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In the paper an integer linear programming problem is considered in which coefficients of the
objective function are given with uncertainty. Several levels of this uncertainty are described and
possible methods of dealing with inexact parameters of the problem are mentioned.

The case when the coefficients of the objective function are known only to belong to a given
convex set is discussed in details. Two extreme strategies consisting in seeking the solutions of the
problem under the assumptions that the objective function is the worst and the best possible are
considered. Corresponding max-min and max-max integer programming problems are discussed
and three algorithms for solving max-min problem are proposed. Small examples illustrating the
algorithms are given. .

1. Introduction

Almost all parameters of practical mathematical programming problems are
estimated with errors. On the other hand, available methods for solving these pro-
blems assume that the parameters of models are exact. To deal with the unceratinty
of data description several approaches are possible. Some of them, in the context
of integer programming and inexact objective function, are mentioned in Section 2.
The case, when the objective function coefficients of integer linear programming
problem are known only to lie in a given convex set is discussed in Section 3. Small
numerical=examples illustrating the algorithms proposed in Section 3 are given
in the Appendix.

2. Uncertainty Levels

Consider an integer linear programming problem (P)

max cT x
P) Ax<b
x>0 and integer
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Let us assume that the parameters of the constraint set (i.e. matrix A and vector b)
are exactly known and the uncestainty concerns only the coefficients of the objec-
tive function. The situation when the objective function of the problem is not known
exactly occurs frequently in practice. The coefficients of the objective function
represent often prices or profits which are estimated with errors and sometime are
assumed rather arbitrarily. Another reason, which motivates the analysis of pro-
blems with inexact parameters, is the simplification of mathematical programming
model with respect to real-life situation. For example, some nonlinearities of the
objective function and the dependence of prices on time are frequently neglected.

One can dlstmgulsh several levels of uncertainty concerning the objective func-
tion and in each case different approaches are apphcable The most frequent case
is when

(1) 4 particular objective vector ¢ is given and no additional information about
possible changes of objective coefficients is available.

In this case the problem (P) with ¢=¢ can be solved and the optimal solution x°
or, sometime, several optimal solutions can be obtained.

One can hope that the possible changes of the objective coefficients are “small”
enough not to destroy the validity of computed solutions. But even under this as-
sumption several questions immediately arrise. For example, one wants to know
for which changes of ¢ solution x° remains still optimal (or ¢-optimal) or which
solution obtained allows maximal changes of ¢. More formally: it is interesting
to find for a given optimal vector x0 the set C (x°) of all vectors ¢ such that ¢ e C (x°)
if and only if x° is an optimal (¢-optimal) solution of the problem

max {&x| Ax<b, x>0 integer}.

Another related question is, how the optimal value of problem (P) varies with
small changes of ¢. All of these questions belong to the sensitivity analysis which
has just begun to be developed for integer programming [6, 8]. 7

The approach presented above can be regarded as a passive one. In fact we
accept the solution x° while the sensitivity analysis is performed mainly for assuming
that the choice of x° has been good.

Quite different situation occurs, when

(ii) The set C of all possible vectors c is given. 3

One if faced with such a problem when, for example, it is possible to describe
the bounds for changes of prices but one can not predict the exact values which
will occur. This case contains also the problems for which the objective coefficients
‘are measured with known errors. Sometime one can not describe the exact values
of coefficients, but it is possible to establish the functional relations between them.
In all these cases instead of one objective vector ¢ we have the well described set C
of all possible realizations of c.

Several approaches are possible for such untypically stated mathematical pro-
gramming problem.
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Of course, one can choose an arbitrary vector from C and solve the problem
(P) with this vector. But in general there is no rule for such a choice. It is also pos-
sible to regard the problem stated as a multiobjective programming problem (in
general with infinite number of objectives) and try to find nondominated solutions.
There are also possible two extreme strategies: a “pessimistic” and an “optimistic”

* one which for a given set C yield minimal guaranteed profit and maximal possible

profit respectively.

