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Numerical solution of the c-observation problem
for nonlinear systems

by
NGUYEN THANH BANG

Hanoi-Warsaw

A practical, effective method by which the current state of nonlinear systems at a present time
can be evaluated from a complete knowledge of the system’s input and output history on some
finite time interval has been developed.

This method requires that only auxiliary systems of differential equations with known initial
or terminal conditions and system of algebraic equations are solved in each iteration, so it seems
to be well adapted to computations by digital or hybrid computers.

Some constructive sufficient conditions are presented for the convergence of the iterative process.

1. Introduction

Often in control design it is necessary to have sufficiently complete information
on the current state of the system in the state space. In many control situations,
however, direct measurement of some state coordinates are difficult, and, sometimes,
even impossible. In these cases, the problem of determining the system’s state from
a complete knowledge of the system’s input and output data becomes important
to be studied.

In Ref, [1], this problem is referred to as the c-observation problem.

A dynamic system which permits the reconstruction of the current state from
a complete knowledge of the system’s input and output hisiory on some finite time
interval is called c-observable.

Kalman first has considered the problem of determining the conditions which

a linear dynamical system must satisfy in order that it be c-observable. Assuming
- that the system’s input is zero and that a complete knowledge of the system’s output
on the finite time interval is available, Kalman has obtained necessary and sufficient
conditions of c-observability for both continuous and discrete-time linear dynamical

systems [2].

Kalman’s investigations were further developed and extended by Gilbert [3],
Krasovskii [4] and other authors [5, 6]. In Ref. [1], a new computing procedure of
solving the c-observation problem for linear nonstationary systems is proposed.
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Furthermore, from the obtained results the block diagram of the indirect c-observer
has been constructed. This observer representing the special purpose hybrid computer
connected in parallel with the considered object provides automatical calculation
of the current state and, therefore, can effectively surmount the difficulties associated
with control design when the state is inaccessible to direct observation.

For nonlinear systems Lee and Markus obtained necessary and sufficient condi-
tions of c-observability in the neighborhood of the origin [7]. Hwang and Steinfeld
extended the work of Lee and Markus from local c-observability about the origin
to arbitrary point in the entire domain of initial conditions [8]. In Ref. [9] Roi-
tenberg transformed the c-observability problem into the problem of construction
of Liapunov function by a model reference method. From this viewpoint, Kosty-
ukovskii [10] and Griffith and Kumar [11] considered the c-observability problem
for nonlinear systems. Some global conditions in the form of sufficient conditions
for c-observability of nonlinear systems are obtaired by Yamamoto and Sugiura
in Ref. [12].

Albrekht and Krasovskii have considered the c-observation problem for non-
linear systems in the neighborhood of a given motion [13]. Assuming a complete
knowledge of both the system’s input and output on some finite time interval, and
in addition, that the motion of the system is close to the given motion, they calculate
the state in terms of the system’s input and output history.

The present paper derives its inspiration from the work of Al’brekht and Kra-
sovskii and obtains results different from theirs by employing another method
for solving this problem.

2. Problem statement

Consider a continuous-time dynamic object described by a system of nonlinear
differential equations in the following matrix form

d:
= AO X +BEO O+ (5 u (), 1), )

where x is an n-dimensional vector-valued function of time describing the state of
the considered object at any time #, u (¢) is an r-dimensional real vector-valued
function of time that represents the control parameters, f(x, # (), ¢) is an n-di-
mensional real vector-valued function, nonlinear with respect to x and u (¢), 4 (¢)
and B(t) are known, respectively, (nxn) and (nXr)-dimensional matrices and u
is a small parameter.

Let us assume that the system’s input u (¢) is either known a priori or can be
measured exactly and that the state x (#) is inaccessible to direct observation, only
the system’s output

z(t)=Q(t))x(t), o<1, 3-3,=h>0 2.2)
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is accessible to noise-free measurement, where z (¢) is an m-dimensional vector-valued
- function of time, m<n, and Q () is a known (m xn)-dimensional matrix.

