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In the paper stochastic feasible direction methods for nonsmooth and stochastic optimization
problems are considered. A point-to-set map model of the algorithm is given and convergence
is proved under general assumptions on mappings describing the method. Finally, the general -
theory is used to develop stochastic nonsmoth functions oriented analogues of some classical fea-
sible direction algorithms.

1. Introduction

-

In this paper we discuss stochastic feasible direction algorithms for the solution
of the problem
® min F (x)

xeX

X=ixe R g, (<0 for vi=l,...m}

where gy, ..., g, and F are real-valued functions defined on R". It is assumed througout
this paper that the set X is compact, the function F is Lipschitz continuous on an
open set & containing X and the functions g4, ..., g, are continuously differentiable.
In particular, we are interested in the case, when F is a nonsmooth function, possibly

defined by F(x)=Ef (x, 0),

where f: R*x0->R' and (O, 4, P) is a probability space. The random event 0 is
used here to represent all stochastic factors, i.e. f (x, 6,) denotes the noise-corrupted
value of F (x), connected with an event 6.

Problems of this kind arise in various fields of technology and management,
such as stochastic optimal control, hierarchical control, long-term planning, etc.
(see e.g. [5], [16], [19]). We mention here two typiczl examples.

The stochastic minimax problem
Let ¢o: R"XR'XO->R', Y<R' and let F in (P) be defined by

F (x)=E max g, (x, y, 0).

yeY
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The two-stage stochastic programming problem :
Let- ¢;: R*XR'XO->R*, j=0,1, ..k, and let Y(x, 0)={yeR" ¢;(x, ¥, 0)<0,
=1, ..., k}. We define Fin (P) by
F(x)=E min @, (x, y, 6).
i YE€Y (x,0)
In both cases F is in general a nonsmooth function, even if the functions ¢; (., v, 6)
are differentiable. :

When dealing with problems under consideration, we meet two basic difficulties.
The first one is the nonsmoothness of the objective function. Even in the determi-
nistic case it causes serious difficulties for both theory and computations (see e.g.
[31, [41, [13], [14]). The second difficulty is connected with the stochastic nature
of the problem. It can hardly be assumed that it is possible to compute the value
of F at a given x; we can only observe noise-corrupted values f(x, 6), where 6*
is a draw of 0. This feature makes it necessary to use for the solution of (P) stochastic
approximation type algorithms (see e.g. [5], [6], [81, [11], [18]).

The principal objective of this paper is to develop a unified framewcrk for the
construction of stochastic feasible direction algorithms for (P). These algorithms
construct stochastic vectors, which correspond in a certain sense to generalized
gradients of the objective function. The vectors are used in direction-finding sub-
problems which produce random search directions. We note here that some algo-
rithms from this class were suggested in [1], [12] for smooth problems, and in [8]
an algorithm for nonsmooth problems has been proposed. In this paper we shall

~ give an abstract point-to-set map model of the algorithm, similar to those employed
in [9], [7], [22] for deterministic algorithms. For this model we shall formulate
general assumptions, under which the algorithm converges with probability one to
the set of stationary points of (P). It will be shown that the general framework makes
it possible to construct stochastic analogues of many classical feasible direction
algorithms. In this sense the present paper extends the approach developed in [20] to
the class of nonsmooth problems. The problem of the nonsmoothness of the objective
function will be overcome by the generation of a sequence {F,} of smooth functions
convergent uniformly to F. The functions F,, constructed by means of integral
transformations of F, are used in the general model only and they do not appeat
in definite algorithms. This idea was employed for nonsmooth optimization in [8].

In § 2 we review briefly important properties of Lipschitz continuous functions
and we remind necessary optimality conditions for (P). In § 3 we describe the general
structure of the algorithms under consideration and we make all relevant assump-
tions. §§ 4 and 5 are devoted to the convergence analysis. In § 6 we show practical
methods for the construction of random vectors corresponding to the generalized
gradients of the objective function in the sense of the assumptions from § 3). Finally,
in § 7 we discuss some definite direction-finding subproblems taken from determi-
nistic nonlinear programming and we prove (on the base of the general theory
from the previous sections) the convergence of the resulting stochastic feasible di~
rection algorithms. It should be stressed that the algorithms considered here are
adapted to off-line compatations wite random effects simulated in the computer.
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In the paper we use ||+ || to denote the Euclidean norm in R" and ||« ||, denotes