The pessimistic strategy consists in seeking x* which gives maximal profit among
all feasible solutions under assumpticn that ¢ is the worst possible. It means that
for any x € X={y|Ay<b, y >0 integer} the following inequality holds:

min ¢T x*>min T x (1)
ceC CeEC

The pessimistic strategy gives minimal guaranteed profit v (P, C), where

v (P, C)=min cT x* )
ceC
The optimistic strategy consists in the choice of feasible vector x** e X maxi-
mizing the profit,.under the assumption that the objective vector is the most con-
venient, i.e., for any x € X the following relation is fulfilled
. max cT x**>max ¢T x 3)
ceC cecC
The optimistic strategy gives the upper bound v (P C) for all possible profits,
where
) (P, C)=max cT x** “)
ceC
Having found the values v (P, C) and v (P, C), we may characterize the problem
and its sensitivity on data changes. It also provides the decision maker with useful

_information about conservative solution (x*) and risky solution x*%).

It is interesting to note some connections between case (ii) and (i). Suppose
that we a given the set C and for a particular ¢ € C we have obtained the optimal
solution x° of problem (P). Then it is easy to see, that

ProrosiTiON 1. If Ce C (x°) then x¥=x%*=x0 ;
This foilows immediately from the definition of stability region C (v")
Although frequently it is too difficult to find the set C (x°), sometime we have
a subset € (x°) of C (x°) obtained as an inexpensive by-product of solving (P) (see
[5] and [8]). In this case We can try to use Proposition 1 with C (x°) instead of C (x°).
Different approach can be used when it is assumed that ¢ is a stochastic va-~
riable and

(iii) Probability distribution of c is known.

In this case the decision maker has several strategies characterized by the ex-
pected profit and the risk level. Two of them are the most straightforward.
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The first one consists in choice of feasible vector xF € X, which maximizes the
expected vaiue of profit. It is easy to see that in this case the following linear integer
programming problem has to be solved

xE=arg max {¢x|4x<b, x>0 integer}
where é=E(c) (E (*) denotes the expected value).
Another approach consists in calculating feasible solution x¥ € X which mini-

mizes a variance of profit with the assumption that the expected value of profit
is not less than a given value g. In this case a nonlinear programming problem

xV=arg min { f (x)|dx<b, cx>q, x>0 integer}

has to be solved, where f(x)=E (ch—-E (c"x))? is a quadratic function (see [7]
for methods of solving nonlinear integer programming problems).

3. Extreme Strategies in the Case when All Possible
Objective Vectors are Given

In this Section two extreme strategies mentioned in Section 2 are analysed.
We assume that in the problem (P) constraint matrix 4 € R®*" and right hand
side vector b € R™ are fixed. Thus the set

X={x|Ax<b, x>0 integer}

of feasible solution is also fixed. Assume that X is nonempty and finite.
Any realization of objective vector belongs to a given set CSR™
The pessimistic strategy as defined in Section 2 leads to the following max-min
problem :
x*=arg max min ¢¥ x (©)
XEX ceC
The problem (5) can be reformulated by introducing an additional variable
t € R into the following programming problem
max ?
t<cT x for any ce C
Ax<b, x>0 integer
teR

©

The problem (6) is a mixed integer programming problem with single conti-
nuous variable 7. If the set C is infinite (which is almost always the case), it is the
problem with infinite number of constraints. Mathematical programming problems
of this type have been considered in the context of continuous nonlinear programming
(see e.g. [1]). The first two algorithms presented in this Section employ the basic
ideas of methods used in infinitely constrained programming problems for discrete
case. Both of them construct the sequences of integer vectors {x*} and real vectors
{c*}, k=0, 1,2, ..., by solving auxiliary problems (Pk), (Sk) and (Qk).

Let us begin with the formal description of Algorithm 1.
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Algorithm 1

10, Choose e C

o=
Go to 2°
29, Solve the problem (Pk)
max ¢
(Pk) <N x, j=0,1, .., k-1
xeX, teR
Let x*, t* denote an optimal solution of (Pk).
Go to 3°

30, Solve the problem (Qk)
(Qk) min T x*

ceC
Let ¢* denote an optimal solution of (Qk).

