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The paper deals with pattern recognition problems wherein there exist statistical dependences
among the patterns to be recognized. As a mathematical model of this dependence a second-order
Markov chain is adopted. Under assumption of complete statistical information and using Bayes’
approach, the classifying decision rule which minimizes probability of misclassification is obtained.
It is shown, that its discriminant functions can be recursively expressed and hence storage does
not grow with the number of recognized patterns. Subsequently, the main result is extended to the
higher-order Markov chains and to the case in which only learning sequence is available.

1. Introduction

In many pattern recognition problems there exist dependences among the paiterns,
to be recognized. For instance, this situation is typical for character recognition [7]
recognition of state in technological processes [2], image classification [4], to name
onlya few. Among the different concepts and methods of using ,,contextual”
information in pattern recognition, an attractive from theoretical point of view
and efficient approach is through Bayes’ compound decision theory [10] in which
a classifying decision is made on one pattern at a time, using additionally information
from the entire past. Furthermore the assumption of Markov dependence among
the patterns to be recognized is made. There is a great deal of available papers
dealing with the recognition problems under assumption of a first-order Markov
dependence. Based on this simplest model of statistical dependence, Raviv [8] de-
rived decision rule, optimal with respect to a probability of misclassification. This
result excellent was developed in [1], where recurrent form of recognition algorithm
was presented and some decision rules with learning were proposed. Some next
works in this area, in particular comparative analysis of different pattern recognition
algorithms for first-order Markov chains and both theoretical and experimental
studies of their properties can be found in [3, 5, 9].



142 M. KURZYNSKI, A. ZOLNIEREK

In this paper the authors present maximum a posteriori probability decision
rule under assumption of a second- order Markov dependence among the identities
of recognized patterns. Subsequently it is shown, that its classifying functions can
be recursively computed and hence storage does not grow with the number of recogni-
zed patterns.

2. Statement of the problem

Let us consider a problem of pattein recognition, that is concerned with the
assignmeni of a given pattern to one of m known classes. Let X, taking values in
the k-dimensional Euclidean space E¥, denotes the vector of measured features
of n-th recognized pattern and j, denotes the number of class to which the paitern
in question belongs. Thus %, 2 (%1, X2, ..., X,) and.j, £ (1, /2, .--»jx) State respectively
feature vectors and true identities of a sequence of recognized patterns (£ signifies
the defining equality).

Suppose, that x,, and j, are observed values of a couple of random variables
(X,, J,) for n=1,2, ... . Let j, takes values in the set of consequtive integers M 2
41,2, ...,m}. Subsequently suppose, that the sequence Ji,Js, ..., J;, ... forms
a second-order Markov chain [6], i.e.

P(th=jn/Jn—1=jn—ls Jn—2=jn—23 "'-s']l:jl):
=P(Jn=jn/Jn—1=jn—1’Jn—2=jn—2) (1)

for all natural » and for every ji, j, ..., jn € M. Notice, that for 2-nd order
Markov dependence the initial probabilities:

pijéP(J1=i: J2=j)5 i:jEMa (2) .
and so-called trigram transition probabilities:

p(it)j,kéP(Jn=i/J;x—1=j: Ju-2=k), i,j,keM nz3 €))

determine any finite-dimensional distribution of random variables {/,}, n=1, 2, ...
[6].
Let

Ji (o) 2.1 (x/1) “

be the conditional probability density function of X, given that J,=i, i € M, identical

for all natural #n. Suppose also, that probabilities (2), (3) and density functions (4)

which determine the distribution of couples (X,,J,) n=1, 2, ... are given. It states,

that in this paper the case of complete probabilistic information is considered.

For simplicity, suppose additionally conditional independence among the random
variables X, n=1, 2, ..., which implies that:

fHGG= ]G, n=1,2,.., (5)
i=1
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where f, denotes joint conditional density function of X,. This assumption states
that, given the true identity of a pattern, the distribution of a measurement vector
is independent of the features and true identities of previous and future patterns,
but it is dependent only on the true identity of the pattern in question.

3. The pattern recognition algerithm

Let L (i,) be the loss incurred by the classifier, if a pattern from the class j is
assigaed to class i. It is well-knowx: [8], that Bayes® decision rule:

=Y (xn—laxn)éyl* (X,,), n=1,2,... (6)
minimizes risk i.e. expected loss at the n-th stage of classification:
R{Z, ()2 E {LGuidt= Y [LGidp UGS Falie) d%, )
X I Jn=1 ¥n

whete p (j)=P (J,=j.), n2E*XE*X ... X E* (n times) and classifies n-th recognized
pattern, given by measurement vector x, to class 7, for which the conditional risk:

m

P lins $) 2 E {L iy j)}= L s Ju) P G/ %) ®

Tl Xn in=1
is the least one.
For the special case of 0—1 loss function, i.e.

