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Binary relations on a set A are characterized by means of the families of their classes (semiblocks).
Compatible binary relations are also characterized and corresponding mappings described. After
these purely algebraic considerations, a class of flou relations are reduced to a class of binary rela-~
tions and vice versa. Certain compatible flou relations are of importance in rounding mappings
- of computer arithmetic.

1. Introduction

There is a great need for tools to handle formally ill-defined objects e.g. in com-
puter arithmetic, in social research, in decision processes e.t.c. Fuzzy sets and flou
sets (also called partial sets) are formal concepts directed for solving some problems
concerning the handling of ill-defined objects. Another approach are tolerance
relations, their generalizations and related mappings. The purpose of this paper
is to combine these two lines. We start off with considering binary relations and
show thereafter that these relations serve a simple way to control some flou binary
relations and related mappings. An application is the screen and related rounding
mapping studied in computer arithmetic. ‘

For flou sets the reader is referred to the monograph [5] of Negoita and Ralescu
as well as Klaua’s paper [3] and references therein. Screens and rounding mappings
are considered by Kulisch e.g. in [4]. A simple view in problems of computer arith-
metics is given by Ratschek in [7] and Ratschek’s article [6] is also of interest for
getting a good picture about problems of interval arithmetics. As a model for con-
structing binary relations and their classes we have used Chajda’s paper [1] on
blocks (classes) of binary relations as well as the paper [2] of Chajda, Niederle and
Zelinka, where one can find models of proofs given in this paper.
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2. Binary relations

Let R be a binary relation on a non-empty set 4 and M, and M, two subsets
of A. A pair (M, M;)cAX A is called a semiblock of R whenever '

(M, M)#(, 9); )]
(M, M) R; @
if (M, M,)=(N,, N;) and (N, N)<R, then (M, M)=(N;, N,). (©)]

We have above substituted M,;x M, by the notation (M, M,).
Let M ={(Ms;, M) | icI}, where I is a set of indices, a non-empty family of
subsets of (4, 4). The family .# is called seminormal, if

if keI and J<1, then (My,, My,) =\ {(My5, M) | jeJ}
implies that () {(Mj,, M;,) | jeJ} = (M, My,); @
if (N, N;)=(4 ,A4) and (N, N,) is not contained in
any pair (M, M;;) of the family .# then there is a

pair (a, b) of elements such that (a, b) € (N, N,) and
(a, b) is not contained in any pair of ./ . ®)

As shown in [2], when ./ is seminormal, one can see that (M;,, M;,) &(M;s, M)
for 7, j e I, i#j. Similarly, (@, 0)¢.#. Theorem 1 of [2] suggests now to prove

. THEOREM 1. Let A be.a non-empty set. Then there exists a one-fo-one correspondence

between binary relations R on A and seminormal families M such that, if R is a re-
lation on A and My is the seminormal family corresponding to R, then (a, b)e R
if and only if there is a (M, M) € My such that (a, b) € (M, M;,).

Proof. Let R be a binary relation on 4 and let Lr={(L, L,) | L, L,=A and (a, b)) e R
whenever (a, b) € (Ly, L,)}. A new family .#3 is constructed as follows: .#z con-
tains all pairs of # which are maximal with respect to the set inclusion. The family
Mg such obtained is denoted as M r={(M,,, My,;) | i € I'}. In the following we show
that .# 1s seminormal by proving the validity of (4) and (5).
(4): Letkel, J=I and (My,, M)\ {(M;s, M}) | jET}.

On the other hand, let (P, P)=_J {(M},, M;,) | jeJ} and we assume that (P, P,) &
& (Mys, My;). Then there exists a pair (@, b) of elements of 4 such that (a, b) <
€ Ps: Pt)\(Mks: Mkt)' Let (29 W) € (Mkss Mkt) and so (Zo W) € U {(Mjs: th) IjGJ}
whence there is an index n € J such that (z, w) € (M,,;, M,,,). Because (a, b) € (P, P,)=
=M {(M;5, M;) | jeJ}, also (a, b) € (M, My,). But then (a, w), (z, b) € R, too,
and because (z, w) was an arbitrary pair of elements from (M, My,), (@, w)eR
for every we M, and (z, b) € R for every z € My, In particular, this implies that

(Mys, M)\ (a, b) € L and so (M, M,,) were not a maximal pair in %, which

1s a contradiction. Hence (M) {(M}s, M,) | j € J} = (M, My,) and the validity of (4)
follows. : ‘
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(5): If (N, N;) of (4, A4) is not contained in any pair of g, then (Ny. N;) ¢ Lx,
and thus (e, b) € (N, N,) such that (@, b) ¢ R. Hence (g, b) is not contained in any
pair of Mg, and so (5) holds for .