If ()T x*>t* then STOP: x* is an optimal solution of the problem (% and
v (P, C)=t*
else
k: =k+1
Go to 2°,
By the step of the above algorithm a solution of pair of problems (Pk), (Qk)
is meant. If X is finite, then

ProprosiTION 2. The Algorithm 1 solves the problem (5) in a finite number of steps.

Proof. To prove the finiteness of Algorithm 1 it is enough to see that no vector
x* can be repeated before the optimality because if x*=x!, I>k, then ()T x*=
=(c")T x'=¢' and the stop criterion is fulfilled. Assume that algorithm terminates
after / steps. ‘

For the proof of validity of Algorithm 1 observe that for any k the problem
(Pk) is a relaxation of problem (5). So it is enough to prove that if the pair (¢, x*
fulfils the stop criterion (i.e.,

t’g(c')T xl

where ¢! is a solution of problem (Ql)) then (¢!, x*) is feasible to problem (5). To do
this we must check that

t'<c x! for any ceC (6"

But this is immediate from the definition of problem (Ql) and the fact that the stop
criterion holds. We have
t'< (T x'=min ¢ »*
3 ceC
which is equivalent to (6).

In the Algorithm 1 for any & the problem (Pk) is a mixed integer (with single
continuous variable) programming problem. So this step of algorithm may be
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very time consuming. It is possible to modify this step by replacing the problem
(Pk) by practically easier problem (Sk) consisting in finding a feasible integer solution
of a system of linear constraints. The formal description of this modification is
the following:

Algorithm 2

1° Choose a feasible solution-x' € X

k=il =00 k==
~ 2° Solve the problem (Qk)
(Qk) min cT x*

. ceC =
Let ¢* denote an optimal solution of (Qk), t*: =(c¥)T x*
If t*>t, then t: =t %: =x*

Go to 3°
3° Find a solution of the following system of cdn_straints
t<(c)T x forsi=1: .5k
(Sk) Ax<b

x>0 integer

If (Sk) is inconsistent then STOP: X is an optimal solution of (5) and v (P, C)=2
else:

Let x*~* denote the solution of (Sk)

k:=k+1

Go to 2°

The proof of validity and finiteness of Algorithm 2 is similar as in the case of
Algorithm 1. Instead of solving the problem (Pk) to the optimality, it is enough
to find in Step 3° a feasible solution decreasing the actual value ¢ This step can be
realized by any enumerative scheme. A similar structure of algorithm appears when
Benders’ decomposition method to mixed integer programming is used. Results
presented in [3] suggest that in Step 3° the branch and bound scheme used in pseu-
doboolean programming could be suitable.

One can expect that in Algorithm 2 the problem (QKk) is solved more times than
in Algorithm 1. Due to this fact Algorithm 2 seems to be applicable to cases when
(Qk) can be solved efficiently. Such a situation potentially occurs when (Qk) can be
solved analytically (for example if C is a ball in R") or when it is easy to reoptimize
(Qk) for successive x".

As it is mentioned above, the main drawback of Algorithms 1 is the necessity
of solving discrete auxiliary subproblems (Pk), which is in general a difficult task.
But it worth to mention an important advantage of algorithm of this kind. Namely,
in any step of Algorithm 1 the bounds for value of optimal solution are known
and one can stop the computation with known approximate solution and its accuracy.
Let for any &

sr=amax tetit ¥ g=0,1, ..k}
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and r be any index ¢ for which this maximum is attained. Then choosing x" as an
approximate solution we have

ZkSE(P:COth Y

In both of algorithms described above the initial problem is in fact decomposed
and optimization problems over X and C were solved separately. The next algorithm
uses quite different approach. It applies ordinary branch and bound scheme (see [S])
in which bounds in nodes are computed by solving continuous relaxation of the
initial max-min problem.

