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Numerical solution of the c-control problem for 
nonlinear systems 

by 

NGUYEN THANH BANG 

(Hanoi-Warsaw) 

A successive approximation method for solving the c-control problem of nonlinear systems 
is proposed. 

Some constructive sufficient conditions are presented for the convergence of the iterative process. 
In particular, there are obtained the estimations for the small parameter fl. and radius r* of 

the neighborhood of the equilibrium state in state space in which the considered nonlinear system 
will be c-controllable. This is very interesting in the practical applications and presents a new result, 
to the best of the knowledge of the author, not obtainable by other approaches to the problem 
of the controllability for the nonlinear systems. 

1. Statement of the c-control problem 

Let the motion of an object be described by the nonlinear system of ordinary 
differential equations in the following matrix form 

dx 
-d = A(t)x+B(t)u(t)+.uf(x,t), x(t0 )=a0

, (1.1) t . 

where x is an n-dimensional vector representing the state of the considered object 
at time t, u (t) is an m-dimensional real vector-valued function representing the 
control input of the system, f(x, t) is ann-dimensional real vector-valued function, 
nonlinear with tespect to x, A (t) is an (n X n)-matrix, B (t) is an (n x m)-matrix, 
ao is an It-dimensional real vector tepresenting the initial state of the object at time 
t 0 and p is a small parameter. 

The function f(x, t) on the right-hand side of Eq. (1.1) is assumed to be conti· 
nuous in x and t in some domain of admissible values for x and t . Furthermore, 
this function must satisfy certain other conditions mentioned later. 

All the functions-elements of the matrices A (t) and B (t) are assumed to be 
(n - 1) times continuously differentiable on the finite time interval t0 ~ t~ tf. 

The c-control problem foi· nonlinear system (1.1) can be stated as the mathematical 

problem of finding the continuous function u (t) E C (t., t,) for which the follo wing 
condition of ,hit" is satisfied 

x(tf> u)= af, (1.2) 
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where af is an n-diememiona! vector preassigned in the state space, the n-dimensi~ 
vector-valued function x (t, u) is a solution of the matrix differential equation { 
subject to the requisite control u (t) representing the trajectory of the considered 
in the state space and t f is a given fixed final time. 

This ptoblem for the corresponding p=O linear systems has been stated 
solved by N. N. Krasovskii in Ref. [1]. 

It should be observed that a similar problem has been investigated by la N. 
tenberg in Ref. [2]. 

The Roitenberg's problem of "hit" can be stated as the mathematical probl_,. 
of finding the discontinuous (namely, piecewise constant) function u (t) for which 
condition of ,hit" (1.2) is sati5fied. 

We shall refere to the Roitenberg's problem of ,hit" as the cl-control probl~ 

Roitenberg's investigations were further developed by Nguyen in Refs. 
who demonstrated that the classical approximation method of Picatd can be 
applied to solve the broad class of the d-control problem for nonlinear ""''eo+ ... .,.,.., '" 

The purpose of this paper is to show that the numerical technique devel~ 
by Nguyen in Refs. [3- 6] can be extended in an iterative fashion to solve the c-comm.11 
problem for nonlinear systems. 

2. Numerica~ solution of the c-control problem 

It is well known that the system of differential equations (1.1) can be written
the following equivalent integral form 

I t 

x(t, u)= X(t)[a0 + J X - 1 (~)B(~) u (() d~ + f.l J X- 1 (~) f(x(c;, u), ~) d~] 
t o to 

Here X (t) is a normalized fundamental (n x n)-dimensional matrix for the cor 
ponding p = O linear system, i.e. 

dX(t) = A (t) X (t), X Uo)= I 
dt 

where I is an identity (n X n)-dimensional matrix. 
From (2.1) it is easy to see that the condition of ,hit" (1.2) will be fulfilled. 

if the required control function u (t) satisfies the following equation 

~ ~ J x-1 (t) B (t) u (t) dt= A0
- fl J x-l (t)f(x (t, u), t) dt, 

to to 

where x (t, u) is a solution of the matrix integral equation (2.1) and ),0 is the followin.s
known constant vector 

;,o= x - 1 (tf) af -ao 
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Thus, for determining the required control function u (t) we have to solv~ equa
tion (2.2) associated with the original nonlinear matrix integral equation (2.1). 