an arbitrary norm in R". We denote by U;(x) the J-neighborhood of x, i.e.
Us @)={y e R": [ly—x|<d}. If V<R" then U, (V)={y e R": inf ||ly—2||<J, ve V}.
For a closed convex set Z<R" we denote by 7, the orthogonal projection on Z,
ie. y=II; (x) if ye Z and |ly—x||=min|,—x||, ze Z. If X< R" then £ (X) denotes
the set of all subsets of X. We denote by (2, &, P) a probability space and we use
o to denote a single element of Q2 (a sample point). The event w corresponds to
a single run of the algorithm, and so 2 is the space of all possible sequences of
simulation results necessary to generate one path {x*}. We use E¢ to denote the
mathematical expectation of a random variable &é: Q->R" and E{{/Z,} denotes
the conditional expectation with respect to the o-field &#,<=%. We use abbreviation
wp 17 for “with probability one”.

2. Preliminaries.
‘In this section we shall recall briefly some important properties of Lipschitz

_continuous functions. Let £ <R" be open and let F: R™->R' be Lipschitz on &,
i.e. there exists a constant L such that

|F (x))—=F (x)|<Llxy—x;]] ~ forall x4, x,€%. @1
letxe &, de R" and let : S35 -
FO(x; d)=:i_m; [F(x+h+1d)— F(x+RB)]/z. 22
‘ T10
The generalized gradient of F at x is defined by
OF(x)={veR":{v,d)<F°(x;d) forall deR"}. : E'(2.3)

The following proposition collects together imiportant properties of F, F° and oF
from [3].

ProPOSITION 1.

(a) OF (x) is nonempty, convex and compact.
(b) F°(x; d)= max v, d).

vEOF (x)

(c) F is differentiable almost everywhere in & and JF (x) is the convex hull of all
the points v of the form ;
v=lim VF (x%)

i—= o
where {2*}->x and F has a gradient VF at each %" € &.
(d) OF is bounded on bounded subsets of Z and the mapping x-->0F (x) is upper-
semicontinuous (closed) on Z.
Let us now consider the problem (P) with g; (=1, ..., m) differentiable and F Lipschitz
on am open set & containing X. Proposition 2 to follow is-a simple consequence
of general theorems from [4], [14].
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ProrosiTiON 2. If % is optimal for (P) then there exist v € dF (X) and ;>0 (i=
=0, 1, ..., m) such that fon

U v+ 2 u, Vg, (¥)=0
i=1 o

U; 8y (x)=05 i=19 2’ vony M,

Zm‘ui=1.
i=1

A point x which satisfies the above necessary conditions of optimality will be called
Stationary.

3. General feasible direction algorithm

In this section we give a general point-to-set map description of stochastic fea-
sible direction algorithms for the solution of (P) and we formulate sufficient con-
ditions for the convergence with probability one to an abstract solution set X*.

Let Z<R" be a closed convex set. Let the sequences {x*}cX, {d‘}, {z¢}cZ
of R"-valued random variables be defined by the relations

xtl=x*47. d*  xeX, 3.1
d* e D, (x5, 79, (.2)
2=l (Z+p (E—-2Y), 2°eZ, (3.3)

where the D, ’s are some point-to-set maps, i.e. D,: XX Z-->Z (R") for all k=0.
Let #, be the minimal c-algebra which measures ((x°, d°, z°), ..., (x%, d¥, z9).
We assume that random variables ©,>0, p, >0 are & -measurable and 7, is chosen
50 as to satisfy :

xtr.dieX ' (3.4

for all £>0. The R"valued random variables £* satisfy the relations
E{S" 71} =VF, (x9)+b, (3.5

where Fy: Z-+R* is a continuously differentiable function. We assume that for all
x,y€Z and all k=0 the functions F, satisfy the inequalities

|F () = F (x)| < o, (3.6)

|Fy (%) = Fier L (O < By 3.7
IV, (x) = VE DI 4l x =y, ; (3.8)
IVE, () — VEr 1 (OIS s (3.9)

where the variables oy, B, 4, 1 are & ,—measurable. Let X* < X be a “soiution
set”; note that in mathematical programming X * is not necessarily identical with
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the set of actual solutions of (P), e.g. X'* may be the set of all stationary points
of (P). We assume that the set F (X*) is at most.countabte. We make the following

assumptions.
(A1) max min ||VF (x)—z[|--0 wp 1.
xeX _z€ VA

(A2)  There exists a constant C such that [|d|<C and E{|E"*/#}<C wp 1 for
all £=0.

