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In the paper stochastic feasible direction methods for nonsmooth and stochastic optimization 
problems are considered. A point-to-set map model of the algorithm is given and convergence 
is prov$)d under general assumptions on mappings describing the method. Finally, the general 
theory, is used to develop stochastic nonsmqth functions oriented analogues of some classical fea
sible direction algorithms. 

1. Introduction 

In this paper we discuss stochastic feasible direction algorithms for the solution 
.of the problem 

(P) min F(x) 
xeX 

X= {x ERn: g1 (x)~O for i= 1, ·~·· m}, 

where g 1> ••• , g111 and Fare real-valued functions defined on Rn. It is assumed througout 
this paper that the set X is compact, the function F is Lipschitz continuous on an 
open set f!C containing X and the functions g1 , ... , gm are continuously differentiable. 
In particular, we are interested in the case, when F is a non smooth function, possibly 
defined by 

F(x)=Ef(x, 0), 

where f: Rn x8--?R1 and (6>; f!J, P) is a probability space. The random event e is 
used here to represent all stochastic factors, i.e. f(x, e,) denotes the noise-corrupted 
value of F (x), connected with an event ek. 

Problems of this kind arise in various fields of technology and management, 
such as stochastic optimal control, hierarchical control, long-term planning, etc . . 
(see e.g. [5], [16], [19]). We mention here two typicd examples. 

The stochast~c minimax problem 
Let q;0 : Rn x..R1 x 6>-+Rl, Y c:R1 and let Fin (P) be defined by 

F(x)=Emax q;0 (x,y, 0). 
yE y 
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The tWo~;t~ge itochdstic programming problem 
Let?~ fPJ:RnxR' xe--.,..R\ j=0,1, ... ,k, and let Y(x,O)={yeR1 :f!JJ(x,y,O)~O. 
= 1, ... , k}. We define Fin (P) by -

F(x)=E min f!Jo (x, y, ()). 
yeY(x, e) 

In both cases F is in geE-eral a nonsmooth function, even if the functions fPJ. (., y, ()) 
are differentiable. ' · . · · · · • .:;. 

When dealing with problems under consideration~ we'tneet t~o basic duflcultie~. 
The first one is the nonsmoothness of the objective function. Even in the determi· 
nistic case it causes serious difficulties for both theory and computations (see e.g. 
[3], [4], [13], [14]). The second difficulty is connected with the stochastic nature 
of the problem. It can hardly be assumed that it is possible to compute the value 
ofF at a given x; we can only observe noise-corrupted values f(x, 01), where 01 

is a draw of 0. This feature makes it necessary to use for the solution of (P) stochastic 
approXimatio:m: type algorithms ~see e.g. [5], [6], [8], [H]," [18]) . . 

.. The principal objective of this paper is to ' develop a unified. fra:il1ewcrk 'for the 
construction' of . stochastic feasible direction algoritlu;iis for' (P). Thes'e . algorithms 
construct stoch~stic vect'ors, which correspond in a certain sen~ to geU:eralized 
gradients of the objective function. The vectors are used in direction-finding sub· 
problems which produce random search directions. We note here that some alg~ 
rithms from this class were suggested in [1], [12] for smooth problems, and in [8] 
an algorithm for noJ;J.smooth problems has been proposed. In this paper we shall 
give an abstract point-to~set map model of the algor~thm, similar to those employed 
in [9], [7], [22] for deterministic algorithms. For this, model we shall formulate 
general assumptions, under which the algorithm converges with probability one to 
the set of stationary points vf (P). It will be shown that the general framework makes 
it possible to construct stochastic analogues of many classical feasible direction 
algorithms. In this sense the present paper extends the approach developed in [20] to 
the class of nonsmoot~ pr,oplems. The problem ofthe no:i:fsmo9thness of the obJective 
function will be overcome by the generation of a sequence {F"} of smooth fUnctions 
convergent uniformly to F. The functions F", constructed 'by means of integral 
transformations of F~ are 'used iJ;J. the general model OI)ly ~1.d they do ~ot app~al 
in definite algorithms. This idea -was emr.Ioyed fer nonsmooth optimization in .£8]. 