Since it is actually impossible to obtain an analytic solution (in the closed form) 
of these equations, they must be solved by means of various numerical method. 

It turns ont that the numerical technique developed by Nguyen in Refs. [3-6] 
for solving d-control problem can be applied in an iterative fashion to solve the 
above-mentioned equations. 

The initial approximation may be defined as 

lf 

J X- 1 (t)B(t)u0 (t ) dt=A0 (2.4) 
1o 

t 

x 0 (t) g x (t, u0 )=X(t)[a0 + J X- 1 (~ B (~ u0 (~) d~] (2.5) 
to 

It is very easy to see that control vector-valued function u0 (t) detennined from 
(2.4) represents the solution of the c-control problem for the corresponding f.i=O 
linear system. For this case the following result holds 

THEOREM 1. If the row vectors of the following (n x m)-dimensional matrix 

G (t)=X- 1 (t) B (t) 

are linearly independent on the interval t0 ~ t~ tf, then c-control problem for the 
corresponding f.i=O linear system has infinite set of solutions, amongst them the control 
function defined by the following formula 

u0 (t)=B' (t) [X- 1 (t)]' 1]0
, (2.6) 

when 

r 

Dr/=A.0
, D= J x- 1 (t) B (t) B' (t) [X- 1 (t)] ' dt (2.7) 

t o 

is the unique solution, which has minimal norm in the space L 2 [t0 , tf]. 

lt should be observed that Theorem 1 had been proved by N. N. Krasovskii 
in Ref. [1] for single input case (m= 1). The ptoof of Theorem 1 for the presented 
above general case is similar and will not be repeated · here. 

In (2.6) the prime denotes the transpose. 

To ensure that iterative procedure i s well defined, it is convenient to introduce 
the following terminology. 

• 
DEFINITION 1. The dynamic system (1.1) is c-controllable on the interval t0 ~t~tf> 
if there exists some continuous control function u (t) wltich brings a system from 
the initial state a0 at t0 to the preassigned terminal state af at the given fixed final 
time tf. 
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We have seen \>ia Theorem 1 that the corresponding fl = O linear system is c

-controllable on the interval t0 ~ t~ t1 , if the row vectors of the matrix G (t) are linearly 
independent on this interval. 

It should be noted that the indicated above test for c-controllability of the 
corresponding Jl=O linear system depends on knowing the matrix G (t). In many 
practical cases, however, the problem of the construction of the matrix G {t) is 
either difficult or computationally time consuming. Thus, it would be a distinct 
advantage to have a test for c-controllability V;hkh does not require a knovdedge 
of the matrix G (t). 

lt turns out that the following proposition holds (see Ref. [1]). 

THEOREM 2. The row vectors of the matrix G (t) are linearly independent on the 
interval t0 ~t~t1, if 

rank P (t) = n, \ft E (t0 , t1 ] (2.8) 

where 

P(t)=(P1 (t),P2 (t), ... ,Pn(t)) 

. dB;(t) 
P 1 (t)=B (t), Pi+ 1 (t) =dt- A (t) B1 (t), i=l, 2, ... , n-1 

lt is clear from Theorems 1 and 2 that the corresponding p=O lin(;ar system is 
c-controllable on the interval t0 ~ t~ t1 , if the matrix P (t) is of rank n for any time 
t over this interval. 

Therefore, in what follows we shall assume that the condition (2.8) is fulfilled 
for the corresponding linear system. 

Then, it is easy to show that detD:r"O and the required control vector-valued 
function u0 (t) is uniquely defined from (2.6) and (2.7). 

Now, suppose that (j-1)-th approximation is already found, i.e. ui- 1 (t) and 
xi- 1 (t) g x (t, ui- 1 ) are known. Then the j-th approximation is determined by 

tf Jx- 1 (t)B(t)ui(t)dt=IJ, j =l, 2, .... (2.9) 
to 

t 

xi (t) g x (t, ui)=X (t)[a0 + J x- 1 (¢) B (/;) ui (¢) dl; + 
to 

t 

+!l J x- 1 (¢)f(xi- 1 (¢),I;) di;]j= l, 2, ... . (2.10) 
- to 

where 

tf 

)/=}.0 -fl f x- 1 (t)f(xi-l (t), t) dt, j = l, 2, ... ' (2.11) 
ro 
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Note that Eqs. (2.9), (2.10) and (2.11) remain also valid for j=O if in this case 
we set p = O. 

