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A sequential method of multivariable diagonal controller synthesis with regard to disturbance
damping as performance index is presented. The method allows to obtain in one step, not iteratively,
a quantitatively stated design objective or to verify that the objective is not attainable in the given
class of controllers. A way of implementation is described and numerical example given.

Notations:
det (G)] ... minor of the matrix G created by deleting i-th row and j-th column.
m(f)= inf |f(jo)] where j?=~—1,

w € [0, 4]
M(f)= s:(l)p ]lf(jw)l
llg GGoll=M (q)+...+M (g,) for q(jo)=(q; (j©), ..., g, (jo))
f(@)=o(¢g") iff p=min {k-integer [umlf (qz| =01
iaesa NglF

é:G'1=[§'ij]i,j—_¥1, o

1. Introduction

One of the main roles in control system design plays the so called British School
Its leading representatives are Rosenbrock, MacFarlane, Mayne. The school may
be characterised by a tendency to decompose the multivariable controller synthesis
into a sequence of scalar problems. The inverse Nyquist array method (Rosenbrock)
or the return differences method (Mayne) are typical examples. Recently the paper
[6] inspired from the same philosophy has appeared. In all these methods the final
step is a synthesis of several scalar close-loop control systems with the requirement
that each loop should be “tight”. Thus the stability is established, but the perfor-
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mance of the resultant multivariable control system with respect to disturbance
damping or steady-state error or another criterion can not be predicted exactly.
The only possible predictions are of qualitative nature.

The aim of this paper is to present a method which makes it possible to choose
diagonal controller in a given class (for example P1D) in such a way, thau certain
quantitative performance requirements are satisfied.

1t should be stressed, that quantitative formulation of performance index is
a feature which distinguishes the proposed method from all mentioned above.

2. Statement of the problem

Let us consider linear, stationary, n-input, n-output plant described with the
transfer function matrix

G(S) = [gij(s)]i,j =1,*n ¢))

From here on we shall use s instead of jw or omit argument in order
to shorten notation.
Let the diagonal controller

R (s)=d1ag {rl (S): cees Iy (S)} (2)

be applied and disturbances act additively on plant’s outputs. As a result we obtain
standard control system shown on Fig. 1. U (s) and E (s) are input vector function
and error vector function transforms respectively.

Z(s)

us) -~ E(s) il & & a Y(s)

Fig. 1. The control system configuration.

If the system is stable, then its performance can be represented in the frequency
domain by transfer function matrix

0 (jo)=[g:; (j©)ls,j = 1,---n={T+GR)™* ! 3)

which may be interpreted as error transfer function matrix or disturbance dampings
matrix.

As a goal of controller synthesis we shall consider the obtaining of stable system,
in which the elements of matrix Q, namely g;; (jw), will have in a given frequency
range [0, w,] small gains.

Before we formulate the synthesis goal in a precise quantitative manner, some
basic relationships must be given.:
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3. Basic relationships

At the begining we shall introduse notions of autonomous and diagonal dampings.
Assume, that for the given plant all interactions are neglected, g;; (s)=0 for izj.
Then, after applying diagonal controller, the system will split into » independent
loops. Disturbance damping in each loop will be represented by function

it
= e 2] L, L
% () 1+g,(s)r (S), R @)
These functions will form a vector
g (9)=(q1 (5), - gu (5T )

of autonomous dampings.

If interactions are taken into account, the matrix Q will not be diagonal. In this
case its diagonal elements will be called diagonal dampings.
Let us introduce the following denotions:

det G
s (6)

1 g
k=1

et (G)i

[T 8k
k=1

k#i

det (/4+GR)
R e ®

[T Ud+gur)

k=1

| P @)

==

A, A; and B are functions of frequency. Now we shall formulate the main theorem,
proved in [2].

TueOREM 1. For the given control system the following relationships hold:

A; )
wu=—p qto(@, i=l..n )
i+j ( )i )
qij=(-" 1) det (G)i q1i+0 (q)a l’.]=13 ey T (10)
i#]

(1_24,) ZAiq1+o(q) (1

Jor all w e ][0, w,].
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By means fo this theorem we shall estimate gains of elements of matrix Q, but
to do so, we have to presuppose that autonomous dampings are in a given frequency
range small. In a formulated farther algorithm the supposition will allways hold.

4. Quantitative formulation of synthesis problem

The Theorem 1 implies that nondiagonal elements of matrix Q are approximately
proportional to diagonal dampings. Let us note, that proportionality factors do
not depend on a type of controller used. They are simply ratios of the elements of
the matrix inverse to G.

