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The paper deals with pattern recognition problems wherein there exist statistical dependences 
among the patterns to be recognized. As a mathematical model of this dependence a second-order 
Markov chain is adopted. Under assumption of complete statistical information and using Bayes' 
approach, the classifying decision rule which minimizes probability of misc!assification is obtained. 
It is shown, that its discriminant functions can be recursively expressed a.J).d hence storage does 
not grow with the number of recognized patterns. Subsequently, the main result is extended to the 
higher-order Markov chains and to the case in which only learning sequence is available. 

1. Introduction 

In many pattern recognition problems there exist dependences among the patterns, 
to be recognized. For instance, this situation is typical for character recognition [7] 
recognition of state in technological processes [2], image classification [4], to name 
onlya few. Among the different concepts and methods of using ,contextual" 
information in pattern recognition, an attractive from theoretical point of view 
and efficient approach is through Bayes' compound decision theory [10] in which 
a clas~ifying decision is made on one pattern at a time, using additionally information 
from the entire past. Furthermore the assumption of Markov dependence among 
the patterns to be recognized is made. There is a great deal of available papers 
dealing with the recognition problems under asslllliption of a first-order Markov 
dependence. Based on this simplest model of statistical dependence, Raviv [8] de~ 
rived decision rule, optimal with respect to a probability of misclassification. This 
result excellent was developed in [1], where recurrent form of recognition algorithm 
was presented and some decision rules with learning were proposed. Some next 
works in this area, in particular comparative analysis of different pattern recognition 
algorithms for first-order Markov chains and both theoretical and experimental 
studies of their properties can be found in [3, 5, 9]. 
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In this paper the authors present maximum a posteriori probability decision 
rule under assumption of a second- order Markov dependence among the identities 
of recognized patterns. Subsequently it is shown, that its classifying functions can 
be recursively computed and hence stotage does not grow with the number of recogni
zed patterns. 

2. Statement of the problem 

Let us consider a problem .of pattern recognition, that is concerned with the 
assignmem of a given pattern to one of m known classes. Let xm taking values in 
the k-dimensional Euclidean space E\ denotes the vector of measured features 
of n-th recognized pattern and j 11 denotes the number of class to which the pattern 
in question belongs. Thus x,. ~ (x1, x 2 , ... , X 11) and],. ~ (j 1,j2 , •.. ,j,.) state respectively 
feature vec,tors and true identities of a sequence of recognized patterns (~signifies 
the defining equality). 

Suppose, that x,., and j,. are observed values of a couple of random variables 
(Xm J,.) fo.: n= 1, 2, .... Ler j,. takes values in the set of consequtive integers M ~ 
~ {1,2, ... ,m}. Subsequently suppose, that the sequence J1,J2, ... ,Jm ... forms 
a second-order Markov chain (6], i.e. 

P (J,,=f,(Jn-1 = jn - 1• J11-2=jn-2• ~ .. , J! =j1)= 

=P (J,.=j,.(J11 -! = jn-1• ln-2=jn-2) (1) 

for all natural n and for every j 1,j2, ... ,j" EM. Notice, that for 2-nd order 
Markov dependence the initial probabilities: 

Pu ~P(Jt=i, J2=j), i,jEM, (2) 

and so-called trigram transition probabilities: 

(n) 6 p (J _ 'jJ _ · J -k) Pi,j,k= ,.-l 11-1.......;], n-2- ' i,j,kEM n~3 (3) 

determine any finite-dimensional distribution of random variables {J,.}, n= 1, 2, ... 
[6]. 

Let 

(4) 

be the conditional probability density function of X,., given that J,.=i, i EM, identical 
for all natural n. Suppose also, that probabilities (2), (3) and density functions (4) 
which determine the distribution of couples (X,,J,.) n= 1, 2, ... are given. It states, 
that in this paper the case of complete probabilistic information is considered. 
For simplicity, suppose additionally conditional independence among the random 
variables Xn, n=1, 2, ... , which implies that: 

n 

In (x,.(},.)= n f(xifji), n= 1, 2, ... , (5). 
i=1 
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where fn denotes joint conditional density function of Xw This assumption states 
that, given the true identity of a pattern, the distribution of a measmement vector 
is independent of the features and true identities of previous and future pattems, 
but it is dependent only on the true identity of the pattern in question. 

3. The pattern recognition algorithm 

Let L (i,j} be the loss incurred by the classifier, if a pattern from the class j is 
assigned to class i. It is well-knowr1 [8], that Bayes' decision rule: 

n=l, 2, ... (6) 

minimizes risk i.e. expected loss at the n-th stage of classification: 
Ill 

R['Pn(·)] g E {L((,j")} = }; JL(i"'j")p(j.)f(xnfjn)dxm (1) 
Xn, Jn in= 1 Xn 

where p (j11)=P (l,=j,), Xn g £k x Ekx ... x Ek (n times) and classifies n-th recognized 
pattern, given by measUfement vector X 11 to class i 11 for which the conditional risk: 

"' 
r (i,, X11) g E_ {L (i,, j,)} = }; L (imjn) P (j, / x") 

Jn /Xn i n= 1 

is the least one. 
For the special case of 0-lloss function, i.e. 

ro if i=j 
L (i,j)=l 

11 othe. wise, 

(8) 

the rule (6) assigns the n-th pattern to the class with the highest a posteriori pro
, bability after observing x, for all natural n, i.e. 

for every s~i,., s, i 11 EM. 