In . § 2 we review briefly important. properties of Lipschitz continuous functions 
and we remind necessary o'ptimality conditions for (P). In § 3 we describe the general 
structure of the algorithms under consideration and we make all relevant assu~p
tions. §§ 4 and 5 are devoted to the convergence. ~nalysis. In §

1
6 we show practical · 

metbods f6r the construction of random ve9fors' correspoJ;J.ding to the ' generalized 
gradients of'the objective function \in the 'sense of tlie assumptions.from § 3): Finally, 
in § 7 we discuss sonie oefinite direction-finding subproblems taken from determi
nistic nonlinear-programming and we prove (on the base of, the· general theoty 
from the previous sections) the convergence of the resulting stochastic feasible di
rection algorithms. It should be stressed that the algorithms considered here are 
adapted to off-line comJ?utatiom wite random effects simulated in the computer. 
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Iii the paper we use II•: II to del'lote· the Euclidean nor:m in Rn l:).nd II• II* denotes 
an arbitrary norm in Rn. We denote by U6 (x) the o-neighborhood of x,. i.e. 
u6 (x)={y E R": lly-xll~o}. If VcR" then Uc~ (V)={y E R": inf lly-vll~o, v E V}. 
For a closed convex set ZcR"·we denote by llz the orthogonal projection on z. 
Le. y=llz (x) if yeZ and lly-xll=minllz-xll, zeZ. If XcR" then f/ (X) denotes 
the set of all subsets of X. We denote by (0, F, P) a probability space and we use 
w to denote-a single element of 0 (a sample point). The event w corresponds to 
a single run of the algorithm, and so -D is the space of all possible sequences of 
simulation results necessary to generate one path {xk}. We use E~ to denote the 
mathematical ~xpectation of a . :random variable ~: Q-->;R" and E{e/F,} . denotes 
the conditional expectation with respect to the u-field F,cF. We use abbreviation 
"wp 1" for ''with probability one". 

- l 

2. Preliminaries. 
. ' 

In this section we. shall recall briefly some important properties Qf -,Lipschitz 
continuous functions. Let fl: .cR" be open and let F: R"-·+R1 be Lipschitz on fl', 

· i.e. there exists a constant L spch that 

IF(xt)-F(x2)1~Lilxt-x211 · forall ' x1>x2efl:. 

Let x e f£, de R" and let 

F 0 (x; d)=Iim [F(x+h+'rd)-F(x+h)]J-r. 
h-.0 
~lO 

The generalized gradient ofF at x is defined by 

oF(x)={v E R/: (v, d)~F0 (x; d) fqr all dE R"}. 

(2.1) 

(2.2) 

f<2.3) 

The following propositi0n collects ·together important properties of F, F 0 and oF 
from [3]. 

PROPOSITION 1. 

(a) oF (x) is nonempty, convex and compact. 
(b) F0 (x; d)= max (v, d). 

veoF(x) 

(c) F is differentiable almosteverywhere in fi and oF(x) is the .convex hull of all 
the points v of the form · 

v=Iim VF(x') 
1-+ro 

where {f£1}-->;x and F has a gradient VF at each f£1 e fl'. 
(d) oF is bounded on bounded subsets off£ and the mapping x-->;oF (x) is upper-

semicontinuous (closed) on f£ .. 
Let us now consider the problem (P) withg1 (i,;;, 1, ... , m) differentiable and FLipschitz 
on an open set f£ containing X. Proposition 2 to follow is · a simple consequence 
of general theorems from [4]; [14]. 
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PROPOSITION 2. If x is optimal for (P) then there exist v E oF (x) and u1 ~0 (i = 
=0, 1, ... , m) such that 

m 

u0 v+}; Ut Vg1(.x)=0 
1=1 

u, g1 (x)=O, ~= 1, 2, ... , m, 

m 

}; u,=l. 
1=1 

A point x which satisfies the above necessary conditions of optimality will be called 
stationary. 

3. General feasible direction algorithm 

In this section we give a general point-to-set map description of stochastic fea
sible direction algorithms for the solution of (P) and we formulate sufficient con
ditions for the convergence with probability one to an abstract solution set X*. 

Let ZcRn be a closed convex set. Let the sequences {xl'}cX, {dk}, {zrc}cZ 
<>f Rn-valued random variables be defined by the relations 

dk E Dk (xi', zk), 

zk+l =flz (zk+Pk (c!;k-zk)), zoE z, 

(3.1) 

(3.2) 

(3.3) 

where the Dk 's are some point-to-set maps, i.e. Dk: XxZ-->fJ (Rn) for all k~O. 
Let !Fk be the minimal a-algebra which measures ((x0

, d 0
, z0

), ... , (xi', dk, zk)). 
We assume that random variables rk~O, Pk~O are !Fk-measurable and rk is chosen 
so as to satisfy 

xk+rk.dk EX 

for all k~O. The Rn·valued random variables c!;k satisfy the relations 

E{!;k/fFk}= VFk (xk)+b\ 

(3.4) 

(3.5) 

where Fk: fl'-->R1 is a continuously differentiable function. We assume that for all 
x, y E fl' and all k~O the functions Fk satisfy the inequalities 

IFk (x)- F (x)i-:::; ak, 

IFk (x)-Fk+ 1 (x)l ~ [Jk, 

IIVFk (x)- VFk (y)II~Jckll x-yll, 

~- IIVFk(x)-VFk+l(x)ll~,uk,' 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

where the variables ak, [Jk, Jck, Ilk are !Fk-:measurable. Let X* eX be a "solution 
set"; note that in mathematical programming X* is not necessarily identical with 
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the set of actual solutions of (P), e.g. X* may b~ the set of all stationary points 
of (P). We assume that the set F(X*) is at most-eountabte. We make the following 

assumptions. 

