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Numerical solution of the c-control problem for
nonlinear systems
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A successive approximation method for solving the c-control problem of nonlinear systems
is proposed.

Some constructive sufficient conditions are presented for the convergence of the iterative process.

In particular, there are obtained the estimations for the small parameter x and radius r* of
the neighborhood of the equilibrium state in state space in which the considered nonlinear system’
will be c-controllable. This is very interesting in the practical applications and presents a new result,
to the best of the knowledge of the author, not obtainable by other approaches to the problem
of the controllability for the nonlinear systems.

1. Statement of the c-control problem

Let the motion of an object be described by the nonlinear system of ordinary
differential equations in the following matrix form

dx

dt

where x is an n-dimensional vector representing the state of the considered object
at time #, u (¢) is an m-dimensional real vector-valued function representing the
control input of the system, f(x, ¢) is an n-dimensional real vector-valued function,
nonlinear with respect to x, 4 (¢) is an (rXn)-matrix, B (¢) is an (n X m)-matrix,
a° is an n-dimensional real vector 1epresenting the initial state of the object at time
to and p is a small parameter.

The function f(x, t) on the right-hand side of Eq. (1.1) is assumed to be conti-
nuous in x and # in some domain of admissible values for x and ¢. Furthermore,
this function must satisfy certain other conditions mentioned later.

All the functions-elements of the matrices A4 (r) and B (f) are assumed to be
(n—1) times continuously differentiable on the finite time interval ¢,<t<t,.

The c-control problem foi nonlinear system (1.1) can be stated as the mathematical
problem of finding the continuous function u(t)eC 1) for which the following
condition of ,,hit” is satisfied

=A@O)x+BOu(t)+uf(x, 1), x({t)=a° (1.1)

Xt )=a’; 1.2
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where o’ is an n-diemensional vector preassigned in the state space, the n-dimensic
vector-valued function x (f,u) is a solution of the matrix differential equation (1.
subject to the requisite control u (t) representing the trajectory of the considered syste
in the state space and t; is a given fixed final time.

This problem for the corresponding =0 linear systems has been stated =
solved by N. N. Krasovskii in Ref. [1].

1t should be observed that a similar problem has been investigated by Ia N. Re
tenberg in Ref. [2].

The Roitenberg’s problem of “hit” can be stated as the mathematical proble
of finding the discontinuous (namely, piecewise constant) function u (t) for which &
condition of ,hit” (1.2) is satisfied.

We shall refere to the Roitenberg’s problem of ,,hit” as the d-control problex

Roitenberg’s investigations were further developed by Nguyen in Refs. [3-6
who demonstrated that the classical approximation method of Picaid can be direct®
applied to solve the broad class of the d-control problem for nonlinear sysiems
" The purpose of this paper is to show that the numerical technique develop=
by Nguyen in Refs. [3-6] can be extended in an iterative fashion to solve the c-contre
problem for nonlinear systems.

2. Numerical solution of the c-control problem

It is well known that the system of differential equations (1.1) can be written
the following equivalent integral form

() =X(@O|e+ [X1OBOu@di+u [X 1O @CEu,Ok| @1

Here X (#) is 2 normalized fundamental (i< n)-dimensional matrix for the corres
ponding x=0 linear system, i.e.
dx (1)

dt

=4O X0, X{t)=I

where 7 is an identity (nxn)-dimensional matrix.
From (2.1) it is easy to see that the condition of ,hit” (1.2) will be fulfilled
if the required control function u(t) satisfies the following equation

f fx—l (OB@) u(t)di=1"—p ij~1 () (x (1, u), 1) dt, 22

where x (¢, u) is a solution of the matrix integral equation (2.1) and A° is the following
known constant vector

=X (t,) a’ —a° 2.3)
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Thus, for determining the required control function u« (t) we have to solve equa-
tion (2.2) associated with the original nonlinear matrix integral equatioﬁ (2.1).

Since it is actually impossible to obtain an analytic solution (in the closed form)
of these equations, they must be solved by means of various numerical method.

Tt turns out that the numerical technique developed by Nguyen in Refs. [3-6]
for solving d-control problem can be applied in an iterative fashion to solve the
above-mentioned equations.