It is easy to show that the required control function u1 (t) defined by (2.9) has 
the following form 

ul (t)=B' (t) [X - 1 (t)]' 171, j= 1, 2, .. . . (2.12) 

where 

(2.13) 

It should be observed that computer implementation of the above steps requires 
the computation of the inverse matrix x- 1 (t). In many cases, however, analytical 
evaluation of this matrix is difficult and, sometimes, impossible, Therefore, it is 
of interest to find the modified formulation of the presented above iterative pro
cedure which avoids this difficulty. 

3. Modified formulation of the iterative procedure 

Consider first the dete!mination of the matrix D. It is well known that the watrix 
Devaluated by formula (2.7) can be tepresented in the follo"'ing from (see Ref. [15]) 

If 

D= f c;[J' (t) B (t) B' (t) cp (t) dt (3.1) 

where cp (t) is a notmalized fundamental matrix of the adjoint differential equation 
I.e. 

dc;[J (t) 
-d-=-A' (t) c;[J (t), c;[J (t 0 )= 1 

t • 
(3.2) 

Furthetmore, the constant vector)./ evaluated by (2.3) and (2.11) can be represented 
in the form 

where z1 (t) is a solution of the following equation 

dz1 

dt =A (t) z1 + p1 f(x1- 1 (t), t), j=O, 1, 2, ... 

subject to the initial condition 

z1 (t0 )= a0
, j=O, 1, 2, ... 

Here 111, j = O, 1, 2, ... , are defined by 

if j = O 

if j~O 

(3.3) 

(3.4) 

(3 .5 

(3.6) 
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The required control function u1 (t) in j-th approximation can be evaluated 
by the following formula 

ui (t) = B' (t) 'f/J (t), j = O, 1, 2, ... (3.7) 

where lf/1 (t) is a solution of the adjoint differential equation 

dlfli (t) 
dt = - A ' (t) 'f/1 (t), j = O, 1, 2, ... (3.8) 

subject to 

(3.9) 

Finally, the trajectory x1 (t) corresponding to u1 (t) can be obtained by solving 
the following differential equation 

dx1 

dt=A(t)x1+B(t)u1 (t)+fl1 f(x1- 1 (t),t), j = O, 1,2, .. . (3.10) 

subject to 

x1 (t0 )= a0
, j=O, 1, 2, ... (3.11) 

where fl;, j =O, 1, 2, ... , are defined by formula (3.6). 
Thus, it is not necessary to compute the inverse matrix x- 1 (t) in order to 

determine all the requisite values in each itetation. 
By combining the above results with those of the previous section, the modified 

formulation of the iterative procedure can be obtained. It entails the following steps: 

Step 0. Solve equation (3.2) from t0 to tf. During this integration calculate matrices 
D and f/J (tf). 

Step 1. Setj=O, fl1=0 and solve equation (3.4) subject to the initial condition (3.5) 
from t 0 to tf and at the end of this integration determine vector z1 (tf). Next, eva
luate vector )J by formula (3.3). 

Step 2. Solve algebraic equation 

in order to find constant vector 1JJ. 
Step 3. Solve equation (3.8) subject to (3.9) from t 0 to tf. During this integration 
evaluate function u1 (t) by formula (3.7). 
Step 4. Solve equation (3.10) subject to (3.11) from t0 to tf. During this integration 
obtain vector x1 (t). Store x1 (t), t0 ~ t~ t f· 

Return to step 1 withj replaced by j+ 1 and set p1 ~fl. The process ends when the 
condition of ,hit" (1.2) is satisfied with the requisite accuracy. 

