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A sequential method of multivariable diagonal controller synthesis with regard to disturbance 
damping as performance index is presented. The method allows to obtain in one step, not iteratively, 
a quantitatively stated design objective or to verify that the objective is not attainable in the given 
class of controllers. A way of implementation is described and numerical example given. 

Notations: 

det (G){ ... minor of the matrix G created by deleting i-th row and j-th column. 

m (f)= inf l.f(jw)l where P= -1 . 
roE [O,roal 

M(f)= sup l.f(jw)l 
co E (0, coal 

llq(jw)II=M (qJ+ ... +M (q11) for q (jw)=(q 1 (jw), ... , q" (jw)) 

.f(q)=O (qP) iff p =min {k-integer I lim l.fll(q11~ 1 
= o} 

jjqJI->0 '1 

G=G- 1 =[g' .. ]. · · 1 u l,J= , .. ,lJ 

1. Introduction 

One of the main roles in control system design plays the so called British School 
Its leading representatives are Rosenbrock, MacFarlane, Mayne. The school may 
be characterised by a tendency to decompose the multivariable controller synthesis 
into a sequence of scalar problems. The inverse Nyquist array method (Rosenbrock) 
or the return differences method (Mayne) are typical examples. Recently the paper 
[6] inspired from the same philosophy has appeared. In all these methods the final 
step is a synthesis of several scalar close-loop control systems with the requirement 
that each loop should be "tight". Thus the stability is established, but the perf or-
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mance of the resultant multivariable control system with respect to disturbance 
damping or steady-state error or another criterion can not be predicted exactly. 
The only possible predictions are of qualitative nature. 

The aim of this paper is to present a method which makes it possible to choose 
diagonal controller in a given class (for example PJD) in such a way, that certain 
quantitative performance requirements are satisfied. 

It should be stressed, that quantitative formulation of performance index is 
a feature which distinguishes the proposed method from all mentioned above. 

2. Statement of the problem 

Let us consider linear, stationary, n-input, n-output plant described with the 
transfer function matrix 

G(s) = [gu(s)];,J = L·. ·11 (1) 

From here on we shall use s instead of jw or omit argument in order 
to shorten notation. 

Let the diagonal controller 

R (s)=diag {r1 (s), ... , Y11 (s)} (2) 

be applied and disturbances act additively on plant's outputs. As a result we obtain 
standard control system shown on Fig. 1. U (s) and E (s) are input vector function 
and error vector function transforms respectively. 

Z(s) 

£(s) V(s) 

Fig. 1. The control system configuration. 

If the system is stable, then its performance can be represented in the frequency 
domain by transfer function matrix 

Q (jw)= [q;J (jw)] 1,1 = 1 , ... 11 = (I+ GR)- 1 (3) 

which may be interpreted as error transfer function matrix or disturbance dampings 
matrix. 

As a goal of controller synthesis we shall consider the obtaining of stable system, 
in which the elements of matrix Q, namely q1i (jw), will have in a given frequency 
range [0, W 0 ] small gains. 

Before we formulate the synthesis goal in a precise quantitative manner, some 
basic relationships must be given. · 
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3. Basic relationships 

At the begining we shall introduse notions of autonomous and diagonal dampings. 
Assume, that for the given plant all interactions are neglected, gu (s<)=O for i:;!:j. 

Then, after applying diagonal controller, the system will split into n independent 
loops. Disturbance damping in each loop will be represented by function 

I 
q,(s)=I () ()'i=I, ... ,n. +gu s r1 s 

(4) 

These functions will form a vector 

q (s)=(ql (s), ... , q11 (s))T (5) 

of autonomous dampings. 
If interactions are taken into account, the matrix Q will not be diagonal. In this 

case its diagonal elements will be called diagonal dampings. 
Let us introduce the following denotions: 

det G 
A=-~~--

n gkk 
k=l 

det (G); 
A 1= " , i=I, ... , n. 

n gkk 
k=l 
k>ld 

det(l+GR) 
B=-----

(6) 

(7) 

(8) 

A, A 1 and B are functions of frequency. Now we shall formulate the main theorem, 
proved in [2]. 

THEOREM 1. For the given control system the following relationships hold: 

A; 
qii=Bq1+o(q), i=l, ... ,n. (9) 

. det (G)~ 
qii=( -l)i+J det (G)~ qii+o (q); i,j=l, ... , n. 

i:;!:j 
(10) 

(11) 

for all w E [0, wa]. 
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By means fo this theorem we shall estimate gains of elements of matrix Q, but 
to do so, we have to presuppose that autonomous dampings are in a given frequency 
range small. In a formulated farther algorithm the supposition will allways hold. 