(A1) max min UVF"(x)-zll--?0 wp 1. 
xeX zez 

(A2) There exists a constant C such that lld"II~C and E{II~"II2/~"}~C wp 1 for 
all k~O. 

00 

(A3) 2; E{p~+p"IWII}<oo. 
k=O 

00 

(A4) }; Pk=oo wp 1. 
k=O 

00 

(A6) }; Br; <oo. 
k=O 

00 

(A7) }; ""=oo wp 1. 
1=0 

(AS) Pk/1:k--'i>O and OC"c-?0 wp 1. 

(A9) If x' ¢:X*, x' EX then we can find j~O, c5>0, y>O such that for all 
xE U6 (x')nX, k~j, zE U6 (VF" (x)), dED"(x, z) there is (VF" (x), d)~ -y. 

Under the above assumptions we shall prove that for P-almost all roE Q all accumu
lation points of the path {xk (co)} belong to X*. 

Before proceeding to the converge11ce analysis let us· make some comments. 
The general algor1thm (3.1)-(3.3) may be considered ~as a two-level method. The 
auxiliary procedure (3.3) generates the sequence {z"} by means of averaging of ~i 
(i<k). The basic algorithm (3.1)-(3.2) uses z" to produce a feasible direction dk and 
makes a feasible step in the direction d". We shall see in § 5 that (3.2) may be con
structed as in classical feasible directions methods of nonlinear programming with 
z" treated as a gradient of the objective function. 

The filter (~.3) makes it possible to prove convergence without special conditions 
imposed on line search. This is due to the stabilizing effect of the operation of 
averaging. 

4. Convergence of the auxiliary averaging procedure 

In this section we shall prove that under the conditions of § 3 zk- V Fk (xk)--:;..0 wp 1. 
To do this we shall use the following result [5]. • 
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l1EMMA t . Let: (0, F., P) be·aptobability space and let {F.k} be an increasing 8equence 
of a-fields contained in >ff.. Let {11k}, {zkt be sequences of f7k-measur.able R"-vatued 
random variables satisfying the relations 

zk+l =liz (z"+ Pk (~k_.zk))~ z0 E Z, 

E g"j fF k},=11k +_ b\ 

where pk';;:O and bk are F"-measurable and the set Zc::.Rn is convex and closed. 
Next, let 

(a) all accumulation points of the sequence {11"} belong to Z wp.l: 

(b) _ there exists a constant C such that E{llc;"II2/F"}~C wp 1 for all k";;:O, 
00 

(c) _r E{p!+PklWII}<oo, 
k=O 

00 

(d) _r Pk=oo wp 1 and 
k~O 

(e) 1111"+1-,1''11/Pk->-0 wp 1. 

Then z" -11"--'70 wp 1. 

Proof of this lemma may be found in [5] (Ch. 2., thm 4.1). 
As an immediate consequence of the above general result we ·obtain the follo"'ing 

property of the auxihary aigorithm (3.3); 

LEMMA 2. Let (Al)...:.(AS) hold. Then z"- VF" (x")-->0 wp 1. . 

Proof. We shall show that the sequences {VF" (x")} and {z"} satisfy the assumptions 
of Lemma 1. Assumptions (b), (c), (d) are identical with (A2), (A3), (A4). Let us 
verify (a). ' · 

Let V 00 be any accumulation point of-the sequence {VF" (x")}. Then there e~dsts 
a set of indices Yl' such that 

V
00 =lim V Fk (x"). 

k->00 
k e if' 

Itfollow~from(Al) 1) that we can find a sequence {~k}c::.Z sue}}. thatv"- VFk (x")-+ 
--70. Therefore · 

v00 = lim vk e Z, · 
k-+.oo 

which proves (a). k eJ'(' 

Let us now verify (e). If follows from (3.8), (3.9), (3.1) that 

IIVFk+t ~.,xk+ 1)- VF"(x")II~IIVFk+t (xk+ 1
)-VFk (xk+ 1)1l+ 

· +IIVF"(x"+.1)- VFk(x")ll~.u"+.A" r~IWII . 
. 1 ) The assumption (AI) is used only here. We shall see in §6 (formula (6.3)) th<J.t (AI) holds 

if lJ oF(x)cz, which simplifies the question of the choice of the set Z. · 
xeX · . 
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Since dk is bounded then it follo.ws from:-(AS) that 

IIVFk+t (x~ti)- VFdX')II/Pk--J>O wpl, which completes the proof. • 

·s. Convergence of the basic algorithm f'. t• ')• 

In this section we establish convergence wp l of the sequence {xk} to the ~t X*. . . 
The analysis will be based on the following re.sult [15]. 