184l
ij T ii i, '=1, ...,n 12
19,1 1g“,Iq l J 12)
If we calculate the values of M (g,;;/8,,) then we shall easily find for every set
of numbers J;;>0, i, j=1,...,n such §,>0, i=lI, ..., n that
V M(q)<6;= Y M(q;)<dy;. (13)
i<n i,j<n
It means that in order to achieve small gains of elements of matrix Q it is enough
to impose constraints on diagonal dampings only.

Now we are able to give ultimate formulation of design problem: find diago-
nal controller in such a way that the close-loop system is stable and diagonal dampings
fulfil inequalities

sup gy (jo)l=M (g;)<d; i=1,..,n

o € [0, wg]

where @,, 6;>0 are given numbers.

5. Sufficient conditions

In |2] the following theorem was proved:

THEOREM 2. Let M (q)=x;, i=1,..,n

If the numbers x; satisfy the set of inequalities
M (4) x,+ Z(m (A) 8;+ M (4y) ) X, <6, m(4), i=1,...,n. (14)
k=1

then diagonal dampings are in the given frequency range [0, w,] bounded by J;
M(qii)géi i=15 ey B2
Let us notice, that (14) implies inequality

m (4) 9,
NS M) (14 0)+m (A) 0,

15
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for every i=1, ..., n. It means, that if upper bounds of diagonal dampings J, are
small, then upper bounds of autonomous dampings are small as well.

Assume, that we have found set of numbers x’: >0, i=1, ..., nsatisfying constraints
(14) and a diagonal controller with such gains that

M(g)<x; i=1,..,n (16)

Then we can omit o (g) on right hand sides in (9), (10), (11) and use evaluations
of the Theorem 1.

6. Stability

In order to achieve stability of the close-loop system the return differences met-
bhod (Mayne, [3]) was used, proved also in a slighty generalized version in [2].
Let us define the sequence of matrices R, k<n

Ry=diag {ry, ..., "4=1, "%, 0, ..., 0} a7
and Ty, k<n
To=[te (i ))i j=1,--- n=([+GRY™* G. (18)
We shall also use return differences formed in the following way:
fiz=t4rteny (6 K), k=1, .51 (19)

The Mayne’s theorem [3] states, that if every return difference f;, k=1, ...,n
satisfies stability conditions (e.g. Nyquist’s) then the close-loop system is stable.
In order to compute matrices 7} the following construction [2], [3] is useful:

T0=G

¥,
To=Ti 1=ty (k) t_y (K, *) (20)

k
k=1y..n
where t,_; (-, k) k-th column of matrix T,_,

te=_4 (k, +) k-th row of matrix Tj_;.

7. Algorithm

The complete algorithm for multivariable diagonal controller design consists
of several steps:
I) Choose the frequency range [0, w,].
II) Choose the bounds for diagonal dampings J;, i=1, ..., n taking into conside-
ration relations (12).
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III) Find numbers x}, i=1, ..., n satisfying the constraints (14).

For k=1, ..., n execute steps IV) and V)

IV) Compute the function #,_, (k, k).

V) Find a controller r, in the given class in such a way, that
fi (o) fulfils stability conditions, M (g)<x;.

Step iii) of the algorithm may be performed only under assumption that M (4;)
i=1, ...,n exist and m(4)>0. Degenerate cases will be analyzed in a separate
paper.

Finding the appropriate controller in step V) may also be for certain k im-
possible, what means that the design objective is not attainable in the given class
of controllers.

i

8. Implementation

The lower part of frequency range, [0, w,] is crucial for the formulated in §4
performance criterion of a control system, while higher frequences, [w,, ), decide on
stability. In implementation all functions have to be represented by a table of values,
so it is important to choose discrete frequences in- a reasonable way. In the
presented version the following set was adopted:

~-0.95 o -
0 s Wr0=W, Weo= 100wa9

wy=w,;" 1
COH. 1=60i * 100.05.
Because of such a choice logarithmic characteristics are easy to obtain.
Accordingly the plant is represented by the sequence of complex matrices

G (jor), ...y G (jwso)-
A first action of the program is to compute matrices inverse to G:
Gl s GLioas)
and determinants
det G (jw,), - det G (jw,o).

As it is easily seen

el =Idet G [gal/ [ [ Igul
P2k
Consequently it was assumed, that
M (A4)= max |4, (jw,)l

p=1,..20

m(d)= min |4 (jo,)

p=1,.20
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These values are substituted into (14). The numbers x,, k=1, ..., n are computed
by changing in (14) inequalities into equalities.