Clearly, when .# is a seminormal family, it determines a binary relation R on
A as follows:

(a, b) € Resthere is an index i€ in 4 such that (a, b) € (M, My,).

Let ./ be a given seminormal family, R the relation determined by .#, and .#5
the family determined by R above. We will now show that .4 =.#; from which
the asserted one-to-one correspondence of seminormal families and binary relations
R follows. This will be done by proving that every pair of .# is a maximal pair
of %x (i.e. a pair of .#3), and conversely. Let us assume that (M, M,,) € A for
some n € I is not maximal in #p, i.e. there is in ¥ a pair (L, L;) containing pro-
perly (M, My,), and let (a, b) € (L;, LY\ (Mps, My,). Because (Ls, L) € L, then
(a, w), (z, b) € R for every (z, w) € (M,s, M,;). This means that for every (z, w) e
€ (M, M,,) there is an index i (zw) in .# such that (@, w), (2, b) € (M, (zuys» M 2wy 1)-
Then, in particular, (Mys, My € {(M; 2wy s» Mizwy: | (2, W) (M, M,,)}. Because
A is seminormal, then (M) {(M; zuys, M 2wy ¢ | (2, W) € (M5, M)} = (M5, M,,;). But
(@, b) € (M 2wy s» M; 2wy o) for every (z, w) € (M, M.,), whence (a, b) belongs to the
intersection above and thus to (M,,, M,,), too. This is a contradiction, and hence
every pair of .4 is a maximal pair of Ly, i.e. # =.# . Let us assume now that
there were (Ls, L;) € Mg\ M. Because M <My, then (L, L,) is not contained in
anyone of the pairs of .#, and thus there is a pair (a, b) of elements of 4 such that
(a, b) € (L, L;) and no-one of the pairs of .# contains (@, ). Thus (g, b) ¢ R, whence
(Ls, L) € & and so also (L, L,) ¢ .#, which is a contradiction. Thus ./ R M,
too, whence .# =.#r. This completes the proof., B

If R is symmetric, then M= M, for some i € ] and then M,is a block (see Chajda
[1D of R. If R is reflexive and symmetric, then .# cotains a 7-covering of A4 (see
Chajda, Niederle and Zelinka [2]).

Let o/ ={A4, F) be an algebra with the carrier set 4 and with the set F of fun-
damental operations, where the arity of every fe€ Fis n>>1. We say that R is compa-~
tible with o7, if for every fe F and for every n pairs (a;, b;) € R, j=1, ..., n, also
(f(as; s @), [y, .y B)) ER.

As expected, the following theorem is a generalization of Theorem 3 in [2].
The generalization contains essential new aspects so that we will also present the
proof which follows the general lines of the corresponding proof in [2].

THEOREM 2. Let o/ ={A, F) be an algebra, R a binary relation on A and My the
corresponding seminormal family. R is compatible with sZ if and only if there are two
algebras B,=<By, G)'and B,={B,, G) as follows

(i) there is a one-to-one correspondence ¢ : F-->G such that for any positive n
and for every f € F the operation @f is n-ary if and only if f is n-ary;

(ii) there is a one-to-one correspondence y, :{M,li € I}->B; such that for every
u-ary operation < F and for any n+1 elments Myg, Myg My, ..., Mys from Mg
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the equality ¢f (X1 (Mg, oo X1 (M,,s))= x1 (My,) implies that for any n- elements
Qs ..., @y € A With a; € M, where j=1, ..., n, the element f(ay, ..., a,) € My;

(ili) there is a one-to-one correspondence y, :{M;li € I}-->B, such that for every
n-ary operation feF and for any n+1 elements My, M, ..., My, from My the
equality of (x2 (M1y), -, X2 (M) = x2 (My,) implies that for any n elements by, ...,
“vus b€ A With b; € My, where j=1, ..., n, the element f (by, ..., b,) € My,;

(iv) the mapping A :Bi-+B,, where A (x; (M))=x, (M) for every i€l, is an
isomorphism between %, and %.,.