THEOREM 1. Let X*c.Rn. Let {X'} be a bounded sequence.in Rn, which satisfies the 
following conditio~: . 
(a) if a subsequence {xkheJt"" converges to x' eX* then JIX'+ t...:.,Xkll~-~ fork e .Yr. 
(b) if a subsequence {X'he.?f' converges to· x' ¢:X* then there exists e0>0 such that 

for all e e (0, e0 ] and all k 0 E .Yr the tndex ' 

fi 
s (ko, e)=min {k>k0 : Hx.,k-X'oll>e} 

is nile; 
(c) there exists a continuous >junction W(x), attaining on X*· an at most countable 

set of values, such that if- {X'he.,r--;..x' ¢:X* then ·there e~ists e1 >0 such that 
for all e e (0, ed 

,I 

where s.(k0 , e) is defined as in (b). - , 
Then the sequence {W (X')} converges and all accumulation on pofn,ts qf the s~que11ce 
{X'} belong to X*. . . 

In what follows we shall sho;w: that for P-almost_all we .Q ,the paths {X' (m)} _of 
the process { x"} satisfy the asumptions Qf Theorem .1. , . . · ., 

Let {X' (co)} be a _ path Qf the process {xk}. !ret e>Q k0 :,)=0. We,introduce the 
denotations . • r • ' , . 

1
• ' ' . 1 

J ' • 

.. I(ko, e, ro)={k~ko· : xi (co) E u.-(x~0 tea)} for all ko~i~k~, 

s (k0 , e, co)= sup f(k0 , e, co)+ 1. 

LEMMA 3. Let (Al).:.(A9) hold. Let {xk (w)he~ be a' subsequence convergent to 
x' (co) ¢: X*. Then wp 1 there exist e0 > 0, y > 0 dnd 'k~1n :;::,:0 sucli' 'that . if · k0 e .Yr, 
ko ~kmln• e E (0, eoJ then for all k E I (ko. e, co) we have . ! . ~ . 

k-;1 f- I 

1. <l 

F'(xlo(ca))~F(xko(~))-y}; t 1(ro)+r ,ko), (5.1) 
l=k0 

wh~re lim k
0

_, 00 r (k0 )=0. 

Proof. For ali e>O, k0 e.Yt' ·.and alike/(k0,e,ca) it follows from (3.7), (3.8) 
that 

Fk+l (xk+ 1)-Fk(X')~ [Fk+t (xk+ 1)-Fk(xk+ 1)] +Fk(xk+ 1)+ 

· -Fk(xk)~Pk+7:k(VFk(~), dk)+A.~< 7:ill dkll 2
, 
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where d" E D~c (x", z"). Combining (J.6) and the above inequality we obtain 

k-1 

F(x")-F(x"o)~e<~c+cx~c0 +}; [,rt(VFt(x1
), d1)+/31+A1 r; lld1

11 2]. 

' i=ko -

It follows from (A9) that we can findj~O, o>O, y>O such that (VF1(x1), d~)~ 
~ -2y if i~j, x1 

E U6 (x') nX, z1 
E U6 (VF1(x1)). 

By.virtue of Lemma 2, z1
- VF1 (x1)--l>() wp I. Next, llx1 -x'll~llx1 -x"oll+llx"o-x'll~ 

~e+llx0 -x'll, and ix"0 -x'll--3>(} as ko--HX>, ko E :%. Therefore-'wp I we can find 
to (w)>O and jl (w) such 'that z1 (w) E u6 (VFj (x1 (w))), x' (w) E u6 (x' (w)) for all 
k0~j1 , k 0 E :%, e E (0, e0 ], i E I(k0 , e, w). Then 

F(x (w))- F(x"o (w))~ ex" (w)- e<~c0 (w) + 

1c-1 ( p,(w) ) 
+ .? . -2y+ 

11 
(w) +At (w) r1 (w)lld1 (w)ll2 

t 1 (w). 
1-ko 

(5.2) 

It follows from (A2), (AS), (AS) that f3tfr1 + A1 r 11ld111 2--l>() wp I. Thus wp l we can 
find kmt~;~ (ro)";?:.jt (w) such that if i;;::kmtn then /31 (ro)/t1 (w)+A1 (ro) r 1 (ro)lld1 (w)ll2 ~ y. 
Therefore for k0 ;;::kmin we obtain from (S.2) the inequality 

k-1 

F(x" (w))- F(x"o (w)) ~- y }; r 1 (ro) +ex" (w) + C<Ji
0 
(w) 

t=k0 

which holds for all k E I (k0, e, w). The above inequality, combined with (AS), 
completes the proof. • 

THEOREM 2. Let (Al)-(A9) hold. Then for P-almost all w the sequence {F (x" (w))} 
converges and all accumulation points of the sequence {x" (ro)} belong to X*. 