The initial approximation may be defined as

f fx—l () B(2)u® (t) dt=1° (2.4)
(1) 23 (1, w)=X )]+ [X* ) BOw O &] @5)

It is very easy to see that control vector-valued function #° (¢) determined from
(2.4) represents the solution of the c-control problem for the corresponding u=0
linear system. For this case the following result holds

TueoreM 1. If the row wectors of the following (nXm)-dimensional matrix
G()=X"*({)B(t)

are linearly independent on the interval t,<t<t;, then c-control problem for the
corresponding =0 linear system has infinite set of solutions, amongst them the control
function defined by the following formula

u® ()=B" () [X~* (O] n°, (2.6)

where

Dy°=j°, D= f X-1(OB@OB @)X ()] dt (2.7)

7o

is the unique solution, which has minimal norm in the space L, [to, t7].

It should be observed that Theorem 1 had been proved by N.N. Krasovskii
in Ref. [1] for single input case (m=1). The proof of Theorem 1 for the presented
above general case is similar and will not be repeated here.

In (2.6) the prime denotes the transpose.

To ensure that iterative procedure is well defined, it is convenient to introduce
the following terminology. X
DErFINITION 1. The dynamic system (1.1) is c-controllable on the interval t,<t<ty,
if there exists some continuous control function u(t) which brings a system from
the initial state a® at t, to the preassigned terminal state o’ at the given fixed final
time ;.
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We have seen via Theorem 1 that the corresponding p=0 linear system is c-
-controllable on the interval #,<¢<,, if the row vectors of the matrix G (¢) are linearly
independent on this interval.

It should be noted that the indicated above test for c-controllability of “the
corresponding u=0 linear system depends on knowing the matrix G (¢). In many
practical cases, however, the problem of the construction of the matrix G (¢) is
either difficult or computationally time consuming. Thus, it would be a distinct
advantage to have a test for c-controllability which does not require a knowledge
of the matrix G (¢).

1t turns out that the following proposition holds (see Ref. [1]).

THEOREM 2. The row vectors of the matrix G (t) are linearly independent on the
interval t,<t<ty, if

rank P (t)=n, Vit e [t,, t,] 2.8)
where
P(t)=(P1 (t)a Pz (t)’ L) Pn (t))

dB;(1)
dt

Py (t)=B(f), Py (D)= —A (1) B, (1), i=1,2,..,n—1

1t is clear from Theorems 1 and 2 that the corresponding #=0 linear system is
c-controllable on the interval #,<7< ¢, if the matrix P () is of rank » for any time
t over this interval.

Therefore, in what follows we shall assume that the condition (2.8) is fulfilled
for the corresponding linear system.

Then, it is easy to show that det D0 and the required control vector-valued
function «° (¢) is uniquely defined from (2.6) and (2.7).

Now, suppose that (j—1)-th approximation is already found, i.e. u/~* (¢) and
xI-1 ()2 x(t,u’~1) are known. Then the j-th approximation is determined by

fx-l OB w (1) di=37, j=1,2,.... (2.9)
¥ (O Lx()=X O]+ [X-1©QB@wW@di+

+u XL QSO 9d]i=12,.... @10
where

ty _
Af=2,°—qu"1 OF-1@),Hdr, j=1,2,..., (2.11)
t° .
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Note that Eqs. (2.9), (2.10) and (2.11) remain also valid for j=0 if in this case
we set u=0.

It is easy to show that the required control function %’ (¢) defined by (2.9) has
the following form
W(R=B X0y, j=.2... (2.12)
where
Dypi=p, j=1,2, ... (2.13)

It should be observed that computer implementation of the above steps 1equires
the computation of the inverse matrix X~1 (¢). In many cases, however, analytical
evaluation of this matrix is difficult and, sometimes, impossible, Therefore, it is
of interest to find the modified formulation of the presented above iterative pro-
cedure which avoids this difficulty. -

3. Modified formulation of the iterative procedure

Consider first the determination of the matrix D. It is well known that the matrix
D evaluated by formula (2.7) can be represented in the following from (see Ref. [15])

D= jf¢’ (OYB)B (1)@ (t)dt 3.1)

o
where @ (¢) is a normalized fundamental matrix of the adjoint differential equation
1.e; ;
do (1)
dt

=-—4q' gz) D (1), D(ty)=1I (3.2)
Furthermore, the constant vector A’ evaluated by (2.3) and (2.11) can be represented
in the form

=0 () [ =2 (1), j=0,1,2, ... (33)
where z7 (¢) is a solution of the following equation

dz?