4. Quantitative formulation of synthesis problem 

The Theorem 1 implies that nondiagonal elements of matrix Q are approximately 
proportional to diagonal dampings. Let us note, that proportionality factors do 
not depend on a type of controller used. They are simply ratios of the elements of 
the matrix inverse to G. 

(12) 

If we calculate the values of M (iuliii) then we shall easily find for every set 
of numbers Jii>O, i, j=1, ... , n such 01>0, i=1, .. . , n that 

(13) 
i ~ n t, j :r;; n 

It means that in order to achieve small gains of elements of matrix Q it is enough 
to impose constraints on diagonal dampings only. 

Now we are able to give ultimate formulation of design problem: find diago­
nal controller in such a way that the close-loop system is stable and diagonal dam pings 
fulfil inequalities 

sup lqu(Jw) l=M(qu):::;;o1 i=l, ... , n. 
UJ E [o, wa] 

where Wa, 01 > 0 are given numbet·s. 

5. Sufficient conditions 

In [2] the following theorem was proved: 

THEOREM 2. Let M (q1)=x1, i= 1, .. . , n. 

If the numbers x 1 satisfy the set of inequalities 
II 

M (A;) X;+ }; (m (A) 0; +M (Ak) o;) xk:::;;oi m (A), i= 1, ... , n. (14) 
k = 1 

then diagonal dampings are in the given frequency range [0, Wa] bounded by 01 

Let us notice, that (14) implies inequality 

m (A) o1 x.:::;;-- --- --- -
• M(A1)(l+o1)+m(A)o, 

(15) 
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for every i= 1, ... , n. It means, that if upper bounds pf diagonal dampings J; are 
small, then upper bounds of autonomous dampings are small as well. 

Assume, that we have found set of numbers x;>o, i=l, ... , n satisfying constraints 
(14) and a diagonal controller with such gains that 

M (q;)~ x7 i= 1, ... , n (16) 

Then we can omit o (q) on right hand sides in (9), (10), (11) and use evaluations 
of the Theorem 1. 

6. Stability 

In order to achieve stability of the close-loop system the return differences met­
hod (Mayne, [3]) was used, proved also in a slighty generalized version in [2]. 

Let us define the sequence of matrices Rk; k~n 

(17) 

Tk=[tdi,j)];, 1 = 1 , ... ,.=(f+GRk)- 1 G. (18) 

We shall also use return differences formed in the following way: 

fk=l+rktk_ 1 (k,k), k=l, . .. ,n. (19) 

The Mayne's theorem [3] states, that if every return difference j~, k=1, ... , n 
satisfies stability conditions (e.g. Nyquist's) then the close-loop system is stable. 

In order to compute matrices Tk the following construction [2), [3] is useful: 

T0 =G 

k=l, ... , n 

where tk-l ( ·, k) k-th column of matrix Tk- 1 

tk=- 1 (k, ·) k-th row of matrix Tk_ 1 . 

7. Algorithm 

(20) 

The complete algorithm for multivariable diagonal controller design consists 
of several steps : 

I) Choose the frequency range LO, Wa]. 
II) Choose the bounds for diagonal dampings J;, i= I, ... , n taking into conside· 

ration relations ( 12). 
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III) Find numbers x7, i=l, ... , n satisfying the constraints (14). 
For k =I, ... , n execute steps IV) and V) 
IV) Compute the function tk-l (k, k). 
V) Find a controller rk in the given class in such a way, that 

fk (jw) fulfils stability conditions, M (qk)~ xZ. 

A. ZOCHOWSKI 

Step iii) of the algorithm may be performed only under assumption that M (A 1) 

i=l, ... , n exist and m (A)>O. Degenerate cases will be analyzed in a separate 
paper. 

Finding the appropriate controller in step V) may also be for certain k im~ 
possible, what means that the design objective is not attainable in the given class 
of controllers. 

8. Implementation 

The lower part of frequency range, [0, mal is crucial for the for:qmlated in §4 
performance criterion of a control system, while higher frequences, [wa, oo ), decide on 
stability. In implementation all functions have to be represented by a table of values, 
so it is important to choose discrete frequences in· a reasonable way. In the 
presented version the following set was adopted: 

. 
OJi+l=OJi. lOo.os. 

Because of such a choice logarithmic characteristics are easy to obtain. 
Accordingly the plant is represented by the sequence of complex matrices 

A first action of the program is to compute matrices inverse to G: 

and determinants 

As it is easily seen 

det G (jw 1), ... , det G (jw20). 

n 

IAkl= ldet GI I§Kkl/ n lgii l· 
i= 1 
ii'k 

Consequently it was assumed, that 

M (Ak)= max IAk (jwp)l 
p=1, .. 20 

m (A)= min lA (jwp)l 
p=1, .. 20 
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These values ate substituted into (14). The numbers x;, k=l, ... , n are computed 
by changing in (14) inequalities into equalities. 