Proof. We shall apply Theorem 1, setting W(x)=F(x). Assumption (a) is sa
tisfied since d" is bounded ((A2)) and r~c--)>0 wp 1 ((AS), (A3)). Let {x" (w)heJrc-:.
--;..x' (w) ¢:X*, and let (b) be false. Then for all e>O we can find j E :f( such that 
x"(w)eU,12 (xj(w)) for all k;;:=:j. Hence x"(w)eU,(x"0 (w)) for all k ;;:::k 0 ;;:=:j. It 
follows from Lemma 3 that for sufficiently small e>O and sufficiently Jarge k0 the 
inequality (S.l) holds for all k;;:::k0 • Then boundedness ofF on X contradicts (A7). 
Thus (b) is satisfied for almost all ro. 

We shall verify (c). Since s(k0 ,e,w)-I ei(k0 ,e,w) and P~c(w)--3>(} then for 
all e E (0, e0 ] we. can find j E :It' such that s (k0 , e, w) E I (k0, 2e, w) for ah k 0 ;;:=:j, 
k 0 E .Yr. It follows from Lemma 3 that for suf_ficiently small e>O and sufficiently 
large k 0 we have 

, s(k0 ,e,co)-1 

F(x•Cko,•,co>(w))~F(x"0 (w))- y ,2; r1(w)+r(k0 ). (S.3) 
i=k0 

On the other hand 
s(k0 ,e, ID)-1 

e < llx•Cko, •, co) (w)- x"o (ro)ll~ C ,2; 'f; (ro). (5.4) 
t =k0 
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Combining (5.3) and (5.4) we obtain the inequality 

F(x•<ko,a,co>(w))~F(xko (w))- yc:JC+r (k0). 

181 

After transition to the limit with k 0--?oo, k 0 E ~ we obtain the required inequality • 

• 
6. The construction of gradient estimates ~k. 

The construction of the sequence {Fk} is based on the properties of Lipschitz 
functions collected in Proposition 1. Let II· II* be an arbitrary norm in R" and let 
Q={ueR": llull*~l}, S={ueR": llull*=l}. Let h:R"--?R1 be a nonnegative inte
grable function with support Q and let J h (u) du= 1. Let p>O. We define . \ 

F(x,p)= J h(u) F(x-pu) du. (6.1} 
R" 

It follows from (c) of Proposition 1 that P ( ·, p) is differentiable f~r all p>O such 
that X+pQcf!t. The gradient is given by 

V.x F(x,p)= J h(u) VF(x--;pu) du. (6.2) 
R" 

Hence, by virtue of points (a) and (d) of Proposition 1, for any compact set Xcf!t~ 

lim ma4 min llv- V.x F(x,p)II=O. (6.3} 
p~O xeX ve8F(x) 

Next, applying to (6.1) the rules of differentiation of the convolution of distrioutions> 
we obtain 

~ 1 J V.x F(x,p)=-,- Vh(u) F(x-pu) du, 
p R" 

(6.4) 

( 
ah ah ah) 

where Vh= a-, -a , ... ,a- is a generalized vector-function (see e.g. [7]). ·A 
u1 u2 "'" . 

particularly simple and important for practice case of (6.4) is that with h (u) 
constant within Q. Let V be the volume of Q and let a he the area of S. Then we 
obtain from (6.4) the equalities 

and 

~ (J J 1 VxF(x,p)=y;- -N(u)F(x+pu)dS 
yp s (J 

~ (J f 1 VxF(x,p)=
2

u · -N(u) [F(x+pu)-F(x-pu)] dS, . 
y p s (J 

where N tu) is the outer normal to S at u e S (see [7]). 

(6.5) 

(6.6) 

Let us define Fk(x)=F(x,pk) and let pdO. It follows from (6.1) that (3.6) 
holds with cxk=const·pk, and (3.7) holds with Pk=const·lh-Pk+ll· Next, it fol
lows from (6.6) that (3.8) holds with J..k=const/Pk, and (3.9) holds with Jlk=const x 
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IPk,...Pk+JiiP~<· Then conditions (AS) and-(A8) take on the1form: (AS') t:k/Pk P~< 'HPk+ 

- Pk+ 11/Pk Pc~O and (AS') iP"-Pk+ 1\/r"--~o. Of course, it is very difficult to compute 
the value of Fk (x) at a given x. However, the algorithm from § 3 does not use the . 
values 9f F" (x"); the 9nly-,information required are the vectors ~k which satisfy 
(3.5). The formulae (6.1), (6.2), (6.5) and (6.6) make it possible to construct various 
estimates of V F" (x"), satisfying .the required conditions. W; shall r.how four typical 
examples for the stochastic case, i.e. the case .when _F(x)=Ef(:?C, 0). I~ or4er to 
satisfy' (Al) we shall assume that the inequlility 

'·· ff(x, ·())- f(y, 0)1 ~LIIx'-}'11 - (6.7) 
'~- • ' , • ' ! :\ .( :'"J _ I ) ' ' ' 

holds_ with so~e-f > 0 for all x, y eX and P-a~ost all e. In what follows 01<· 1 denote 
samples ofO, su,ch that o~<· 1 is independent of all xl, di, zl ()~k). 