E-:A (Z) Zj+:u.if(xj_1 (t)a t): J=0= 1, 23 vee (34)

subject to the initial condition

Z/ (to)=a°, j=0,1,2,.. (35
Here y;, j=0,1,2, ..., are defined by
0 if j=0
= (3.6)

p  if j#0
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The required control function #/(f) in j-th approximation can be evaluated
by the following formula

w ()=B"()y’ (1), j=0,12,.. 3.7
where yw/ (¢) is a solution of the adjoint differential equation
dy’ (t) ‘
—Q - A OvO, j=0,12, .. (3.3
subject to
!//j (tO)=’1j7 J=O, 19 29 (39)

Finally, the trajectory x’ (¢) corresponding to #’ (¢) can be obtained by solving
the following differential equation

J

dt

=AW +B@ W O+, f(X-1 (@), 1), j=0,1,2,... (3.10)

subject to
¥ (to)=a% j=0,1,2,... (3.11)

where u,, j=0, 1,2, ..., are defined by formula (3.6).

Thus, it is not necessary to compute the inverse matrix X~1(¢) in order to
determine all the requisite values in each iieration.

By combining the above results with those of the previous section, the modified
formulation of the iterative procedure can be obtained. It entails the following steps:

Step 0. Solve equation (3.2) from ¢, to #,. During this integration calculate matrices
D and @ (z)).

Step 1. Setj=0, u;=0 and solve equation (3.4) subject to the initial cendition (3.5)
from ¢, to ¢, and at the end of this integration determine vector z’/ (¢;). Next, eva-
luate vector A/ by formula (3.3).

Step 2. Solve algebraic equation

Dyi=)/
in order to find constant vector 7.
Step 3. Solve equation (3.8) subject to (3.9) from ¢, to #;. During this integration
evaluate function #/ (¢) by formula (3.7).
Step 4. Solve equation (3.10) subject to (3.11) from #, to #,. During this integration
obtain vector x’ (¢). Store x/ (¢), to<t<1t;.

Return to step 1 with j replaced by j+1 and set g,= . The process ends when the
condition of ,,hit” (1.2) is satisfied with the requisite accuracy.

Thus, the modified procedure requires that only the systems of differential
equations with the known initial conditions and the system of algebraic equations
are solved in each iteration, so it seems to be well adapted to computations by digital
or hybrid computers.
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4. Some constructive sufficient conditions for the convergence
of the iterative process

In the previous section we have employed the iterative technique developed by
Nguyen in Refs. [3-6] to solve the c-control problem for nonlinear systems and
found the modified formulation of the iterative procedure which avoids some diffi-
culties in computer implementation. '

Now, it remains for us to establish some sufficient conditions for the convei-
gence of the iterative process.

THEOREM 3. Assume 1) The corresponding u=0 linear system is c-controllable on
the finite time inteival t,<t<t;.

2) The function f(x, t) is continuous in all arguments in some closed domain of
the space (x,t), determined by the expression

D (4 2)={(x,1): [x|< 4, toSt<t,, 1=t~}

where A is some positive number. The norm of the matrix x is denoted by |x|.

3) In the domain D (4, 1) the function f(x,t) is Lipschitzian with respect to x
with Lipschitz’s constant L. This meuns thut for two arbitrary points (x%,1), (x?, t)
of the domain D (4, 1) the jollowing condition will be fulfilled

| f (32, )= f (!, DISL [x*— x| 4.1)

4) The parameter u satisfies the condition

e e (0ol
A+H)ht h~ < L Lo

Wwhere
At= max [ X ()], = max [X~1(2)], f= max [f(x, 1)

to<t<ty to<t<ty (x,t) €D (4,7)

H=(h")? b*d- 7, d-=|D"|, b= max |B(0)|

toStsty

5) The number p connected with a°| and |a’| by formula
p=(1+H)h* |a°|+h* b~ H|a’| (4.3)

satisfies the condition
p<pf=Ad—pu(l1+H)h* b~ fz 4.4

Then the proposed above itervtive process for solving the c-control problem is
convergent and nonlineur system (1.1) is c-controllable on the intervil t,<t<t,.
Proof. We show first that all the approximations determined by (2.5) and (2.10)
at any time, #, t,<t<1, entirely belong to the domain D (4, 7). -