'P;, (xn) = in if 

P Un/Xn) > P (sjx") 

(9) 

The Bayes' risk (the minimum attainabl,e risk) associated with above rule reduces 
to the minimum probability of error at the n-th stage of classification, , which is 
given by 

R;,= R [P;, (x,J]= 1- E maxp (i/x11), (10) 
Xn !EM, 

where expectation is taken with respect to the mixed (unconditional) distribution 
of Xn g (Xl,Xz, ... ,X,,). 

Now our objective is to calculate decision lunction;; ot (;)) and to express them 
in terms of known quahtities. From Bayes' fvrmula we obtain: 

f(x.jj,) PUn) 
p (j"(.x,)= f ( _) 

Xn' 
(11) 



144 M. KURZYNSKI, A . 20LNIEREK 

Since mixt..d density funciiott f(x..) is independent ot'j11 , we can maximize onl; the 
following discriminant functions: 

Define functions: 

g(jnoJI! - 1> Xn) ~p(jn,Jn - 1) · f(xn/jn,J11 -1), n = 2, 3, ... , j,, Jn-1 EM, (13) 

where p(j11 ,j11 _ 1)=P(l11 = j 11 ,J11 _ 1 =j11 _ 1) and notice, that they can te calculated 
recursively as follows. Using the fact, that transition probabilities (3) are independent 
of X11 _ 1 and \.-Onsidering assumption (5) "'e ha'Ve: 

g(jmJn-1• Xn) =f(xn/Jn,Jn-1) · P Um.in- 1)=f(x"' Xn - l/.i,,Jn-1) Xp (j,,Jn-1) = 

= f( x nl.imi•-1> xd _t) · f(x,._IfJm i ,-1) P Umfr - 1)= f(x"jj") g Un,Jn-1• .xn-1)= 
m m 

= fin (xn) }.; P UmJn - toJ11-2/Xn-1) f(xn-J) = fin (xn) }.; P {j,./.in-1,Jn - 2) X 
i n-2=l in-z=1 

111 

( . . / - )j(- ) - J ( ) ~ (n) • (. . - ) Xp ]n-1,]n - 2 Xn - 1 Xn - 1 - in Xn L.J Pin' in - l• in- 2 g ]11 - l>}n-2> X,r- 1' 
in - 2= 1 

for all natural n;?:3 and for every j,,j11 _ 1 EM, with initial condition: 

g(j2,jt, x2)=1'.i, (xt) · h
2 

(x2)Pi,,Jz• Jr, J2 EM. 

From (12) and {13) we see that: 
111 

g(jn,Xn)=f(x~~)·p(j.fxn) = }.; p(jn,Jn- d x,.}ftxn)= 
j n-1= 1 

m 

(14) 

(15) 

= 2,; g \j,, Jn-1• Xn), n;?;2, j ,, Jn- 1 EM, (16) 
jn-1 = 1 

and therefore the kno\\ledge of g (j,,j11 _ 1, .x11) for n ;?;2, j ,, j 11 _ 1 EM allows to calcu
late (12) for all n;?:2 and for every in EM and consequently suffices w construction 
of Bayes' deci~ion fule (9). 
At the first step of classification (for n= 1) the discriminant functions can be calcu
lated immediately, namely: 

m 

g(j1,xt) = fi, (xt) }.;P;,,i,• .it EM. (17) 
h = l 

Thus, the formulas (14)..;.-(16) determine the recursive manner of calculation (12) 
with (17) as initial condi.tiou. For the general form of loss function L (i,j), discrimi
nant functions (8) of decision rule (6) are equal: 

and they can be also calculated recursively as it was shown previously. 
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4. Extension to the k-th order Markov chains 

The recursive technique of construction Bayes' decision rule can be straightfor
wardly extended to the higher-mder Markov dependence. Generally, k -th order 
Markov chain is described by: 

-initial probabilities 

PJ. ;· 1• £P(JJ = ]·t,lz=J·z, ... ,Jk= ]'k), 
11 J, .. . ,. k 

(19) 

- transition probabilities 

(n) /::, p (J - • (J - . ], - . ) 
Pj.,j11 _ , ••• ,j

11
_ k = n-'], 11 - i-Jn-1> ... , n - k -']n - k' 

jmjn-1> ... ,jn-k EM, n>k 
(20) 