Algorithm 3 :

To describe algorithm we specify main elements of the branch and bound scheme,
i.e., bounds calculation and separation rule.

The candidate problems have the form

(0] F max min ¢” x

xEX? cecC
where X}'={x e X|I<x<u}, u, /e R", and integer. -

If in the dptimal solution x of relaxation of (P}) the etement x; for somc‘-i,
1<i<n, is noninteger, then two new candidate probiems are created by adding to
(P}) one of the constraints x,< [x,] or x;>[x;]+1 (where [] denotes integer part of «).

As a relaxation of candidate problem (Pj) a continuous relaxation of (P}) is
used, i.e., the following continuous max-min problem must be solved for bound
calculation %

(02)) max min {c” x|dx<b, ISx<u}
X ceC
The efficiency of the above algorithm depends mainly on possibility of efficient
solution of problem (P;). Several papers [2, 9, 11] addresses the methods of solving
continuous max-min problem of the form

z=sup inf {cT x|4x<b, x>0} s @)
x CceEC
In [11] Soyster has formulated a dual problem to (7) under assumption that
C=C+R!.. Observe that this assumption does not change the optimal solution
of (7). This dual has the form

v=inf {bT y|4T y=c, ce C, y=0} (8)

where y denotes a dual variable vector, y € R™.

If C is a closed convex set in R", then (8) is a convex programming problem
with linear objective function. When some constraint qualification holds (see [9]
for different formulations of these conditions) then the following duality theorem
is true [11]:
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THEOREM 1

One of the three following cases occurs:

(i) Both of the problems (1') and (8) are feasible. Then x° optimal to (7) and
¥° optimal to (8) exist and there is no duality gap, i.e.,

z=min, cAx=>bt yé=»o
ceC

Moreover, complementary slackness holds
(Ax°=b)T y°=0

(ii) One of two problems (7), (8) is infeasible and another is unbounded.
(i) Both of problems (7), (8) are inconsistent.

This theorem provides a way of computing the upper bound for subproblem
(P}) in the case when C is a convex set by solving the convex programming problem

vi=mf {b*y+u"j~1"y|ATy+j—yeC, y, , y=0} ®

where J, y € R* denote the dual variables corresponding to the constraints /< x<u.

If the value 9% is less than or equal to the value of actual incumbent or the pro-
blem is inbounded, then the vertex corresponding to the problem (P}) can be fat-
homed. In the opposite case we must find the solution x of the problem (P¥) to
check it for integrality. Theorem 1 does not give any way to find optimal x. In [2]
Falk uses the results of Soyster to propose a method of obtaining an optimal solution
of (7) in the case when

C={ze R (2)<0, i=1, ... 1}

and %' (2), i=1, .., r, are convex, continuously differentiable functions and the
constraint qualification hold. Let y° denote an optimal solution of (8) and ¢®=A7 y°.
Then [2]

THEOREM 2
The optimal solution x° of (T) fulfils the following set of linear coustraints
Ax°<b, x°=0 (10.1)
(4x°—B)T y°=0 ' (10.2)
X0+ D14 VH (=0 (10.3)
v i=1
4,20, A, B (c®)=0 (10.4)

where Vh denotes the gradient of function h.
First two conditions (10.1) and (10.2) represent feasibility conditions for x°
in problem (7) and complementary slackness condition obtained by Soyster. Next
two constraints (10.3) and (10.4) are the recessary and sufficient conditicns of opti-
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mality of ¢° in the inside convex programming problem min ¢ x° This theorem

cEC

gives the possibility of computing the optimal solution of the relaxed problem (2o,
Thus for any subproblem (P}), i.e., in each vertex in the branch and bound tree,
one can distinguish two phases of computations. In the first phase the optimal
value v (P}) of coutinuous relaxation of problem (P¥) is computed by solving the
dual problem (9). If v (P})=v} is not greater than the actual incumbent value or
if the problem (P}) is unbounded, then the vertex (PY) is fathomed. Else, using
Theorem 2, an optimal solution x° of (PF) is computed. 1f x° is integer, then it
becomes to be a new incumbent, if not — two new subproblems, are createc accor-
ding to the described above separation rule.