A3) D E{p+pelbtil}<oo.
k=0

A9 D pe=cowpl,

k=0 1
(AS) A+ m)pi>0 wp 1.
(A®) Er? <o,

<0

(A7) 2 Ty=00 wp 1.

i=0
(A8)  fi/r—0 and >0 wp 1.

(A9) If x’¢X* x'eX then we can find j=0, 6>0, y>0 such that for all
xeUs(x) 0 X, k=), ze Us(VE; (%)), deDy(x, 2) there is {VF (x), d)< — .

Under the above assumptions we shall prove that for P-almost all we Q all accumu-
lation points of the path {x* (w)} belong to X'*.

Before proceeding to the convergeace analysis let us' make some comments.
The general algorithm (3.1)-(3.3) may be considered as a two-level method. The
auxiliary procedure (3.3) generates the sequence {z} by means of averaging of &’
(i<k). The basic algorithm (3.1)—(3.2) uses z* to produce a feasible direction d* and
makes a feasible step in the direction d*. We shall see in § 5 that (3.2) may be con-
structed as in classical feasible directions methods of nonlinear programming with
Z* treated as a gradient of the objective function.

The filter (3.3) makes it possible to prove convergence without special conditions
imposed on line search. This is due to the stabilizing effect of the operation of
averaging.

4. Convergence of the auxiliary averaging procedure

In this section we shall prove that under the conditions of § 3 zF— VF, (x*)-->0wp 1.
To do this we shall use the following result [5].
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LevmA 1. Let (R, %, P) be a probability space and let -{%' «} be an increasing sequence
of o-fields ‘contained in . Let {5}, {z*} be sequences of F-measurable R"-valued
random variables satisfying the relations

2 =, (2" +p (8 ~2Y), 2°€ Z,
E{S"F i} =n"+b",

where p=0 and b* are F-measurable and the set Z<R" is convex and closed.
Next, let

(@) all accumulation points of the sequence {n*} belong to Z wp 1.
(b) _ there exists a constant C such that E{||E"|*/#.}<C wp 1 foF all k=0,

© D E{pi+pdbl}<co,
k=0

@ 2 pe=o0 wp 1 and

k=0

(e) llr** £ —n*ll/ pi>0 wp 1.
Then zF -0 wp 1.
Proof of this lemma may be found in [5] (Ch. 2, thm 4.1).

As an immediate consequence of the above general result we obtain the following
property of the auxiliary aigorithm (3.3).

LemMmA 2. Let (41)-(45) hold. Then zF—VF, (x*)--0 wp 1.

Proof. We shall show that the sequences {VF; (x*)} and {z*} satisfy the assumptions
of Lemma 1. Assumptlons (b), (c), (d) are identical with (A2), (A3), (A4). Let us
verify (a).

Let 9 be any accumulation point of the sequence {VFk (x¥)}. Then there exists
a set of indices /" such that :

o™ =lim VF (x*).
ke

It follows from (A1)!) that we can find a sequence {¢*} Z such that o* — VF, (x")—->
-0, Therefore T
3 k-
which proves (a). ot
Let us now verify (¢). If follows from (3.8), (3.9), (3.1) that

IVFy s 1 xF+ 1) = VE (NI VEFq 1 (5 1) — VF, (x*+ )|+
+ | VE (x¥+ 1) = VF, (X< e+ willd™).

1) The assumption (A1) is used only here. We shall see in §6 (formula (6.3)) that (Al) holds
if U OF (x)= Z, which simplifies the questlon of the choice of the set Z.

xeX
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Since d* is bounded then it follows from (A5) that
IVF 1 (x*t 1) — VE, (x9)]l/pi->0 wp 1, which completes the proof. ]

5. Convergence of the basic algorithm

In this section we establish convergence wp 1 of the sequénce {x*} to the set X *.
The analysis will be based on the following result [15].