One of main parts of the program is a procedure for the single-loop controller
design (step V). It decides whether the aim of control is realizable in a given class
of controllers. In implementation the controller type PID was adopted:

1
r=K(l +“]:s- +Ds)

with coefficients from the set []
[T ={KT,D| —Knux< K< Kpax,
Tonn<T< T a5
0< DDy}

For the purpose of satisfying (16) transfer function of the controller must have
such a gain, that

1
fre (joo,) 'gkk(fwi)lZ? +1, i=l1,..,n
%

Taking into consideration stability we set a gain margin @ [dB] and phase margin ¢
and then require, that the graph of the function

14 (jwi)=rk (.]a)i) tk—l (k’ k) (j(l)g). l=1’ sery 60
in the complex plane must avoid the cone

Rey (jo)< —|tg p Im y (jo,)| —(1-10-%2°), =1, ..., 60.

Thus we guarantee unconditional stability for the k-th return difference.
A selection of the controller is performed according to the following algorithm:

i) Choose the pait T}, Dy from [].
ii) Find such a gain, K, that

1 1
1Ky g (o) (1 + m +Dkfwz)l>;cf +1, .1i=1,..,20.
If #._, (k, k) (jO)<O0, then take K, <O.
If |K|> K. return to i).
iii) Check the stability conditions.
If they are not fulfilled return to i).
The set [] is explored in a systematic way and structures of increasing complexity
P, PI, PID are succesively tried.

It may also be exhausted without finding the right triple K;, T, D,. That means
that a PID controller with parameters from [] can not 1ealize unconditionally stable

3
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system with plescrlbed disturbance dampmg and gam—phase margms for certam
o1 (K, k). ' ; i Tl

" 'The implemented procedure also gives gam-phase logarithimic characteristics
of return differences at every step of synthes1s so it is easily ‘to check vahdlty of

controller design.’After completing all steps, it produces logarithmlc gain characte-
ristics of q;;, i=1,..., n, in order to visualize the results.

9. Exampie

The method performance is ilustrated on the example of transfer function matrix

exp (—0.5s) —exp (—0.53) 0.5
I4s s 70 1+s Do Tes
G ls)= exp (—0.5s) 1 1
T 0T lobs. 7 2+4s
i3 ’ i =1
S BT SR 245 1+
Requirements:
=03 By==By =Bl
Constraints: v

a=>5dB, o= =207, ,M—SO Tm].,—O 1 T,m—l() Dmax 10.
: At the beginning the algorithm computes the bounds for autonomous dampings.

x;=0.286, x3=0.2; x3=0.125.
The transfer function seen by the first controller, r;, has a well known shape
(to (1, 1)=g11)t The settings of the controller parameters are:
K,=0.157, T,=0.126 (typz PI).

The gain-phase characteristics of #; (2, 2) are shonw on Fig. 2 A ’typer PID was.
chosen for r,.

K,=0.701, T,=0.398, D,=2.239

Fig. 3 shows 7, (3, 3). The proportional controller is sufficient, with gain K;=9.304.

On Fig. 4 the resultant g;4, ¢,,, ¢33 are displayed. It is worth noting, that its.
graphs omit the forbidden area w<w,, |¢|> —20dB with the accuracy of 1-2 dB,
what confirms the approximations formerly made:
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Fig. 4. The gain characteristics of diagonal dampings.
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Pewna metoda projektowania wielowymiarowego regulatora
diagonainego

W pracy zaprezentowano metode syntezy wielowymiarowego regulatora diagonalnego z uwzgled-
nienjem tlumienia zaklocen jako ksyterium jako$ci regulacji. Metoda pozwala w jednym kroku
osiggna¢ zadany iloSciowo cel syntezy. Podano sposob implementacji i przyklad numeryczny.
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Meron nppoeKTHpOBAHHS MHOFOMEPHOrO IHATOHAJIELHOTO
peryasropa

B pabore mpencraBleE METON NpPOEKTHPOBAHHS MHOTOMEPHOTO IHATOHANBHOTO peryndaropa
© yYHTaHMEM ITOJaBJIEHUA NMOMEX KaK KaveCTBa peryiadposanus. Meron mosrcanger JOCTHYEL KOTH-
¥CCTBEHBO IIOCTAJICHHOTO LENH CHHTE3a B onEoM mare. IIpencrasneR ¢moco6 oOCYMIECTBIIEHES
¥ YECIECHBbIN YIpEMED.
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