Example 1 (analytical gradients) 

Assume that for given x, () it is possible to compute an element of o,.j(x, 0). 
Then we can define '~"=v", where v" e a,. f{X"-Pk tf, ()k.O) and u" is· drawn rarldoinly 
from a uniform distribution over Q. It follows from (6.2}that (3.5) holds with 'hk=O. 

~' . \ 
Example 2 (naiTe gradient estimation) 

· If it is not possible to compute an element of a,. f(x, 0) then we can define 

1 n . . -

~"=A }; [f(x"-Pk u"+ .dk e1
, O".t)- f(x"-p" u"- .d" e1

, 0"'1)] e1 

• k 1=1 ' . . . . . 

where u" is drawn randomly from a uniform distribution over Q and e1 is the unit 
vector of the i-th coordinate. It follows from (6.1) that (3.5) holds with bias li' of 
the range .dkfPk· 

" 
·Example 3 (gradient estimation· on the sphere) 

Let !lull* =!lull. Then a=nV and N(u)=u in (6.5), (6:6). Let n">O for all k;;:::O 
and let '· · 

n nk . • - .• 

~"=~}; [f(x"+p" u"· 1
, ()".1)- f(x"-Pk u" ·1, 0"· 1

)] u"· 1
, 

~<Pk l=t . 

where tf.t (i= 1, 2, ... , nk) are drawn randomly from a uniform distribution over S. 
It follows from (6.6) that (3.5) holds with b"=O. 

Example 4 (gradient estimation on the cube) 

- ' 

Let !lull*= l!rJIL,, =max lud. Then a=nV in (6.5), (6.6) and, N(u)=sigp. (u) • e•, where 
1.::1.::n ' ' . 

lu.i =llulloo:' Thus, basing on (6.5), we can construct the following algorithm for ·the 
estimation of VF" (x"). A random point u" is -drawn from a uniform distribution . . 
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in Q and 2n points in S are defined by projecting u" on the faces of the hypercube Q: 

• .k, 1-(u" u" 1 . .Jc .Jr.) u·+ - 1• ••. , 1-1• • Ui+1• ... , un' 

U"·
1

- (u" u" 1 ·u" u") -- 1••••• 1-1•-' 1+1~···• n • 

i=1; ... , n 

Finally, the vector 

is computed. Since N(u~ 1}=e1 and N(u".:. 1)= -e1
, it follows from (6.5) that~" sa

tisfies (3.5) with b"=O. 
Let us note that in all -the above examples (A2) holds by virtue of (6.7); that 

is why we have taken the same O"· 1 in square brackets (this is possible in off-line 
computations). -

It is also possible to use in (6.1) nonuniform functions h ( ·) which may yield 
new interesting algorithms for the estimation of V x P (x, p ). 

Finally, let us note that the problem of estimating the derivatives of smooth 
functions was discussed extensively in [10], and in [8} the method from Example 4 
was evaluated by direct differrentiatlon of P ( · , p ). 

7. Some definite algorithms 

In this section we shall discuss methods for the construction of mappings D" 
satisfying conditions from § 3. Our aim. is to show that only slight modifications 
are necessary to develop stochastic analogues of many deterministic feasible di
rection algorithms. 

It will be assumed throughout this section that the sequence {F"} is defined as 
in § 6. We shall also assume that the gradients Vg,· (·}of the constraint functions 
of (P) are Lipschitz continuous. 

E;xample 1 · 

Let x EX, z e: Z. We define the subproblem SP (x, z) 

max 11 

(z, s)+n~O, 
subject to 

g;(x)+(Vg1 (x),s)+n~O for i=l, ... ,m, 

llsll*~l. 

Let 11 (x, z), s (x, z) denote any solution of SP (x, z) and let D" (x, z)=D (x, :Z)= 
=={dE Rn; d=q (x, z) s (x, z)}. Let X* be· the set of all stationary points of (P). 
Evidently' 

X*={x* EX: min 1f (x*, v)=O}. 
,ve8F(x*) 

3 
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We shall prove that the map D satisfies assumpti~ns of § 3. Let us verify (A9). If 
x' ¢X* then there exists y>O such that 11 (x', v)~2y for all v E oF (x'). Let us con· 
sider the poinHo·set inapT: Xx [0, 1]--;..9' (R1

), T(x, J)==11 (x, U2~ (oF(x))). It fol· 
lows from Proposition 1, (d) that the map (x, J)--;.(x, U2~ (oF(x))) is closed and · 
uniformly bounded on Xx [0, 1]. The function 11 (·,·)is continuous. Thus the map 
Tis closed [22]. Since T(x', O)c[2y, co) then there exists J>O such that 1J (x, z)~y 
for all x E Ua(x')nX, z E U2~ (oF(x)). By virtue of (6.3) we can findj~O such that 
u~(VFk(x))cUzo(oF(x)) for all k~j and all XEX. Therefore (z,d)~-y2 if 
dE D (x, z), X E u~ (x')nX, z E u~ (V Fk (x)) and k~j. Since v Fk (x) E Uo (z) then for 
sufficiently small Jwe have (VFk (x), d)~ -t y2 which completes the proof of (A9). 