THEOREM 1. Let X* < R" Let {x*} be a bounded sequence in R", which satisfies the

Jollowing conditions:

(@) if a subsequence {x*}i.,, converges to x' € X* then |1 —x"|->0 for ke A .

(b) if a subsequence {x*}. converges to x' ¢ X* then there exists £>0 such that
Jor all e € (0, &g} and all kg € A the index

Sfiiite: s (ko, &)=min {k>kq: [|x¥—x*|| >}

(c) there exists a continuous function W(x), attaining on X* an at most countable
set of values, such that if {x"}c,~>x' & X* then there exists &,>0 such that
Jor all e € (0, &,]

lim W (x®d)< lim W (x*)
kost® ko€t

where s (ko, &) is defined as in (b).

Then the sequence {W (x*)} converges and all accumulatzon on points of the sequence

{x*} belong to X*.

In what follows we shall show that for P-almost all @ € 2 the paths {x* (@)} of

the process {x*} satisfy the asumptions of Theorem 1.

Let {x*(w)} be a path of the process {x*}. Let ¢>0 ky>0. We. introduce the
denotations

I(ky, &, @)={k=ky: x' () € U, (x* () for all ko<i<k},
s(ko, &, ®)=sup I(ky, & w)+1.

LemMa 3. Let (A1)~(A9) hold. Let {x*(w)}.y be a subsequence convergent to
x' (w) ¢ X*. Then wp 1 there exist £,>0, >0 and k,;,=0 such that if koe X,
ko=kpias € € (0, &o] then for all k € I (ko, &, ) we have

k-1

F(H+@)<F(E @) -y D) w(@)+r ko), ¢.1)
where lim ;. _, ., r (ko)=0. i

Proof. For all e>0, ko A and all k e I(k,, ¢, ) it follows from (3.7), (3.8)
that

Fios1 () = F (X< [Flop K ) = F (XF D]+ F () +
— F (3 < Bu+ 7l VE (x5), d¥) + &g Tl A%,
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where d*e D, (5, z¥). Combining (3.6) and the above inequality we obtain

k=1

)= FOo) <ot an,+ 3 [0 CVEG), A9+ Byt da 72 1P,

i=ky

It follows from (A9) that we can find j>0, §>0, y>0 such that (VF;(x%), d’><
<=2y if iz, x' € U;(x') n X, 2' € U (VF; (x%)).

By virtue of Lemma 2, z* — VF, (x*)->0 wp 1. Next, [lx! —x'[|<|lx! — x*o| + [lacke — x'||<
<e+[x°® —x'|l, and {x* —x'|->0 as kqo->00, ko€ A . Therefore wp 1 we can find
8o (0)>0 and j; (w) such that 2 (w) € U, (VF; (x* (w))) x* (w) € U; (x' () for all
ko=j1, ko €K, e€(0, &), i € I{ky, &, ®). Then

F(x (w))—F (x* (co)) <oy (@) — o, (@) +

+2( 2y o )Hx(w)n(w)udi (co)llz) (@ (52

It follows_from (A2), (A5), (A8) that Bi/z;+4; 7ld'|I>~0 wp 1. Thus wp 1 we can
find kpip (@) 21 (@) such that if i>k,, then f; (@)/7; (0)+4; (@) 73 (@)lld* (@) <.
Therefore for ko >k, we obtain from (5.2) the inequality

k=1
F(*@) - F(xo (@) <=7 D 71(0)+ 0 (@) + g, (@)
i=kq
which holds for all ke I(k,, ¢, ). The above inequality, combined with (AS8),
completes the proof. : B

THEOREM 2. Let (A1)~(A9) hold. Then for P-almost all o the sequence {F (x*(w))}
converges and all accumulation points of the sequence {x* (w)} belong to X*.

Proof. We shall apply Theorem 1, setting W (x)=F (x). Assumption (a) is sa-
tisfied since d* is bounded ((A2)) and 70 wp 1 ((AS5), (A3)). Let {x*(@)}lex—>
->x" () ¢ X*, and let (b) be false. Then for ail £>0 we can find je A such that
x* (w) € U, (%! (@) for all k=j. Hence x*(w)e U,(x* (w)) for all k=ko=j. It
follows from Lemma 3 that for sufficiently small ¢>0 and sufficiently large k, the
inequality (5.1) holds for all k>k,. Then boundedness of F on X contradicts (A7).
Thus (b) is satisfied for almost all w.