The vector-valued function f(x, u (¢), ¢) in the right-haud side of the Eq. (2.1)
is assumed to be continuous in all arguments in some domain of the space (x, u, 7).
Furthermore, this function musi satisfy certain other restrictions mentioned later.

All the elements of the matrices 4 (¢), B (¢) and Q (¢) are continuous functions.
of time and are (n—1) times continuously differentiable on the finite time interval
Fo<1<S ‘

The c-observation problem for nonlinear system (2,1) consists in the following:
it is required to find the unknown state x (t) at the present time t=3 from a complete
knowledge of the system’s input and output history on the finite time interval 3,<t<9,
where 8 is some past time (3,<9).

3. Solution technique

It is well known that the system of differential equations (2.1) can be written in
the following equivalent matrix integral form

xO=XNX"1®x®- [ X)X O [BOu©@+uf (x(&), u(d), O] d¢, (3.1)

where X (¢) is an (nXxn)-dimensional fundamental matrix for the corresponding
linear (u=0) homogeneous system and X~1(.) is an inverse matrix.

Substituting (3.1) into the right-hand side of (2.2) we have the following equation

OMXW X PxP=z()—Q @) A(t, x (),u()), $<t<8, (3.2)
where :

At x()u()= —f X)X (OB u@+uf(x(©), u@, ] 4, 3.3)

. Multiplying (3.2) by [X~* (D]'X’ () Q' (¢) from the left and integrating from
3o to I we obtain :

GO x®)=[1X-*OF X' 1) Q' M) [z()-QW) At x(), u()]dt  (3.4)

where G () denotes the following Gramian matrix:

G- [ X1 (O X' (O 0D 0@ X (O X~ () de (35
So

Here the prime designetes transposition.

Thus, for determining the unknown state at present time =3 we shall have
to solve equation (3.4) associated with the original nonlinear matrix integral equa-
tion (3.1).
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Since it is actually impossible to obtain an analytic solution (in the closed form)
of these equations, they must be solved by means of various numerical methods.

It turns out that the numerical technique developed by Nguyen in Refs. [1, 14]
can be applied in an iterative fashion to solve the abovementioned equations.

The initial approximation may be defined as

8 = ;
G ®=[ X @rx' 00 O [20-2'0) @] 4, (3.6)

X0 =X (1) X~1(9) 22 () +2°(1), 22 ()= — f X)X~ 1B u(®)dé (3.7)

It is clear from Ref. [1] that the state vector X°(9) defined by (3.6) represents
the solution of the c-observeticn troblem for the corresponding linear (,u 0)
system. For this case the following result holds (see Ref. [1]).

ProPOSITION 1. The corresponding linear (u=0) system is c-observable at time t=39
if and only if the row vectors of the matrix [ XY (D] X'(t) Q'(¢t) are linearly inde-
pendent for any t on the interval 9,<t< 9, where 8 is some past time and h=39— 9, >0,

It should be noted that this test for c-observability of the corresponding linear
(u=0) system depends on knowing the fundamental matrix X (¢). In many prac-
tical cases, however, the problem of the construction of the fundamental matrix
is either difficult or time consuming on the computer. Thus, it would be a distinct
advantage to have a test for c-observability which does not require a knowledge
of the fundamental matrix.

The following proposition proved by Krasovskii [4] gives such a test.

PRrOPOSITION 2. Let [X~t (DHI'X'(¢) Q'(t) be (n—1) times differentiable with r'espect
to t, where t € [y, 9]. The row wectors. of this matrix are linearly independent on the
interval 8,<t< 9 if

rank P (f)=n, Vte [9, 9] (3.9)
where

P (t)'_"(Pl. (t): Vo T (t))
l()

Pi()=0'(@), PiH(t) +A4'@) Pi(r), i=1,2,..,n-1 3.9)

Thus, if the matrix P (¢) is of rank » for any ¢ on the interval §,<¢<9, then
it is easy to see via proposition 1 that the corresponding linear (u=0) system is
c-observable at time =3

Therefore, in what follows we shall assume that the condition (3.8) of c-obser-
vability for the corresponding linear (u=0) system is fulfilled.