Thus, the modified procedure requires that only the systems of differential 
equations with the known initial conditions and the system of algebraic equations 
are solved in each iteration, so it seems to be well adapted to computations by digital 
or hybrid computers. 
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4. Some constructive sufficient conditions for the convergence 

of the iterative process 
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In the previous section we have employed the iterative technique developed by · 
Nguyen in Refs. [3-6] to solve .the c-control problem for nonlinear systems and 
found the modified formulation of the iterative procedure which avoids some diffi
culties in computer implementation. 

Now, it remains for us to establish some sufficient conditions for the convet
gence of the iterative process. 

THEOREM 3. Assume 1) The cOrresponding f1 = 0 linear system is c-controllable on 
the finite time interval t 0 ~ t~ tf. 

2) The function f(x, t) is continuous in all m•gument~ in ~orne closed domain of 
the space (x, t), determined by the expression 

D (L1 ,r) = {(x, t): lxi ~L1, t0 ~t~tf, r= tf - to} 

where L1 is ~orne positive number. The norm of the matrix x is denoted by lxl. 
3) In the domain D (L1, r) the function f(x, t) is Lipschitzian with respect to x 

with Lipschitz's constant L. This meuns thut for two arbitrary points (xi, t), (x2
, t) 

of the domain D (L1, r) the following condition will be fulfilled 

4) The parameter f1 satisfies the condition 

where 

h+ = max IX (t)l, h- = max IX- 1 (t)l, f = max lf(x, t)l 
(x, t) ED (,J, <) 

5) The number p connected with la0
1 and laf 1 by formula 

p= (l+H)ft+ la0 l+h+ h- H laf l 

satisfies the condition 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Then tl1e proposed above iterutive process for solving the c-control problem is 
convergent and nonlinet.r system (1.1) is c-controllable on the intervc.l t0 ~ t~ tf. 
Proof. We show first that all the approximations determined by (2.5) and (2.10) 
at any time, t, t0 ~ t~ tr. entirely belong to the domain D (L1, r). 

It is quite easy to show chat, if the condition (4.4) is fulfilled, then x 0 (t) deter-' 
mined by (2.5) belongs to the domain D (L1, r). Suppose [hat xi (t) ED (Lf, r) then 
we will p10ve that xi+ r(t) ED. 
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Ftom (2.10) it follows that 

llxi+ 1 (t)JI~h+ (!a0 1 +h- br Jlui+ 1 (t)ll+ ,uh- fr) 

where 

llxi+ 1 (t)ll= max Jxi+ 1 (t) J, 1Jui+ 1 (t)ll= max ltJ+ 1 (t)l 

Using the equations (2.12), (2.13) and (2.11) we obtain 

Jlui+ 1 (t)JI~blr d- (h - la1 l+ la0 j+ph- fr) 

With this inequality for I lui+ 1 (t)ll substituted into (4.5) we have 

1Jxi+ 1 (t)l!~p+,u(l+H)h+ h- fr~Ll, t0 ~t~t1 

Thus, all the afproximations belong to the domain D (A, r). 
Now, we pass to the problem of convergence. 

(4.5) 

(4.6) 

From the equations (2.10) and (2.12) it is easy to derive the following estimations 

llxi+ 1 (t)- xi (t)ll~ ft+ Jt- br !lui+ 1 (t) - ui (t)ll + ,uh+ h-Lr II xi (t) - xi-l (t)ll ( 4. 7) 

llui+ 1 (t) - ui (t)li~fl (h-) 2 bd-Lr l!xi (t)-xi- 1 (t)ll (4.8) 

Substituting (4.8) into (4.7) gives 

1Jxi+ 1 (t)-xi (t)ll~fl (1 +H)ft+ h- Lr llxi (t) - xi- 1 (t)ll 

1Jxi+ 1 (t) - xi (t)ll 
lixi (t) - xi-1 (t)ll ~ f1 (1 + H)h+ It-Dr< 1 (4.9) 

The inequal ity (4.9) shows that the majorant series converges (due to d'Alambert's 
eriterion). Hence, the sequence of the approximations (2.10) must wnverge unifor
mly to a certain continuous vector-valued function x* (t) ED (A, r), and, due to 
(4.8) the sequence {ui (t)} converges to a continuous function u* (t). Further, it 
is easy to see that x* (t) satisfies the original integral equation (2.1), and u* (t)
the equation (2.2), i.e. the condition of ,hit" will be fulfilled. Thus the proof of theo
rem 3 is complete. • 

Finally, we consider the case in which a1 = 0, i.e. it is required to transfer· 
the nonlinear system from a given initial state a0 at t0 to the equilibrium state in 
state space at time t1 . This case of the c-control problem is interesting in the 
practical applications, for which the following conclusion holds. 