We shall verify (c). Since s (ko, &, ®)—1 €1 (ko, ¢, @) and p; (w)-->0 then for
all ¢€(0, &] we can find je £ such that s (ko, &, @) € I (ko, 2¢, w) for alt ko>,
ko€ A . It follows from Lemma 3 that for sufficiently small e>0 and sufficiently
large k, we have -

) s(ko,& w)—1
F (x50 8o (@)) < F (x*(w)) —y Z 7; (@) +r (ko). (5.3)
g i=ko
On the other hand
s(kgs 2, 0)—1
e<lprtor D@ - @ISC D w(@). (54)

i=kg




Stochastic feasible direction methods ; 181

Combining (5.3) and (5.4) we obtain the inequality
F (5% @) (0)) < F (x* (@) — p&/ C+ 1 (ko).

After transition to the limit with ko->00, ko € " we obtain the required inequality.

a2
6. The construction of gradient estimates &,

The construction of the sequence {F,} is based on the properties of Lipschitz
functions collected in Proposition 1. Let || * ||, be an arbitrary norm in R" and let
O={ucR": |lull,<1}, S={ue R*: |jull,=1}. Let h:R™->R* be a nonnegative inte-
grable function with support Q and let f h(u) du=1. Let p>0. We define :

; RH \

F(x,p)= [ h(u) F(x—pu) du. 6.1y
Rll

It follows from (c) of Proposition 1 that F (+, p) is differentiable for all p>0 such
that X+ pQ cZ. The gradient is given by

V. F(x,p)= f h(u) VF(x—pu) du. 6.2)
R" \
Hence, by virtue of peints (a) and (d) of Proposition 1, for any compact set X< Z,
lim ma. min |o—V, F(x, p)|=0. (6.3)
pl0 xeX vedF(x) :

Next, applying to (6.1) the rules of differentiation of the convolution of distributions,
we obtain

Vv, F(x, p)=;1,.— f Vh(u) F(x~pu) du, (6.4)
Rll

oh 0oh oh

371' 5 5;“; 3 sues 5:';
particularly simple and important for practice case of (6.4) is that with & (w)
constant within Q. Let ¥ be the volume of Q and let ¢ be the area of S. Then we
obtain from (6.4) the equalities

where Vh=( )is a generalized vector-function (see e.g. [7]).- A

1
¥y F(x,p)=% f ;N(u)F(x+pu) ds (6.5)
S
and
% 1
Vs Fx, p)=§;- -;N(u) [F(x+pu)—F(x—pu)] dS, (6.6)
S

where N () is the outer normal to S at u € S (see [7]).

Let us define F, (x)=F (x, p,) and let p, | 0. 1t follows from (6.1) that (3.6)
holds with o;=const-p;, and (3.7) holds with f,=const.|p,—pi+1]. Next, it fol-
lows from (6.6) that (3.8) holds with J,=const/py, and (3.9) holds with s, =const X
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{Pi—Dr+1!/pr. Then conditions (A5) and (A8) take on the form: (AS’) 7./pi pr+1pe+
—Di+1l/Pk pi>0 and (A8") | py—py 4 1|/7>0. Of course, it is very difficult to compute
the value of F (x) at a given x. However, the algorithm from § 3 does not use the
values of Fy (x"); the only information required are the vectors ¢* which satisfy
(3.5). The formulae (6.1), (6.2), (6.5) and (6.6) make it possible to construct various
estimates of VF, (x*), satisfying the required conditions. We shall show four typical
examples for the stochastic case, i.e. the case when F(x)=Ef(x,0). In order to
satisfly (A1) we shall assume that the inequality

£ (% 0)=f &, OI<Llx =] - (67
holds with some >0 for all x, y € & and P-almost all §. In what follows 6%} denote

samples of 6, such that 6%! is independent of all x, &, 2/ (j<k).
Example 1 (analytical gradients)

Assume that for given x, 8 it is possible to compute an element of d, f(x, 6).
Then we can define E¥=9*, where o* € 9, f(x*—p, u*, 6*°) and u* is drawn randomly
from a uniform distribution over Q. It follows from (6.2) that (3.5) holds with 5*=0.