Then, it is very easy to show that det G (3)#0 and the state vector £°(9) will
be defined uniquely from algebraic equation (3.6). ]
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Now, suppose that (j—1)-th approximation is already found, i.e. £/=(9) and
x7=1(¢) are known. Then j-th approximation for x (J) is determined as a solution
of the following algebraic equation ,

G ¥ (9)= f X1 @) X ()Q' O O-0@ ¥ @, j=1,2, ... (3.10)
where : '
W ()L (8 X7 1(), u())—— f X(@) X~1(&) [B(é)u(£)+
+ﬂf(x’ HO,u(®, O] de,  j=1,2,... (.11)

Further, j-th apprommatxon for the current state x(¢), $,<t< 9, of the orlgmal
system can be determined by

HO=XOX 1) F D+, j=1,2,.. (3.12)

Note that Eqs. (3.10) and (3.12) remain also valid for j= 0 1f in this case we set
u=0.

From Eqgs. (3.6), (3.7), (3.10) and (3.12) it is easy to see that a computer imple-
mentation of the above steps requires the construction of the inverse matrix X~ (¢).
In many cases, however, analytical evalution of the inverse matrix is difficult and,
sometimes, even impossible. Moreover, in each iteration we must take definite
integral in righthand side of the equation (3.10) and indefinite integral (3.11) that
is nét convenient and requires a lot of computer time. Therefore, it is of interest
to find a modified formulation of the presented above iterative procedure which
avoids these difficulties.

4. Modified formulation of the iterative procedure

First, we look at the problem of determining the Gramian matrix G (3) which
is needed in each iteration. .
Differenting (3.5) with respect to ¢ and noting that (see Ref. [15])

USEL SRR ol IR
= T BIXZEOs o im T (1) 4()
we obtain the following matrix differential equation
dG (t) Assid A
7 - A0MG6M-64n+2' (020 @1
subject to the initial conditon
G (80)=0 : 4.2)

Thus, the Gramian matrix G (8) can be obtained by integrating Eq. (4.1) from
3o to & subject to (4.2).

2
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Further, it is easy to show that
)
y’ (3)=f X1 X0 Q' W [z0)-2®) ¥ ®ldt, j=0,1,2,.. (43)
So

where y’ () is the solution of the following system of differential equationé
dy’ : : :
=T AOY+IOO-2OX @), j=0,1,2,.. 44
subject to
¥ (%)=0, j=0,1,2,.. 4.5
Note that the vector-valued function A’ (¢) in the right-hand side of the Eq. (4.4)
defined by (3.11) can be evaluated by solving the system of differential equations
Y
- —AO X +B@) u(O)+pwf 710, u(@), 1), j=0,1,2,... (4.6)
subject to
A PH=0, j=0,12,.. - @D
where the numbers y;, j=0, 1, 2, ... are defined by
k: 0 if j=0
Clearly, it is very much easier to solve the Egs. (4.6) subject to (4.7) than to
evaluate the indefinite integral in the right-hand side of Eq. (3.11).
Thus, any j-th approximation for the unknown state x () can be defined by
solving the following algebraic equation
GOHX®D=¢y'®, Jj=0,12,.. 4.9

where y’ (.) is the solution of the equation (4.4) subject to (4.5).
Now, any j-th approximation for the current state x (z), 3,<¢<9, of the coun-
sidered system determined by (3.12) can be evaluated by formula

X O)=y' )+ (), j=0,1,2,.. : (4.10)
where )’ (¢) is the solution of the following differential equation
dy’ .
d =4y, Jj=0,12,.. (4.11)
t
subject to
Y@=, j=0,1,2, .. : 4.12)

Thus, it is not necessary to construct the inverse matrix X~ (¢) in order to
determine all the requisite values in each iteration. ‘