Proof. Let R be compatible with &/ and .#3 the seminormal family corresponding
to R. Let My, ..., M,s be n elements from 4y, a;, ¢, € M;s, j=1,...,n, and feF
an n-ary operation. Then there are n sets M, from .4 with elements d, € M,
j=1,..., n, such that (a,,d;)(c;,d))e R, j=1, ...,n. According to the compatibility of R,
(f @15 s @), [ (s ees @), (f(C1senes €a)s f(dys ..., d,)) € R. Because the elements a;
and c; were choosen arbitrarily from M, the result above shows that all elements
S (x4, ..., X,), where x; € M, have the property (f (X1, ..., X,), f(dy, ..., d)) R, and
thus are contained in a set Mo, from .#. Hence we may put {M|iel}=B, and
the mapping yx, is the identical mapping in {M;|ie}. Now the operation ¢f is
defined for any fe F so that ¢f (x1 (M), ..., x1 (Mys))=x1 (M) if and only if
f(ay, ..., ay) € Mys when a;€ My, and j=1, ..., n. This proves (i) and (ii); (iii) is
proved analogously. : '

According to the one-to-one correspondence between the families {M;,|ie I}
and {M;|iel} determined by the family #r={(M;, M;;)|icI} and according
to the identity mappings y; : {M;s|i € I}->B, and y, : {M;,|i € I}->B,, the mapping
A: B>, is a one-to-one correspondence. The isomorphism property of A follows
now from the compatibility of R with 7.

Conversely, let (i)-(iv) hold for R, (d;, e;) e R for j=1,...,n, and let f€ F be
an n-ary operation on /. Because-(d,, ¢;) € R, (d;, e;) € (M, M;;) for some je L
Let Mo, be the set such that ¢f (x1 (M), ..., x1 (M) = 11 (Mos). Now, according
to the isomorphism A : %,-->%,, the set My, from (M, M,;) € 4 has the property:
‘Pf(){z (Ml.t)’ s X2 (Mnt))= X2 (MOt)' But then (f(dl: -'-:dn)hf(el: siess en)) € (MOS, MOZ):
whence (f(dy, ..., dy), f (€1 ... , €)) € R, which shows the compatibility of R with /.
" This completes the proof. B

There is a pair of relations, that can be derived from R, having some interest:
the symmetric derivations [R,s, R;4] of R. These relations are obtained from R as
follows: 3

(a, b) € R;; < there is an index i € I such that a, b € M.

(a, b) € R;, <> there is an index i € I such that a, b € M;;.

According to the definitions of Ry, and R,4 they are symmetric relations on A.
In the following theorem we consider the compatibility of the couple [Ry, R:al;
a partial converse is given in Theorem 5.

THEOREM 3. Let of ={A, F) be an algebra and R a binary relation on A. If R is com-
patible with s/, then Ry, and R,, are compatible with <, too.
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Proof. We will show the compatibility of R;; with /; the compatibility of R,
is proved analogously.

Let fe F be an n-ary operation and (a;, b;) € Ryg, j=1, ..., n. This means that
for every j there is a set M, such that a;, b; € M;;. We can now choose freely an
element c; from M., where (M, M,,) € My and j=1, ..., n. Thus (a;, ¢,), (b,, ¢) € R
for every j, and according to the compatibility of R, also (f(ay, ..., @), f(c1; ..., Ca))s
(f @y, ..., by, f(ci, o, €2)) € R. But then .#g contains a pair (Mo, Mo,) such that
fleqs o5 ) € My, and f(ay, ..., a,), f(Dy, «.., by) € My, But then also (f(ay, ..., d,),
f(by, ..., b,) € Ry, from which the compatibility of Ry, follows. B

3. Flou relations and application

Let A be a reference set and G, H< 4 its subsets. A couple [G, H], where G H
is called (see [5]) a flou set (or a partial set, see [3]). Accordingly, we call a couple
[Ry, R,] of binary relations on a set A flou binary relation on A whenever R; = R,.
A flou relation [R,, R,] is called symmetric if R, and R, are symmetric on 4. A class
of symmetric flou relations can be controlled by means of binary relations on 4 as
shown below.