Example 2 (naive gradient estimation)

If it is not possible to compute an element of d, f(x, 6) then we can define

1 n
=7 D UGt —putt+ 4y e, 0=/ (F=peut = 4 ¢, ]
i=1

where #* is drawn randomly from a uniform distribution over Q and e' is the unit
vector of the i-th coordinate. It follows from (6.1) that (3.5) holds with bias b* of
the range Ak/pk

-Example 3 (gradient estimation on the sphere)

Let |jull. =|lull. Then o=nV and N(u)=u in (6.5), (6.6). Let n,>0 for all £>0
and let

% e 3 i ki) _ S8 ki 11 ks €
e Zlf(x +pi ', 641) f(x" Pttt 059] 4,
where u®* (i=1, 2, ..., n) are drawn randomly from a uniform distribution over S.

1t follows from (6.6) that (3.5) holds with b*=0

Example 4 (gradient estimation on the cube)

Let lull e =1lell , =max |u;]. Then o=nV in (6.5), (6.6) and N (u)=sign (4 ) * €", where
1<i<n

[,| =|lull .- Thus, basing on (6.5), we can construct the following algorithm for the
estimation of VF (x¥). A random point #* is drawn from a uniform distribution
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in Q and 2n points in S are defined by projecting #* on the faces of the hypercube Q:
u’f,’.t=(u,]‘_, weey u’:— 1 1, ulic+1, ) ufg >

i=1;..,n
kil — (aik i k k A
U =gy s Uiy = L0 g e 1),

Finally, the vector
1 n
=5 D) £G4, 09 —f (+puit, 0]
i=1

is computed. Since N (%) =e¢' and N(u"")= —¢', it follows from (6.5) that & sa-
tisfies (3.5) with b*=

Let us note that in all the above examples (A2) holds by virtue of (6.7); that
is why we have taken the same 6%® in square brackets (this is possible in off-line
computations). -

It is also possible to use in (6.1) nonuniform functions 4 (*) which may yield
new interesting algorithms for the estimation of V, F (x, p).

Finally, let us note that the problem of estimating the derivatives of smooth
functions was discussed extensively in [10], and in [8] the method from Example 4
was evaluated by direct differrentiation of £ (+, p).

7. Some definite algorithms

In this section we shall discuss methods for the construction of mappings Dy
satisfying conditions from § 3. Our aim is to show that only slight modifications
are necessary to develop stochastic analogues of many deterministic feasible di-
rection algorithms.

It will be assumed throughout this section that the sequence {F;} is deﬁned as

in § 6. We shall also assume that the gradients Vg; () of the constraint functions
of (P) are Lipschitz continuous.

Example 1

Let x€ X, ze Z. We define the subproblem SP (x, z)
maz 7
<z, ) +1<0,
2,(0)+{Vg,(x), D +4<0 for i=1, ..., m,
llsll <1.

Let 5 (x, 2), s (x, z) denote any solution of SP (x,z) and let Dy (x, 2)=D (x, z)=
={de R": d=1 (x,z) s (%, 2)}. Let X* be the set of all stationary points of (P).
Evidently

subject to

X*={x*eX: min 7 (x* v)=0}.
vedF (x*)
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We shall prove that the map D satisfies assumptions of § 3. Let us verify (A9). If
x' ¢ X* then there exists y>0 such that # (x', v)=>2y for all v €dF (x’). Let us con-
sider the point-to-set map T: XX [0, 112 (RY), T (x, 8)=7 (x, Uy, (aF (%))). It fol-
lows from Proposition 1, (d) that the map (x, 6)—->(x U,; (OF (x))) is closed and -
uniformly bounded on X [0, 1]. The function # (*,*) is continuous. Thus the map
T is closed [22]. Since T (x’, 0) =[2y, c0) then there exists 6>0 such that # (x, z)=y
for all x € U (x")NX, z € Uy (OF (x)). By virtue of (6.3) we can find j=>0 such that
Us(VE, (x)) = U, (0F (x)) for all k=j and all xe X. Therefore <z, dy<—y? if
deD (x, 2), x € Us (x)NX, z € Us(VF, (x)) and k=>j. Since VF (x) € U; (z) then for
sufficiently small § we have {VF (x), d)< —% y* which completes the proof of (A9).