By combining the above results with those of the previous section, the modified
formulation of the iterative procedure is obtained. 1t entails the following steps.
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Step 0. Determine Gramian matrix G () by integrating Eq. (4.1) from 9, to 9
subject to the initial condition (4.2).
Step 1. Setj=0, ;=0 and integrate backward equation (4.6) from 9 to 9 subject
to (4.7). During the backward integration calculate vector-valued function 3J o,
918

Simultaneously integrate forward equation (4.4) from 9, to 9 subject to (4.5)
and at the end of the forward integration obtain vector ¥’ (9).
Step 2. Solve algebraic equation (4.9) in order to find vector %/ (9).
Step 3. Integrate backward equation (4.11) from § to 9, subject to (4.12). During
this backward integration caiculaie vector-valued function 37 (f), Simultaneousiy
evaluate vector-valued function x’ (z) by (4.10). Store x’ (¢), 9,<1<9.

Return to step 1 with j replaced by j+1 and set p;=u. The process ends when
X+t (§)==x’ (9) with the requisite accuracy.

5. Some constructive sufficient conditions for the convergence
of the iterative process

In the previous section we have employed the numerical technique developed
by Nguyen in Refs. [1, 14] to solve the c-observation problem for nonlinear system
and found the modified formulation of the 1terat1ve procedure which avoids some
difficulties in computer implementation.

Now, it remains for us to establish some sufficient conditions under which the
above iterative process is convergent and the considered nonlinear system (2.1) 1s
c-observable at time 7= 3.

THEOREM. - Assume

1) The corresponding linear (u=0) system is c-observable at time t=3.

2) The vector-valued function f(x, u (¢), t) is continuous in all arguments in_some
closed domain of the space (x, t) determined by the expression

D (4, iy={(x,1): |x|<d, 9,<t<8, h=3-9,>0} 5.1)
Here A is some positive number which satisfies the condition ‘
A>ch (bH+rogy), S
where
o= max |X()X-*({l|, b= max |B(#)|, ¢= max |Q ()
o<E<t<S Jos1<8 So<t<9
9= =|G~1 (9)|, r= max |z (?)|, v= max [u(®)|, H=1+02g¢* hy~
Jos1<8 Yo<1<8

The norm of the matrix x is denoted by |x|.

3) In the domain D (4, h) the vector-valued function f(x,u (), t)is Lipschitzian
with respect to x with Lipschitz’s constant L. This means that for two arbitrary points
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(x', 1), (x2,¢) of the domain D (4, h) and for any admissible system’s input u (t) the
following condition is satisfied

If (2, u (0), ) —f (", w (£), £)| S Lix* — x| (5.3)
4) The parameter p satisfies the condition

 Ad—oh(vbH+rogqy™) 1 }

1
* = 3 28588
O<p< pr=—m n;m{ 7 0T (54

where
F=max|f(x, 4 (), )|, V (x, ) e D (4, b), Yu ()

Then, the proposed above iterative process for solving the c-observation problem
is convergent and the considered nonlinear system (2.1) is c-observable at time t=39.
Proof. We show first that all the approximations for the current state x (f) deter-
mined by (3.12) at any time ¢, 3,<t< 39, entirely belong to the domain D (4, 4).

It is quite easy to show that, if the condition (5.2) is fulfilled, then x° (f) deter-
mined by (3.7) belongs to the domain D (4, k) .Suppose, therefore, that x/()e
€D (4, h), then we will prove that x/** (.)€ D (4, h).

From (3.12) it follows that -

e+ £ (D)< el ()| +6vbh+ pohF (55

where

Ix’*1 (= max [x/*1(2)]
S—h<t<d

From (3.10) we obtain
(%1 (< ogy~h (r+ovgbh+ uoghF) _ ; (5.6)
With this inequality for |#/+1 (9)| substituted into (5.5) we have
Ix/** ()< oh WbH+rogy™)+ uchHF< A

Thus, by induction we conclude that all the approximations for the current
state x (¢) at any 7, 3,<7<3, belong to the domain D (4, k).
Now, we pass to the problem of the convergence.