The only question to be clarified is the possibility of choosing a sequence {r"} 
in such a way that (3.4), (A7), (A8) hold. Let us make the denotations s"==s (x", z"), 
17k==11 (x", z"), d"=11" s". ~9r any r ~O we have the inequalities 

g1 (x"+rdk)~gi (x")+r1Jk(Vgi (x"), s") +L9 ?:
2 11i lls"ll 2 ~ 

~ (1 - 1:17") g t (x") + i11i ( -1 + L9 r Jls"ll2) 

where L 9 is the Lipschitz constant for Vg1 ( • ). Since' 1Jk and Jls"JI are bounded, we 
can find a constant C>O such that 

g1 (xk+rd")~(l-Cr) g1(x")+r11; ( -1 +Cr), 

which shows that ail ~"~ 1/C are feasible and (3.4), (A7), (A8) are consistent. Let 
us note that this feature has been achieved by the re-scaling of directions d" = 
==11" s" [2]. 

The above method ·is a stochastic analogue of the method from [21]. Another 
stochastic version was analysed in [11 J, [12] for smooth convex problems. 

Example 2 
I 

Let x EX, z E Z, a ~O. We define the subproblem SP (x, z, a) 

subject to 

. ' 

max 11 

(z, s)+17~0, . 

(Vg1 (x),s)+17~0 for iEI(x,a), 

Jlsll*~1, 

where I(x, e)={1~i~m: g1 (x)~-a}. We denote by 11 (x, z, e), s (x, z, e) any solu· ~
tion ofSP (x, z, e). Leted 0 wp 1 and letD" (x , z)= {dERn: d=11 (x, z, e")s(x, z, ek)}. 
Evidently, the set X* of all stationary points of (P) has the form 

X*={x ':' EX: min 11 (x, v, 0)=0}. 
v EoF(x* ) 

Let us verify (A9). If x' ¢X* then there exists y>O such that 1J (x', v, 0) ~2y 
for all v E oF(x'). We can find D>O and 8>0 such that I(x, e)=l(x', 0) for x E 

E U8 (x')nX. Let us define the point-to-set map ·r: Xx [0, b]-->.9' (R1 
), T (x, J) = 
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= (x, U26 (oF (x)), e). Since I (x, e) is constant within Uo (x'), then 1J ( • , ·, e) is 
continuous over (Ui (x')nX) x Z. Proceeding as in Example 1, we can prove 
that the map Tis closed on (U6 (x')nX) X (0, 1]. Therefore we can find o E (0, oJ 
such that 1J (x, z, e) ;::o y for all x E U6 (x')nX, z E U26 (oF(x)). Next, 1J (x, z, ek);::o 
;:::11 (x, z, e) for ekE [0, e]. Finally, Uo (VFk(x))c: Vz6(oF(x)) for sufficiently large k. 
Therefore (z,d)~-y2 if deDk(x,z), xEU6(x')nX, zeU6(VFk(x)) and k is 
large enough. For sufficiently small J we have also (VFk(x), d)~ -t y2 which 
proves (A9). 

The question of rk-feasibi1ity of the directions dk is more complicated than in 
Example 1. For i E I (xk, ek) we_ have 

g, (xk+rdk)~g1 (xk)+r11k(Vg1 (x~<), s~<) +Lu r 2 11; llskll2 ~g1 (xk)+r11; (-1 + C1 r) 
' -

where C1 is a bound . for Lu llskll2. If i rj: I (x1
', ek) then in general we can guarantee 

only that 
g; (xk+rdk)~ -ek+C2 r 

for some constant C2 • Thus, to be sure that (3.4) and (A7), (A8) are consistent we 
should impose on the sequence {ek} conditio~s (A7), (AS) with rk replaced by ek. 

- The method analysed in Example 2 is a stochastic version of the classical fea
sible direction algorithm [17], [22], [23]. Versions similar to curs were suggested 
in [1], [8] but the lack of re-scaling of directions and the lack of any assumptions 
on the sequence {e~<} resulted in certain inaccuracies, connected with incosistency 
of some assumptions. 