The only question to be clarified is the possibility of choosing a sequence {Te}
in such a way that (3.4), (A7), (A8) hold. Let us make the denotations s*=s (x Z0),
ne=n (&% 2", d*=ny, s*. For any >0 we have the inequalities

g (x*+7d*)< g; (x*) + 7. (Vg (x), S") +L, 7 7 ISP <
<A —) g () +o; (=1+L, 7 |IsH)

where L, is the Lipschitz constant for Vg, (*). Since #; and [|s*|| are bounded, we
can find a constant C>0 such that

g (X +1d9Y< (1 - Cr) g; () +p (—1+Ca),

which shows that ail 7,<1/C are feasible and (3.4), (A7), (A8) are consistent. Let
us note that this feature has been achieved by the re-scaling of directions d*=

=1 s* [2].

_ The above method is a stochastic analogue of the method from [21] Another
stochastic version was analysed in [11], [12] for smooth convex problems.

Exampie 2 /
Let xe X, ze Z, ¢20. We define the subpreblem SP (x, z, ¢)
max # '
subject to {z,5)+n<0,.
(Ve (0, sS+q<0  for _iel(x,e),
llsll <1,

where I (x, &)={1<i<m: g; (x)=—¢}. We denote by 7 (x, z, &), s (%, z, &) any solu-
tion of SP (x, z, €). Let &, | O wp 1 and let Dy (x, 2)={deR": d=1 (x, 2, &) 5 (¥, Z, &)}
Evidently, the set X* of ail stationary points of (P) has the form
X*={x*e X: min 75 (x,v,0)=0}.
v€EJF (x* )

Let us verify (A9). If x’ ¢ X* then there exists >0 such that # (x’, 2, 0)>2y
for all v € dF (x’). We can find 6>0 and >0 such that I(x,&)=I(x',0) for xe
€ U; (x)nX. Let us define the point-to-set map T: XX [0, 6]--Z (R), T (x, 0)=
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=(x, U5 (OF (x)), &). Since I(x, &) is constant within U;(x’), then 5 (-,-,?) is
continuous over (U; (x)NX)XZ. Proceeding as in Example 1, we can prove
that the map 7 is closed on (U; (x")NX) X [0, 1]. Therefore we can find J € (0, 6]
such that # (x, z, 8>y for all x e U, (x")NX, ze Uy; (OF(x)). Next, 7 (x, z, &)=
21 (x, 2, &) for & € [0, &]. Finally, U, (VF,(x)) = U,5(0F (x)) for sufficiently large k.
Therefore <z, d)< —9* if deD,(x,z), xe U, (x")nX, ze Us(VF(x)) and k is
large enough. For sufficiently small & we have also (VF,(x), d>< —% y*> which
proves (A9).
The question of 7,-feasibility of the directions d* is more complicated than in
Example 1. For i € I (x*, &) we have

& (X +1d")< g (¥ + Vg (%), s+ L, 22 nf 1P < g () + 2 (— 1+ Cy 1)

where C, is a bound for L, [|s"||. If 7 ¢f (", a}c) then in general we can guarantee
only that
g (0 +1dD< —g+Chr v

for some constant C,. Thus, to be sure that (3.4) and (A7), (A8) are consistent we
should impose on the sequence {¢,} conditions (A7), (A8) with 7, replaced by &.

~The method analysed in Example 2 is a stochastic version of the classical fea-
sible direction algorithm [17], [22], [23]. Versions similar to curs were suggested
in [1], [8] bat the lack of re-scaling of directions and the lack of any assumptions
on the sequence {¢} resulted in certain inaccuracies, connected with incosistency
of some assumptions.