THEOREM 4. If the conditions 1), 2), 3) and 4) in Theorem 3 are fulfilled and if 
a1 = 0, then nonlinear system (1.1) is c-controllable on the interval t0 ~ t~ tf in the 
neighborhood of the equilibrium state with radius r ':' defined by formula 

(4.10} 

Proof. This follows directly from Theorem 3, Definition 1 and the fact that in the 
considered case a number p must satisfy the condition 
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Consequently, in this case Ja0
J must satisfy the inequality 

la0 l~r* =L1j(l +H) h+ -~t h- fr 

which completes the proof of Theorem 4. 
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It is clear that Theorem 4 gives estimations for the small parameter fl and radius 
i"* of the neighborhood of the equilibrium state in state space under which th.:: 
nonlinear system (1.1) will be c-controllable. This is veiy important for the practical 
applications and presents a new result, to the best of the knowledge of the author, 
not obtainable by other approach to the problem of the controllability for nonlinear 
systems (see Ref,; . [7-14]). 
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Rozwi~zanie numeryczne problemu c-sterowania dla uklad6w 
nieliniowych 

Zaproponowan11 metodil kolejnych przybli:i:en do rozwi11zywania problemu c-sterowania ukla
dami nieliniowymi. Przedstawiono pewne konstruktywne warunki wystarczaj11ce zbie:i:no8ci procesu 
iteracyjnego. 
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W szczeg6lnosci otrzymano oceny malego parametru 11 i promienia r* oJoczenia stanu r6wno
wagi w przestrzeni stan6w, w kt6rym rozpatrywany ulclad nieliniowy ~dzie c-sterowalny. Je:sr 
to bardzo interesuj'lce w zastosowaniach praktycznych i stanowi nowy wynik, kt6ry- Oi ile autoro
wi wiadomo - nie mo:i:e bye otrzymany za pomoq innych podejsc do zagadnienia sterowalnoSci 
uklad6w nieliniowych. 

qHcJieuuoe pemeRHe 3a~a'iu c-ynpauJieHJUI ~JIH ueJiuueiiHLIX 
ClfCTeM 

Ilpe.n;rraraeTCH MeTO,[( IIOCJie,[(OBaTeJibJli,IX UpJI6JllDKellll:ii: ,I(JI$( pemeHRH 3a):(a'Uf c-ynpaBJieE.Hll 
I!emm:eiffihlMJI CIICTeMaM11. Ilpe,[(CTaBJiei!bi HeKOTOphie KOI!CTPYKTHBHhie ):(OCTaTO'II!hie YCJIOBIDl 
CXO):(HMOCTH JiHTepaiJ;HOflHOrO IIpOD;ecca. 

B 'IaCTI!OCTI!, IIOJiyq:e!lhi OD;eitK:lt MaJioro napaMeTpa U I( pa)J;I2!yca r* OKpeCTHOCTH COC1051HIDl 
paBHoBeCl!.ll B IIpOCTpaHCTBe COCTollHJiii:, B KOTOpoii: paCCMaTpi(BaeMall I!emmeiffiall CI(CTeMa 6y,[(eT 
c-ynpaBJU{eMa. 3TO MOJKeT 6hiT.b BeChMa D:Fl·epeCHbiM ,[(ill{ npaKTli'IeCKI(X IIPOMei!eHJiii: I( HB.J:uleTCX 
llOBbiM peJyJibTaTOM, KOTOphill: - HaCKOJib1.0 H3BeCTHO aBTopy- I!eB03MOJKHO !IOJIY'!IIT.b C IIo
MOID,hiO .r~pynrx no.n:xo.r~o:a K 3a.n;a•w ynpaBJIHeMocTn Hemm:eiffihiX cncTeM. 
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