From the equations (3.10), (3.11) and (3.12) it is easy to derive the following
estimations

Ix’*1 () —x (Dl ol&* (D=2 ()| +pohLilx! (1) —x' =)l (5.7
%+ () —% (DI po? g h? y=Lix’ () —=x"=* ()]l (5.8)
Substituting (5.8) into (5.7) gives
= e’ () =% (DS pohHLIx? () —x=* (Ol

or
[+ 2 () = ()]
%’ (&) =x"=1 @I

SuchHL< 1 (5.9)
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=

- The inequality (5.9) shows that majorant series converges (due to d’Alambert
eriterion). Hence, the sequence of the approximations {x’** (¥)} must converge
mnifo to a certain continuous vector-valued function x () € D (4, ), and due
0 (5.8), the sequence {X/** ($)} converges to the state x (). :
;-l'l is easy to see that the limit furiction x (¢) satisfies the original integral equation
) and x ($) — Eq. (3.4), i.e. they are a solution of the c-observation problem
nonlinear system (2.1). 7 '

- Finally, we show that the mentioned above limits are unique. Let x! (¢) and
x2 (t), Fo<t< 3, be the limit functions simultaneously satisfying equation (3.1) and
et x* (9) and x? (9) be the limit states simultaneously satisfying Eq. (3.4), then
we have

Ix? () —x () < 01x? (9 —x! () |+ pohLjx? (1) - x @) (5.10)
1% () —x' (&) IS po®q® By~Lix* ) —x* ()l (.11
Substituting (5.11) into (5.10) yields
llx? (©)—x* () I< pohHL|Ix? (£) —x* () lI<llx® () —x* () |}

Latter, inequality is possible if and only if x? ()=x* (¢), 9,<¢<9, and due to
5.11), x2 (9)=x' (9).

 Thus, if all assumptions 1(—4) are fulfilled, then the nonlinear system .1
- will be c-observable at time ¢=3.

The proof of theorem is complete. B
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Rozwigzania numeryczne problemu c-obserwacji dla ukladow
‘nieliniowych

W artykule przedstawiono praktyczng i efektywna metode wyznaczania biezacego stanu ukla-
déw nieliniowych na podstawie kompletnej znajomosci wej$é i wyjéé ukladu w pewnym przedziale
czasowym. Metoda ta wymaga rozwiazywania, w kazdej iteracji, jedynie pomocniczych ukladéow
réwnan rézniczkowych o znanych warunkach poczatkowych lub koricowych oraz ukladu réwnah
algebraicznych, co daje si¢ latwo zrealizowaé przy pomocy maszyn cyfrowych lub hybrydowych.

Yuclienuple peliennsd 33029 C-HAOMIOXEHuH /s HeIHHEHHBIX
CHCTEM

B craThe npeacTaBicH NPaKTHICCKRN B 3D HeKTHBHBIA METO OUPEACTICHHS TEKYIIEr0 COCTOAHUS
HEIWHEWHBIX CHCTEM HA OCHOBE IIONHOTO 3HAHAS BXOOHBIX X BBIXOZHBIX CHTHAJIOB CHCTEMBL
B HEKOTOPOM IWalla30HE BPEMEHH. DTOT METOH TPeOyeT pelieHms, B KaXIOi ATEPAUEE TONLKO
JIEING BCOOMOTATENBHBIX cHcTeM ARG(OEpEHIMATbHbIX YPABHEHWNA C HM3BECTHHIME HAYALHBIMEA

UM KOHEYHBIME YCIIOBHAMM, & TAKKE CHCTEMBI areOpamyeckux YPaBrHEHK N, YTO HECIOKHO peaim-
30BaTh C IOMOIILIO HE(GPOBOH MM TAOPHIHON BEMECIATENBHON MAIIHHEL,
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