THEOREM 4. There is a one-to-one correspondence between symmetric flou relations
[Ry, R,] of (6) and binary relations R of (T) on a set A, where

6i: RicR;;
6, : R, is transitive;
65 : for every (a, b) € R, there is an element ¢ such that (c, ¢) € Ry and
(¢, @), (c, b) € Ry; '
6, : a single block of R, intersects at most one block of R,. ©)
7, :if (a, b) € R then (a, a) € R;
7, :if (a, a), (b,b), (a,b)e R then (b,a)e R and if
(a, a), (b,b), (b,a)e R then (a,b)eR;
75 : if (a, b), (b, a), (b, ¢), (¢, b) € R then (a, ¢), (¢, a) € R;
74 ;if (a, b), (b, @), (b, d) € R then (a,d) € R. ©)

Proof. We will show first that every [Ry, R,] of (6) determines a relation R of (7)
and vice versa. Thereafter we consider a given [R,, R,] of (6) and determine by
means of this a relation R of (7) and from this [R}, R;] of (6). One sees easily that
R, =R} and R,=R*, from which the theorem now follows.

Let [Ry, R,] be a symmetric flou relation of (6). We define a binary relation R
on A as follows:

. (a,b) Re<(a,b) e R, and (@, a) € R;.
R thus defined has the properties of (7) as shown below.
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7.: (a,b) € R= (a,b) e R, and (a, a) € R,. As shown by Chajda [1], when R,
is symmetric, then (a, b) € R, implies (@, a), (b, b) € R,. But (4, a) € R, and (a, @) e R,
imply (a, a) € R.

7,: Let (a, a), (b, b), (a,b) € R. Then (g, b) e R, and because R, is symmetric,
(b, a) € R,. Now (b, a) € R, and (b, b) € R, (because (b, b) € R) imply (b, @) € R. The
other part is proved similarly.

75: Let (a, b), (b, a), (b, ¢), (¢, b) € R. Thus (g, b), (c, b)) e R, and (a, a), (b, b),

(¢, ¢) € R,. Because (a, b) € R,, a and b belong to some block B; of R,. Because
(a,a), (b, b) € Ry, a belongs to some and b to another block of R,. But, in fact,
a and b belong to a single block of R;, because in the other case R, would intersect
two blocks of R,. Similarly we see that b and ¢ are in a single block of R;. Thus
(a, b), (b, ¢) € R, and according to the transitivity of R;, also (g, ¢) € R; =R,. This
combined with (a, a) € R, implies (a, ¢) € R.

One observes now that (a,b) € R; < (a, b), (b, a) e R. Indeed, when (a,b) e
€ Ry <R;, then (a,a),(b,b)e R, and thus (a,b), (b, a) € R because of symmetry
of R,. When (a, b), (b, a) e R, then (a,b),(b,a)e R, and (a,a) e R,. As in the
proof of 7; we see that @ and b belong to a single block of R;, whence (a, b) € R;.

74: Let (a, b), (b, a), (b, d) € R. This means that (@, b) € R, and (b, d) € R,. Thus
the block of R, containing b and d and the block of R; containing b intersect, whence
aand dshould belong to a single block of R,. Thus (@, d) € R,, and because (@, a) € R,,
also (a, d) e R.

Let R be a relation of (7). We define [R;, R2] by means of R as follows

(a, b) € R, < there is an element ¢ such that (c, @), (¢, b) € R, and

(a,b)e R, < (a, b), (b, @) € R.

It is now, as above, a routine proof to show the symmetry of R, and R, and the
validity of (6) for [R;, R,].