The solution of problems (9) and (10) may be in fact a difficult task and it de-
pends on description of the set C.

The problem is significantly simplified if we assume that C is a polyhedral convex
set, i.e., ' ; g
C={c< R"|Kc=k} ' (11}
where K € R"*" and k € R are given. :

One can specify the general considerations for this case and from (9) and (10)
obtain formulae for computing the value o and optimal solution x° of (P}). The
same results in more convenient form can be obtained directly by reformulation
of the problem (P}). We have '

?j= max minc” x (12)

Ax<b Kc>k
S Isx<u

Replacing the inside problem by its duai we obtain

v}= max max kT ] A13)
Ax<b KT2=x
IsSx<u 420

Bat this problem is equivalent to

vj= max kT2 - (14)
AK! A<D
1<KT A<u
20

The optimal value 9% of the problem (12) gives the required upper bound for
subproblem (P¥) and due to (13) the optimal solution x° is immediately given by

xO = KT lO S (15)

where A° is an optimal solution of (14). Thus in the case, when C is a polyhedral
set, then the relaxation (P¥) is a linear programming problem and the integrality
of obtained solution x° can be easily tested because (15) holds. Due to these facts
this approach can be computationally efficient and even in the case when C is not
polyhedral it may be profitable to approximate C by a polyhedral set. In the Ap-
pendix, an example of problem with polyhedral set C is given and ail steps of sol-
- ving it by Algorithm 3 are described.
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The “optimistic” strategy as defined in Section 2 leads to the following max-max
problem

x**=arg max max c¢Tx L5 (16)
SeXEX L CcEC
This problem seems to be more difficult than problem (5) even in the case, when
C is a convex polyhedron, C={c|Kc=>k}. In this case the continuous relaxation
of (16) becomes so-called bilinear programming problem

max maxelx: an

Ax<b Kc=k
x=0 .

which is a rather difficult nonconvex problem [4]. So it seems to be not promising
to use (17) in branch and bound scheme to calculate the bounds for subproblems
of (16).

In contrast with problem (5) it is possible to prove that when the problem (16)
is consistent, then there exists an optimal solution x** which is a vertex of
conv (X) (where conv (S) denotes the convex hull of S).

APPENDIX

We give two small examples of solving the problem of the form (5) using des-

cribed algorithms. Both of the problems have the same set X, but the sets of pos-

_sible objective vectors are different. In Example-1 the Algorithm 1 is used ; in Example
2 the solution by Algorithm 3 is given. ’

Example 1

Consider the problem

{P) max mincTx

xeX ceC
where X'={x|6x; +8x,<21, x;, x,>0 integer}
C=K{1/2, 1)7, ~1/2}, K (p, r) denotes a ball with center in p and radius r
We solve this problem using Algorithm 1.
Letc2=(1/2, 1) k:=1]
Problelm (P1): max {¢|t<(c®)T x, x € X, t € R} has the optimal solution x'=(0, 2)T
and ¢'=2.

Solving the problem (C1): min ¢ x* we obtain:
ceC

*=(1/2, 1/2)T and (c!)T x'=1. The stop criterion is not fulfilled and we have to
increase k (k: =2) and solve the problem (P2).
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P2) max ¢ S
=l x
t<(ct) ¢
xeX, teR

We obtain x2=(3, 0) and >=3/2.

Solving the problem (C2) we have ¢2=(0, 1)T and (c?)T x2=0.

The stop criterion is not still fulfilled, so we must solve the problem - (Pk)
with k: =3 ;
P3) - maxt

t<(cH* x, i=1,2,3
xeX, teR

The optimal solution of (P3) is x*=(0, 2)T and £3=1.
Solving (C3): min ¢T x* we have ¢®=(1/2, 1/2)T and (¢®)” x3=1=1¢* which indi-

ceC

cates that x*=(0, 2) is an optimal solution of (P) and v (P, C)=1.