!0 it =

L(i,j)=
(. {1 othe.wise,

the rule (6) assigns the n-th pattern to the class with the highest a posteriori pro-
bability after observing &, for all natural 7, i.e.

97: (xp)=i, if (9)

P (a/Xn)>p (5/%)
for every s#i,, s,i,€ M.
The Bayes’ risk (the minimum attainable risk) associated with above rule reduces
to the minimum probability of error at the n-th stage of classification, which is
given by
Ri=R[¥} (x)]=1— E max p (i/,), (10)
Xn 1€EM,
where expectation is taker with respect to the mixed (unconditional) distribution
of X 2(X i Xy o505 %)
Now our objeciive is to calculate decision iunctions ot (9) and to express them
in terms of known quautities. From Bayes’ formula we obtain:
S Galin) PCjn)

R = = Rrat ) : (11
P (Ju/ %) T, AR L (R SR, . ) (11)
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Since mixed density funciion f(%,) is independent of j,, we can maximize onl; the
following discriminant functions:
g(jii’ 'i'li) ép (j")f ('X—‘H/jﬂ)=f(‘x_‘")p (jﬂ/xh), = 1’ 25 ik ] jn ;:M' (12)

Define functions:

g(jmjn—l: fn) *A*p (jmjn—l) 'f(jn/jmjn-—l)’ Il=2, 3: ] jmjn—l EMJ (13}

where p(ju, ju—1)=P (J,=juw Ju—1=Js—1) and notice, that they can te calculated
recursively as follows. Using the fact, that trausition probabilities (3) are independent
of %,_, and considering assumption (5) we have:

g(jmjn-—l’ xn)=f(xn//jmjn—1) P (jmjn—l)zf(xm xn-]/jmjn—l) XI) (jn,jn—1)=
=f(xn/jmjn—1: i/l—l) 'f(in—l/jmjn—l)p (jmjn—l)=f(xn/jn) g (jmjn—la fn—l)z

=f:i,, (xn) 2 P(jmjn—lajn—z/jn—l)f(xn—l)=fjn () Z p(jn/jn—ls]'n—z)x

Jn—2=1 Jp—a=1
m

Xp (jn—lajn—z/jn—l)f(jn—l)=f:in (xn) Z pg",l,): iy = 'g(jn—lajn-b —f.wl): (14)

Jp—2=1

for all natural #>3 and for every j,, j.—1 € M, with initial condition:

g (s J1s j’z):f;'l (x1) f:z_ (x2) Dinip Jisi2€M. 1s)
From (12) and (13) we see that:
8 G Bd=F ®) P GufZ) = D] P U Jue1/%2) F1Fn)=
jn—1=1

= D glwh-1sFa) 122, Jjuiri€M, (16)

Jyg=1
and therefore the knowledge of g (j,, ju_1, %) for =2, j,, ju—1 € M allows to calcu-
late (12) for all n>2 and for every j, € M and consequently suffices 1o construction
of Bayes’ decision fule (9).
At the first step of classification (for n=1) the discriminant functions can be calcu-
lated immediately, namely:

g (j1, xl)=fj1 (.xl)zph, s JiE M an
J2=1

Thus, the formulas (14)+(16) determine the recursive manner of calculation (12)
with (17) as initial condition. For the general form of loss function L (i, j), discrimi-
nant functions (8) of decision rule (6) are equal:

1
Bl ) = G

D LG U %)y n=1,2,..., Qe M (18)

Ja=1

and they can be also calculated recursively as it was shown previously.
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4. Extension to the k-th order Markov chains

The recursive technique of construction Bayes’ decision rule can be straightfor-
wardly extended to the higher-order Markov dependence. Generally, k-th order
Markov chain is described by:

—- initial probabilities

o0 D £p =i Ja=J2s s Js=Ji)>

s : (19
J1sJ2s «os JK € M’
— transition probabilities
p.(i',:zj,.._l,..‘,j,,_kép(Jn=jn/Jn—-1=jn~19 cees Jn—k=jn—k): (20)

jmjn-—l: “‘:jn—k ‘:-M: n>k

In this instance, similary as in (14) and under the same assumptions we have:

g(jmjn—l: -'-’jn-k+1= A_'n)=J"l‘(xn/jn) 2 p_(ifzj,,_,, o dn=—Fk X

Jn—k=1
Xg (.il:—l’jn—29 ---,jn—k: -S‘-n—l) (21)
for all natural #n> k and for every j,, W o Ja—x € M, where functions g are defined
likewise as previously by:
g(jmjn—la ‘--9jn-ks xn):%f()-cn/jmjn—l’ ---9jn-—k)p (jm -":jn—k)' (22)