In this instance, similary as in (14) and under the same assumptions we have: 

m 

( . • . ")-j( /. ') '\1 (n) g ],,Jn - 1• ... ,Jn-k+l> Xn - Xn 'In L.J Pi
11
,j

11
_ 1 , •• • ,j11 _k X 

in-k= 1 

xg Un-l,jtt-2• ... ,jn-k> .x, _1) (21) 

for all natural n > k and fo;: every j 11 ,j,;_ 1, .. . ,jn- k EM, where functions g are defined 
likewise as previously by: 

g (jn>jn-1> ... ,jn-k• x,) £ f(.Xnfjmjn - 1> ... ,j,_k)P Un, ... ,f.- k). (22) 

For n= k we have the following initial condition: 

k 

g(jk,.ik - 1, ... ,j1, xk) = nh, (x;)PJ,,i,, ... ,J. 
i=l 

The discriminant functions (12) of decision rule (9) are related to (21) by: 

m m m 

(23) 

g (j", x,)= 2.: }; ... }; g(jmjn-1• ... ,jn-k+1• .Xn). (24) 
in-:t.=l i11 - 2=l ln-k+1=1 

For the k first steps of classification the discriminant functions (12) can be calculated 
immediately. 

5. Final remarks 

This paper deals with classification problem in which the sequence of recognized 
patterns is generated by a second-order Markov source, i.e. each pattern is a pro
babilistic function. of its two immediate predecessors. For this case, under assump
tion of complete p10babilistic information and using Bayes' approach, the pattern 
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recognriJon algorithm which mm1m1zes probability of misclassification has been 
obtained. We have also sho\\on that its discriminant functions at the n-th stage (for 
n-th recognized pattern in the sequence of patterns) can be expressed as functions 
of known data and the classifying functions at the (n-1) th stage, i.e. they can be 
recursively computed. The recursive nature of the algorithm considerably reduces 
the memory space and the computation time. Subsequently, this main result has 
been extended to the higher-order Markov chains. 

In the real world, there is often a lack of the exact knowledge of probabilities 
(2), (3) and density functions (4), whereas only partial information is available. 
For instance, there are situations in which only learning sequences, that is sets of 
correctiy classified samples, are known. In this case one obvious and conceptually 
simple method is to estimate probabilities (2), (3) and densities (4) from the training 
sample set and then to use these estimators to calculate discriminant functions (12) 
according to (14)-:- (17) as though they were correct. Similar procedure was employed 
in [5] for first-order Markov chains. 
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Rekurencyjny algorytm rozpoznawania lancuchOw Markowa 
ll-rz~du 

Praca dotyczy problem6w rozpoznawania obraz6w, w przypadk:u gdy wyst;epuj'! statystyczne 
zalemosci pomi;edzy ich klasyfikacjami. Jako matematyczny model tej zalei:nosci przyj;eto lancuch 
Markowa 11-rzct;du. Przy zaloi:eniu pe!nej informacji probabilistycznej skonstruowano analitycznie 

-------------------------------------------------------------------------
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cillg algorytm6w rozpoznawania, z kt6rych i-ry rnjnjx;-r • ., • 

fikacji na i-tym etapie (dla i-tego rozpoznawanego obrazu) . Pokazano. 2e 
tych algorytm6w mogll bye wyznaczone rekurencyjnie, eo znacznie upraszcza ob 
ich czas. Rezultat ten uog6iniono nast~pnie na przypadek lancuch6w Markowa k-tego ~u. 

PeKyppeHTHbiH aJiropHTM pacno3Hasauun ~eneii MapKosa 

BToporo nopHAKa 

Pa6ora Kacaetc51 rrpo6rreM pacrro3HaB1UllU! o6pa30B B wl)"lae, KOf)la MelK)J.)' KX KnaccKcpHKa

n;l'laMH BhiCTyrraer naniCtWiecKRe 3aBHCKM()CTI{. Kruc MlHeMaTH'iecKYID MO.!le.Th 3TBX 3aBHCHMO

cTe.il: rrp!itll51TO uellh MapKoBa BToporo rropll,iU(a. Ilpa rro.iiHOii: cra~ii: :Hli!PoP~ 
noC'lpoeno p51,n: arrropntMo:s pacrro3HaBamui. Jf-nlli arrropKTM ~JeT ~ 
oiiil(6o'ffihiX KrraccHciJHKau;lll1 Ha u-ThtM mary (AM u-roro pacno3sasaeMoro o6pa3a}. ll~ 
':11'0 ,ll,HCKpRMHHaU!itOHHhie \lJYHKUKH MOfy'l'h 6hiTh oupe.n;errc;Hhl pezyppeliTRO, 'lTO :ma~ 
yMeRbmaeT CJIOlKHOCih Bhi'iHCJieHHM }{ COKpall(aeT KX BpeM5t. B pa6c,re Ilpe.JCTaB.teHO o6o6~ 
nnx pe3y!IhTa1'oB Ita crryqa.il: MapKoacKoil: uellB K-Toro rropl!)lKa. 
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