Exampl~3 

~et x eX, z E Z, e;:::O. We define the subproblem SP (x, z, e): 

min ( z, s) 

subject to ( Vg, (x), s)+ e~O for _i E I(x, e), 

llsiJ*~ 1, 

where I (x, e) is defined as in Example 2. We denote by s (x, z, e) any solution of 
SP (x, z, e) and if the feasible set of SP (x, z, e) is empty, then we sets (x, z, e)=O. 
Let ed 0 wp 1 and let Ddx, z)={d E R"; d=s (x, z, ek)}. For simplicity we assume 
that for each point x EX the gradie 1ts Vg, (x) of the consttaints binding at x are 
inearly independent. Then the set X* of all stationary points of (P) has the form 

1 
X':'={x*eX: max (v, s(x*,v,O))}=O. 

V E 8F(x*) 

LeLus verify (A9). If x' ¢:X* then there exists y>O such that (v, s (x', v, 0))~ -3y 
for all v E oF (x':') . Under the assu:ned constraint qualification we can find o > 0 
and e>O such that I(x, e)=l(x', 0) for x e U6 (x')nX and the feasible set of SP (x, 
z, e) is non-void for x E U~; (x') n X, e e [0, e], z E Z. Let us define the map T: 
Xx [0, C>]--;..911 (R1), T (x, o) = {(z, s (x, z, e)) : z e-U26 (oF(x))}. It may be easily 
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proved that r is closed on (U;;(x')nX)n[O, ~- Therefore we can find 0 E (0, 8] 
such that (z, s (x, z, 8))~ -2y for all X e u{j (x')nX, z E Uz{j(aF(x)). Next, 
(z, s (x, z, ek))~(z, s (x, z,'e)) for eke [0", ii] and also U6 (VFk-(x)) c U26 (8F(x)) for 
large k. Therefore (z, d)~ -2y if 'deDk(x, z), xe U8 (x')nX, ze U8 (VFk(x)) and 
k is large enough. For small owe have also (VFk(x), d)~- y which proves (A9). 

Let us verify whether (3.4) and (A5)-(A8) are consistent. If i e 1 (x\ ek) then 

l§t (xk+tdk)~ -rek+C1 -r2
• 

Ifi ¢I (x\ ek) thea in general we have only 
< ~ 

g1 (xk+rdk)~ -ek+~2 r. 

In both cases we see that feasible steps -rk wilJ tend to zero as fast as the parameters ek. 
Therefore we should impose on the sequence {ek} conditions (A7), (A8) with rk 
replaced by ek. · 

The above algorithm is a stochastic version of the method fiom [24] (see also 
[17D. Following the above~sketched manner one can easily prove convergence of 
stochastic nondifferentiable analogues of various classical feasible direction methods 
(see [20] for smooth stochastic examples). 
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Stocbastyczne metody kierunkow dopuszczalnych dla 
niegladkich problemow optymalizacji stochastycznej 

W artykule rozpatrywane s:t stochastyczne metody kierunk6w dopuszczalnych dla niegladkich 
i stochastycznych problem6w · optymalizacji. Przedstawiono model algorytmu wykorzystuj:tcy od
'wzorowania wielowartosciowe oraz udowodniono zbieZilosc przy og6Inych zalozeniach dotycz:tcych 
odwzorowan opisujllcych metod~. Na zakonczenie, wykorzystuj:tc og61nlt toeri~ stworzono sto
chastyczne, zorientowane na funkcje niegladkie odpowiedniki pewnych klasycznych algorytm6w 
kierunk6w dopuszczalnych. 

CToxacTtfllec..:ue MeTOALI AOnycTHMLIX uanpaBJiellllii AJlll 
uerJiaAJ(HX 3aAa'l CTOXaCTU'IeCKOH ODTHMH3a~IIH 

B CTaT.be paCCMaTpimaiOTCH CTOxaCTit'leCKHe MeTO.ZU,I ,liOIIyCTHMbiX ltaiiPaBJieHll:ii: ,liJIH Re
r rra)J,IO(X :u: croxacnl'lecmx 3a.lla'l onmMH3a~:u:. ITpe.r~craBJieHa Mo.ZJ;eJI.b arrropHTMa, :u:cnoJI.b3yro
ma.ll MH:Of03Ha'IID>Ie OT06pax<eiiiD!, a TaWI(e .ZJ;0Ka3alta CXO,li:HMOCT.b IIP:U: 06mJJ:x npe,liHOC.biJIKax, 
KaCaiOmJJ:xCH OTo6paxeJmil: On:HCbiBaiOIII,liX MeTO,ll. ,B. 3aKJIIO'Iemm, HCUOJI.b3Y.Il o6myro TeOpHIO, 
C03.r13ltbi croxaCT:H'lecme, opHe:ar:u:poBaRHbie 1ta :aerrraAJ<He «i>yHial.liH, a:aarror:u: HeKOTOPI>IX ImacCH
'feCK:Hx arrrop:U:TMOB .z~onycT.IiMbiX ItanpaBrreJmil:. 
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