Example 3
Let x € X, z€ Z, 0. We define the subproblem SP (x, z, ¢):
“min {z, 5>
subject to {Vg;(x), s)+e<0 for iel(x,s),
lIsll <1,

where I (x, ¢) is defined as in Example 2. We denote by s (x, z, €) any solution of
SP (x, z, €) and if the feasible set of SP (x, z, ¢) is empty, then we set s (x, z, &) =0.
Let ¢, 40 wp 1 and let Dy (x, z2)={d e R*. d=s(x, z, &)}. For simplicity we assume
that for each point x € X the gradieiats Vg; (x) of the constraints binding at x are
1inea.rly independent. Then the set X* of all stationary points of (P) has the form
Xr=Ix*ec X: max (@, s(x* 2 0)}=0.
] veJF (x*)
Let us verify (A9). If x’ ¢ X* then there exists >0 such that (v, s (x', 7, 0)>< =3y
for all v e dF (x*). Under the assuned constraint qualification we can find §>0
and &>0 such that I (x, &=1(x’, 0) for x € Uz (x")NX and the feasible set of SP (x,
z, &) is non-void for xe U; (x)N X, ¢€[0,&], ze Z. Let us define the map T':
Xx[0, 8]>2 (RY), T(x,0)={(z,5(x,2z8) :2€ Uy (0F(x))}. It may be easily
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proved that T is closed on (Ujz(x")NX)NI0, §]. Therefore we can find & (0, 5]
such that <z,5(x,z8)<—2y for all xeU;(x")NX, ze U,;(dF(x)). Next,
2,5 (x, 2, 8))<<z, 5 (¥, 2, &)) for g € [0, &] and also U,(VF.(x))<=U,s(dF (x)) for
large k. Therefore <z, d)< —2y if de Dy (x, 2), x € U;(x)NX, z € U;(VF(x)) and
k is large enough. For small § we have also {VF;(x), d)< —y which proves (A9).

Let us verify whether (3.4) and (A5)-(A8) are consistent. If i e 1(x*, &) then

x g (x*+1d")< =1, +C, 72
If i ¢ I(x* &) thea in general we have only
8: (5 +1d9)< 8+ Cy 1

In both cases we see that feasible steps 7, will tend to zero as fast as the parameters &,.

Therefore we should impose on the sequence {g} conditions (A7), (A8) with 7,
replaced by ¢&.

The above algorithm is a stochastic version of the method from [24] (see also
[17]). Following the above-sketched manner one can easily prove convergence of
stochastic nondifferentiable analogues of various classical feasible direction methods
(see [20] for smooth stochastic examples).
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Stochastyczne metody kierunkéw dopuszczalnych dla
niegladkich probleméw optymalizacji stochastycznej

W artykule rozpatrywane s3 stochastyczne metody kierunkéw dopuszezalnych dla niegladkich
i stochastycznych problemow optymalizacji. Przedstawiono model algorytmu wykorzystujacy od-
‘wzorowania wielowarto$ciowe oraz udowodniono zbiezno$é przy ogblnych zatozeniach dotyczacych
odwzorowan opisujacych metode. Na zakonczenie, wykorzystujac ogélng toeri¢ stworzono sto-
chastyczne, zorientowane na funkcje niegladkie odpowiedniki pewnych klasycznych algorytméw
kierunkow dopuszczalnych.

CroxacrTaueckue MeETOXbI NONYCTHMBIX HANPABJICHHH ISt
HETJIAAKHX 33729 CTOXACTHYECKOH ONTHMH3AIHH

B crathe paccMaTpEBAIOTCS CTOXACTHIECKHE METONEI NONYCTHMBIX HAIpABIeHANR IS He-
TIAAKWX ¥ CTOXaCTHYECKHX 3ajad onTmMmusammu. IlpencrasiieHa MOIENb ajJOPATMA, HCIOJb3yIo-
Ias MHOTO3HAYHEIE OTOODAXEHH, a TAKXKE HOKA3aHA CXONEMOCTH IPE OOIIMX NPEIHOCHIIKAX,
KACAIOIEXCA OTOOPaXKEHu ONMMCHIBAIOIMK. METOZH. B- 3aKIIIOYCHUHA, HCHOb3yA OOINyI0 TEOpHIo,
CO3JaHEl CTOXACTHYECKAE, OPHEETEPOBAHHEIE HA HeTaakue GbyHKIH, AHAIOIE HEKOTOPHIX KIIaCCH-
YECKHX AJTOPETMOB HONYyCTEMBIX HANPABIICHWI.
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