It is quite easy to show chat, if the condition (4.4) is fulfilled, then x° (¢) deter-
mined by (2.5) belongs to the domain D (4, 7). Suppose that x! (t) e D (4, 7) then
we will prove that x/* (¢) e D.
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From (2.10)it follows that

I+t @<kt (18 +A~ b [l * O+ ph~ fr) 4.5)
where
x/*t (Dll= max |x/*1 ()], o'+ (= max [+ (1))
tost<ty tost<ty
Using the equations (2.12), (2.13) and (2.11) we obtain
llu?* 2 (OI<bh~ d= (b~ |@'| +a®l+ ph~ fr) (4.6)

With this inequality for |j#/** (¢)|] substituted into (4.5) we have
X T (ON<p+u(L+H)BT b~ fr<4d, t,<t<t;

Thus, all the approximations belong to the domain D (4, 7).
Now, we pass to the problem of convergence.
From the equations (2.10) and (2.12) it is easy to derive the following estimations

I/t @O =X OIS A br i T () —w (O + whTh Lo l|x) (1) —xI =1 ()| (4.7)
M/ Tt ()= (OIS (B7)? bd~Le ||x7 (1) —x=1 (1)) 4.8)

Substituting (4.8) into (4.7) gives
e/ * 2 () —x (ll<p A+ H)B* B~ L fix? () —x"~* (1)

lIx* (@)=’ ()l
7 (1) —x"=* (D]

The inequality (4.9) shows that the majorant series converges (due to d’Alambert’s
eriterion). Hence, the sequence of the approximations (2.10) must conveige unifor-
mly to a certain continuous vector-valued function x* (f) € D (4, 7), and, due to
(4.8) the sequence {u’ (¢)} converges to a continuous function u* (). Further, it
is easy to see that x* () satisfies the original integral equation (2.1), and u* (z) —
the equation (2.2), i.e. the condition of ,,hit” will be fulfilled. Thus the proof of theo-
rem 3 is complete. :

Finally, we consider the case in which ¢’=0, i.e. it is required to transfer
the nonlinear system from a given initial state a® at z, to the equilibrium state in
state space at time #,. This case of the c-control problem is interesting in the
practical applications, for which the following conclusion holds.

<p(+H)h*hLr<1 (4.9)

THEOREM 4. If the conditions 1), 2), 3) and 4) in Theorem 3 are fulfilled and if
a’=0, then nonlinear system (1.1) is c-controllable on the interval t,<t<t, in the
neighborhood of the equilibrium state with radius v* defined by formula

r*=A4/(1+H)h* — ph~ fr (4.10)

Proof. This follows directly from Theorem 3, Definition 1 and the fact that in the:
considered case a number p must satisfy the condition

p=(1+H) h* |®|<d—pu A1+ H) h*h~ f¢
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Consequently, in this case |a°] must satisfy the inequality
la®l<r*=4/(1+HYh* —ph~ fr
which completes the proof of Theorem 4.

Ii is clear that Theorem 4 gives estimations for the small parameter z and radius
#* of the neighborhood of the equilibrium state in state space under which the
nonlinear system (1.1) will be c-controllable. This is veiy important for the practical
applications and presents a new result, to the best of the knowledge of the author,
not obtainable by other approach to the problem of the controllability for nonlinear
systems (see Refs. [7-14]).