For n=k we have the following initial condition:
k
Sl o= ~onas JEk)=17fjx DDy 3 T (23)
i=1

j1=j29 --'sjk € M
The discriminant functions (12) of decision rule (9) are related to (21) by:

m m m

g(jna fn)= Z Z Z g(jmjn—-la --'ajn—k+13 jn) (24)
Jp—1=1 Jp—n=1 Jn—k+1=1
For the k first steps of classification the discriminant functions (12) can be calculated
immediately.

5. Final remarks

This paper deals with classification problem in which the sequence of recognized
patterns is generated by a second-order Markov source, i.e. each pattern is a pro-
babilistic function of its two immediate predecessors. For this case, under assump-
tion of complete probabilisiic information and using Bayes® approach, the pattern
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recognition algorithm which minimizes probability of misclassification has been
obtained. We have also shown that its discriminant functions at the n-th stage (for
n-th recognized pattern in the sequence of patterns) can be expressed as functions
of known data and the classifying functions at the (n—1) th stage, i.e. they can be
recursively computed. The recursive nature of the algorithm considerably reduces
the memory space and the computation time. Subsequently, this main result has
been extended to the higher-order Markov chains.

In the real world, there is often a lack of the exact knowledge of probabilities
(2), (3) and density functions (4), whereas only partial information is available.
For instance, there are situations in which only learning sequences, that is sets of
correctly classified samples, are known. In this case one obvious and conceptually
simple method is to estimate probabilities (2), (3) and densities (4) from the training
sample set and then to use these estimators to calculate discriminant functions (12)
according to (14)+(17) as though they were correct. Similar procedure was employed
in [5] for first-order Markov chains. ‘ '
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Rekurencyjny algorytm rozpoznawania lancuchow Markowa
T-rzedu

Praca dotyczy probleméw rozpoznawania obrazow, w przypadku gdy wystgpuja statystyczne
zalezno$ci pomiedzy ich klasyfikacjami. Jako matematyczny model tej zaleznosci przyjeto taficuch
Markowa Il-rz¢du. Przy zalozeniu pelnej informacji probabilistycznej skonstruowano analitycznie
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ciag algorytmow rozpoznawania, z ktorych -ty minimzfirue rEwccoodINETSIwE
fikacji na i-tym etapie (dla i-tego rozpoznawanego obrazu). Pokazano. = foskre &
tych algorytmow moga by¢ wyznaczone rekurencyjnie, co znacznie upraszcza obliczeme= I Si==m
ich czas. Rezultat ten uogdlniono nastgpnie na przypadek taficuchow Markowa k-tego rzedu.

PexyppeHTHbIi ANTOPHTM PacIO3HABARN neneii Miapkosa
BTOPOro MOPAKA

PaBoTa xacaercst TpoOIeM DACHO3HABAHMA 00pa30B B ClIyiae, KOIJa MEXY HX KIacCH(HKA~
IAAMY BBICTYIAET CTATHECTHICCKES 3aBHCHMOCTE. Kak MATeMATHIECKYIO MOZEID STHX 3aBHCHEMO-
cTeil TpHHSTO Iemkb MapKosa BTOPOTO mopsiaka. IIpE mOmHOH CIATHCTHYCCKOH HHEOCDMAIHK
OCIPOEHO DA AITOPHTMOB pacmosHapaus. H-TEH 2J7TODHTM MEERMATHIEDYET BEDOETHOCTE
OmMEGOYHBIX KIACCAGHKAIMA HA ¥-THIM IHAry (aJist Y-TOTO PaCHO3HABAEMOTO obpa3za). lloxzazaso,
YTO NHECKPEMEHALWOHHBIC (YHKIHE MOIyTh OBITH OUpENEIEHBl PEKYPDEHTRO. 3T0 3EATATCABEC
YMERBIIAET CIOKHOCTD BBLIYMCTICHUI ¥ COKPAIAST HX BPEMIL. B paboTe mpeIcTaBsicHo obobme=me
STHX Pe3yNbTATOB HA Cilydail MapKOBCKOM Lem K-TOTO TOPSAKa.
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