One of main parts of the program is a procedure for the single-loop controller 
design (step V). It decides whether the aim of control is realizable in a given class 
of controllers. In implementation the controller type P1D was adopted: 

1 
r=K(l + Ts +Ds) 

with coefficients from the set n 

For the purpose of satisfying (16) transfer function of the controller must have 
such a gain, that 

Taking into consideration stability we set a gain margin a [dB] and phase margin rp 
.and then require, that the graph of the function 

If/ (jw1)=r;. (jwt) tk-1 (k, k) (jw1), i= l, ... , 60 

in the complex plane must avoid the cone 

Relfl (jwt)~ -[tg rp Im If/ (jw1)1- (1-lo-a120), i= l, ... , 60. 

Thus we guarantee unconditional stability for the k-th return difference. 

A selection of the controller is performed according to the following algorithm: 

i) Choose the pail Tk, Dk from n . 
ii) Find such a gain, Kk> that 

If tk_t(k, k)(jO)<O, then take Kk<O. 

If IKkl > Kmm return to i). 

iii) Check the stability conditions. 
If they are not fulfilled return to i). 

The set n is explored in a systematic way and structures of increasing complexity 

P, PI, PID are succesively tried. 

It may also be exhausted without finding the right triple Kk> Tk, Dk. That means 
that a PID controller with parameters from n can not tealize unconditionally stable 

3 



116 A. ' :2:0CHbWSKI 

system with prescribed disturbance damping and gain-phase margins for certafu 
tk-d k, k). ' ; ·' 

The' implemented procedure also gives giin'-phase logarithimic characteristics 
of return differences at every step of synthesis, sO it is easily 'to check validity bf 
controller design. 'After coni~leting all steps, itpr~duces logarithmic gain characte­
ristics of qu, i=l, ... , n, in order to visualize the results. 

9. Example 

The method performance is ilustrated on the example of transfer function matrix 

exp ( -0.5s) -exp ( -0.5s) ~l 
1 +s l+s . 

G(s)= 
exp ( -0.5s) 1 

1+s 1+s 2+s 

-0.5 -1 

l+s 2+s 1+s 

Requirements: 

Constraints : 

, .. At the ~eginning the algorithm computes the bounds for autonomous damp~ngs. 

x;=0.286, x~=0.2; x;=0.125. 

The transfer function seen by the first controller, rl> has a well known shape 
(t0 (1, l)=g11). The settings of the controller parameters are: 

K 1 =0.157, T1 =0.126 (type PI). 

The gain-phase characteristics of t 1 (2, 2) are shonw on Fig. 2 A type PJD was. 
chosen for r2 • 

K2 =0.701, T2 =0.398, D2 =2.239 

•Fig. 3 shows t2 ~3, 3). The proportional controller is sufficient, with gain K3 =9.304. 

On Fi&. 4 the resultant q1 I> q22 , q33 are displayed. It is worth noting, that its 
graphs omit the forbidden area w~wa, lql~ -20dB with the accuraGy of 1-2 dB,. 
what confirms the approximations formerly made; 
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Fig. 3. The gain-phase cha· 
racteristics of t2 (3, 3) (con-· 
tiriuous line) and r3 t2 (3, 3) 

(dashed line). 
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dB 

G.1Wa wu. 1DWa lgw 

Fig. 4. The gain characteristics of diagonal dampings. 
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Pewna metoda projektowania wielowymiarowego regulatora 
diagonalnego 

W pracy zaprezentowano metod~ syntezy wielowyrniarowego regulatora diagonalnego z uwzgl~d­
nieniem tlumienia zakl6cen jako hyterium jakosci re~ulacji. Metoda pozwala w jednym kroku 
osi(!gn(!c zadany ilosciowo eel syntezy. Podano spos6b imJ?lementacji i przyklad numeryczny. 
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MeTo~ opoeKTifPOBaHDH MnoroMepuoro ~aronaJI'LHoro 

peryJiaropa 
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B pa6ore npe,n:craBJie:a Mero,n: npoeKTHpo:ea.ItHll llntoroMep:aoro ,ll,llaroHa.TILHoro peryJillropa 
C )l'lltralme..l\1 rro,n:aBJieitHH IIOMCX KaK JCalJCCTBa peryJIRpoBaHHll. Mero,n: II031:am!CT ,ll.OCTJiliL KOJIR­
'IecTBeltHO rrocraJie.EOioro IJ,eJJll cn'!lre3a B o)l.HoM mare. Ilpe,n:cl'aBJieH cnoco6 ocymeC'l'BJieH:HH 
ll 'DiCJieHllbiH np:RMep. 
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