenia. 

"lfuc.r~euuoe perneuue 3a)J,a'III c-ua6mo)J,euuii: )J,.riH .r~uueiiHhiX 

HCCTaQltOHapHLIX CHCTCM 

D pe)lCTaBJI~H 3<jJ<jJeKTHBHbiH rrpaKTJPICCKJ{ff MCTO,ll; peweHJil! 3a,a;a'!l!. C-Ha6JllO,ll;CHHff AJUI Jl]{HCff­

HblX HCCTauHOllapHb!X CHCTeM. 

C UCJib!O OIIPCI-\CJICHH51 TCKYJUCTO COCtOl!HHl! HCCJIC)lYCMbiX CHCTCM MCtO,ll; Tpe6yeT pCillCllH51 

BCITOMOrateJibHbiX CHCTCM )lR<jJ<jJepeHuHaJibHbiX ypaBHCHllff C H3BCCTHbiMH Ha'IaJibHblMH yCITOBH51-

MH, a taKJKe cU:cteMhi anre6;>aH'iecKnx ypaBC!emrH:. 

Dpe)lCTaBrreHa, a BH)lC 6JIOK-CXCMbl, peaJIH3al.IH51 KOCBCHHOH CHCTCMbl C-Ha6JIIO)lCHHi1 )lJJ51 

JlliHCi{HbiX HCCTaUHOHapHbiX CHCTCM C B03MyWCliH51MH J{ 6e3 a(nMyiUeHHif. 