Let now [R;, R,] of (6) determine R of (7) and this further [R}, R}]. The de-
finitions above show that R, =R} ((a, b) € R, <> (a, b), (b, ) € R <> (a, b) € R}) and
R =R} ((a, b) € R, <> there is an element ¢ such that (c, ¢) € R, and (¢, a), (¢, b) €
€ R, < (c,a), (¢, b) € R< (a, b) € R;). This completes the proof. 8

About the compatibility of R corresponding to [R;, R,] of (6) oae can prove

THEOREM 5. Let of ={A, F) be an algebra, [Ry. R,] a symmeteric flou relation of
(6) on A, and let R, and R, be compatible with </. Then the corresponding R of (7)
is also compatible with . 3
Proof. Let f€ F be an n-ary opeiation and (a;, b;) € R, j=1, ..., n. As shown above,
(a;, b;) € R implies the existence of an element ¢; such that (cj, a;), (¢;, b)) € R,
and (¢;, ¢;) € Ry, j=1, ..., n. According to the compatibility of R, and R,, respec-
tively, (f (cs, . s €)s £ (@15 oo ) (f(Cys vy Co)y By o, B)) € Ry and (f (e, .01 5 €0),
Sfleys oo €)) €Ry. Thus (f(ay, ..., @), f(by, ..., by)) € R, and the theorem follows. [l
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~ In [4] Kulisch defined a screen S of a complete lattice L as a complete sublattice
¢ L such that the least elements of L and S, as well as the greatest elements of L
S, coincide. The rounding mapping ¢ of L preserves the operations of L and
L onto S such that ¢ (s)=s for every s€S. Thus ¢ (avb)=¢ (a)v ¢ (b) and
"(lAb) =@ (@) A (b) for every two elements @, b e L. This means that ¢ deter-
mines a reflexive, symmetric and compatible relation R, on L as follows:

(4,b)e R, < a,beL and ¢ (@)= (b).

~ The scieen determines another symmetric and compatible relation R, on L with
~ the definition
’ (u,s)e Ry < u,se ScL and u=s.

Thus every block of R, consists of a single element; this implies the transitivity of R,.
~ As casily seen, R; = R,, and because ¢ (s)=s, a block of R; intersects at most one
block of R,. Further, when (q, b) € R,, ¢ (@)=¢ (b)=c € S, where c=¢ (c), whence
{c,a), (c,b) € R, and (¢, ¢) € R,. Thus the couple [R;, R,] obtained from a screen
and the corresponding rounding mapping is a symmetric flou relation of (6) com-
patible with L. By substituting now L by an algebra o/ ={4, F) and the screen and
the rounding mapping by a symmetric flou relation [R;, R,] of (6) compatible
with <7, one obtains a couple of relations considered by Ratschek in [7] when he
sketched a model for rouding mappings in computer arithmetic.
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Relacje binarne, relacje rozmyte blokowe i ich zastosowania

Relacje binarne na zbiorze 4 sa okre§lone za pomoca rodzin ich klas (p6oiblokéw). W artykule sa
rowniez przedstawione niesprzeczne relacje binarne oraz opisane odpowiednie odwzorowania. Po
tych rozwazaniach czysto algebraicznych klasa relacji rozmytych blokowych jest sprowadzona do
klasy relacji binarnych i odwrotnie. Niektore niesprzeczne relacje rozmyte blokowe maja znaczenie
dla odwzorowari zaokraglania w arytmetyce maszyn cyfrowych.
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BHAApHLIE COOTHOIICHHSI, PA3MBITHIE OJI0YHbLIE COOTHOIICHHS
H MX HpHMEHeHHe

Buuapasie COOTHOIIECHRA HAa MHOXECTBE A ONPENENIOTCE C IOMOIIBIO CEMEHCTB MX KIIACCOB
(mony6ioxoB). B CTaThe NMPEACTABICHB TAKKe HENPOTHBOPEUHBLIC OMHADHBIC COOTHOIICHHA X
OIHCAHBI COOTBETCTBYromme oToOpaxemms. ITocie S5THX 4MCTO aNTeOpaMdYecKHX DPACCYXTEHYN,
KJIACC PAa3MBITHIX OJIOYHBIX COOTHOIIERH CBOJRTCS K KIaccy GMHAPHBIX COOTHOLICHRI K Ha000pOT.
HexoTopble HenpOTHBOPEYMBEIE PA3MBIThIE GJI0YHBIE COOTHOLIEHHS MIDAIOT CYMIECTBEHHYIO PONB
VIS OTPAKCHWI IPHOIVIKEHHEIX BEIYHCICHANR B apudMeTHKe IMGPOBHIX MAUIKE.
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