References

{11 Kpacoscimit H. H. Teopust ympasnesms mpmierueM. M., «Hayka», 1968.
[2] Poitrenbepr . H. Hexoropsie 3alaud ynpaBicHWS OBmKeHHeM. Pu3Marres, 1963.
[3] Hryer Txars Banr: K pellcHrEO OXHOM 3a1aum yipaBIeHHs OBIOKCHIEM HETIMHEHHEIX CHCTEM.
H36. AH CCCP, Texiuneckaa rxubepyemura, Ne 1, 1965.
{4] Nouyen TaAaNH BanG: On the convergence in the control problem for nonlinear systems
Acta Sci. Vietnami., Sectio Sci. Math. et Phys., 3 (1966).
5] Hryern Txaun BaHr O6 ynpaBisteMOC1 M KBasUIMHEHHBIX cacreM, ITMM, 31 Bemr. 1, 1967.
[6] Hryer Txanp Baur: O HeKOTOPBIX HOCTATOYHEBIX YCIIOBHASX YIPABISEMOCTH KBA3HIHHEHHAIX
cuciem. Mszs. AH CCCP, Texuunecrkas xubepuemura, Ne 6, 1969.
[7] Markus L. Controllability of nonlinear processes. SIAM Journal on Control, 3, 1, (1965).
[8] TarNoVE 1. A controllability problem for nonlinear systems, in ,,Math. theory of control”
(Balakrishnan A.V. and Neustadt L. W., Eds.), Academic Press, N.Y., 1967, 170-179.
[9] GersawiN S. B. and Jacosson D. H. A controllability theory for nonlinear systems, /JEEE
Trans. Automatic Control, AC-16, 1, (1971).
[10] DAuer J. P. Acontrollability technique for nonlinear systems. Journal of Mathematical Ana-
lvsis and Application, 37, 2 (1972).
[12] Loery C. Controliability of nonlinear systems on compact manifolds, SIAM Journal on
Control, 12, 1 (1974). X
[13] Hermes H. On local and global controllability, SIAM Journal on Control, 12, 2 (1974).
[14] Yamamoro Y. Controllability of nonlinear systems. Journal of Optimization Theory and Appli-
cations, 22, 1 (1977).
[15] Hryen Txamp Baur: K pelieHMio HEKOTODBIX 33129 TEODHMH IMHAMMYECKOTO NIPOrPaMMHPO-
BaHUA NPH OOMOINH 3JIEKTPOHHBIX MOJACIMPYIOMIAX YCTPOMCTB. Agmomamuka u meiemMexanuxa,
23, 9 (1962).

Received, October 1979.

Rozwigzanie numeryczne problemu c-sterowania dla ukladow
nieliniowych

Zaproponowang metode kolejnych przyblizen do rozwigzywania problemu c-sterowania ukfa-
dami nieliniowymi. Przedstawiono pewne konstruktywne warunki wystarczajace zbieznosci procesu
iteracyjnego.
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W szczegoinoscei otrzymano oceny matego paramstru u i promienia p* otoczenia stanu réwno-
wagi W przestrzeni stanow, w ktorym rozpatrywany uklad nieliniowy bedzie c-sterowalny. Jest
to bardzo interesujace w zastosowaniach praktycznych i stanowi nowy wynik, ktéry — o ile autoro-
wi wiadomo — nie moze by¢ otrzymany za pomoca innych podejsé do zagadnienia sterowalnosci
ukladoéw nieliniowych.

Unciennoce PeLeEre 3axavmn C-yUpaBJIeHns I HeJHMHeHHbIX
CHCTEM

Tpennaraetcs meton TOCICNOBATEIBHEX OpHONmKeHnil st DeIIeHNS 380440 C-yOpPABIICRES
HETMECHBBIMEA cHCTeMaMu. IIpencrasiers: HEKOTOPBIE KOHCTPYKTHBHEIE NOCTATOUHLIE YCIOBES
CXOIHUMOCTE HHTEPAUMOHHOTO HPOLECCa.

B vacrrOCTH UOJIYYEHEL OLIEHKY MAJIOro UapaMerpa 4 ¥ pamuyca i* OKpecTHOCTH COC102HAS
DaBHOBECHA B IPOCTPAHCTBE COCTOSHAH, B KOTOpOit baccMaTpaBaeMas HemuReiHAs CHCTEME Oyzmer
C-YOPaBNAeMa. 3TO MOXET GBITH BECHMA, METEPECHBIM ISl IPAKTAISCKIX OPOMEHERMH & ABistercs
HOBBIM PE3YJIETATOM, KOTOPHLE — HACKOILRO H3BECTHO aBTOPY — HEBO3ZMOKHO TIOIYY4TH C Io-
MOINBIO APYIHX MOOXOOL K 3alauc YOPABIACMOCTE HEIUHEHHBIX CACTEM.
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