Example 2
Consider the problem (see Fig. 1)

®) max min ¢T x
x€eX ceC

ofeasible solutions

¥

Wi
N

R
o
/

Cy

Fig. 1
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where X={x|6x;+8x, <21, X1, X, >0 integer}
C={C]Cl +2€2 >2, C] >— 1, Cz 20}

1e.,
12 2
A=[6,8], K=|10|, k=|—1], AKT=[22,6, 8]
01 0 '

We present the solution of this problem using Algorithm 3. The problem (P°)
is formed by adding obvious bounds for x

1°=(0, 0)T, u®=(4, 3)T
and relaxing the integrality conditions.
The problem (14) corresponding to (P°) has the form
max 2., —4,

222, + 64, +43<21

Gk s =4

022, +23<3

Ay Aoy Ay =0

2 AT
The optimal solution of this problem is A°={——, 0, 0) and corresponding

22
: ¢ e 21 42T e > s
optimal solution of (P°) is x°=(-2-5, 73 (P°)=2—2. As x° is noninteger, two
new problems (P!) with /1 =(0, 0)7, u* =(0, 3)T and (P?) with I?=(1, 0)7, u>=(4, 3)T

are created.
Solving appropriate problems of the form (14) we obtain

At=(0,0,0)T This solution is integer, so’
1 1 7 we obtain an incumbent
&) E =50 with value 0.
v (P1)=0
ST T
b O
¢ ‘( 16° 16° O)
15\T
o e
o 29
2N =
v (P?) 16

Problem (P2?) separates into two problems: (P3) with I3=(1, 0)7, #®>=(4, )T and
(P*) with I*=(1, 2)T, u*=(4, 3)". Problem (14) corresponding to (P*) is infeasible,
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S0 this vertex is fathomed. In the last live vertex (P*) we obtain the following solu-
tions

P=(4,3,07
=D
o (P?)=4

The solution x> is integer and better than the incumbent. There is no live vertex,
so algorithm terminates and x*=x3=(1, 1)T is an optimal solution of (P) and
o (P)=1. It is interesting to note that x* is not a vertex of conv (X).
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Problemy programewania calkowitoliczbowego
z niedokladnie okreSlona funkcja celu :

W artykule rozpatrywany jest problem programowania catkowitoliczbowego, w ktorym wspol-
czynniki funkeji celu dane sg z pewna nieokreslonoscia. Opisano kilka pozioméw nieokreslonosci
oraz przedstawiono mozliwe metody postepowania w przypadku wystapienia probleméw o nie-
dokladnych wartos$ciach parametrow. Szczegblowo omowiono przypadek, w ktorym wiadomo tylko,
ze wspotczynniki funkcji celu naleza do danego zbioru wypuklego. Rozpatrzono dwie kraficowe
strategie polegajace na poszukiwaniu rozwigzaf problemu przy zatozeniach, ze funkcja celu jest
najgorsza lub najlepsza z mozliwych. Oméwiono problemy programowania calkowitoliczbowego
typu max-min i max-max oraz zaproponowano trzy algorytmy rozwiazywania problemu max-min.
Algorytmy zilustrowano niewielkimi przykladami,
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3amaun NEJIOMHCICHHOTO NPOrPAMMHUPOBAHUS € Heompeae-
Jennoli Qynkuneii weamn

B crathe paccMaTpuBaeTCs 3aJada LEIIOYMCICHHOTO OPOrPaMMEDPOBAHNASA, B KOTOPOi Kosdhdm-
UHeHTH QYHKIME LEN¥ 3aJaHbl C HEKOTODOU HEOIpeneneHROCThI0. OnncaHo HECKOIBKO YPOBHEH
HEOTPE/IETEHACCTH, 4 TaKKe IPEICTABICHS BO3MOXKHBIE METONBI PEIICHAA B CIIyYae MOSBICHEN
3a7jaY C HETOYHBIME 3HAYCHHAMM napaMeTpoB. ITonpobHO paccMOTpeR Ciiydail, B KOTOPOM M3~
BECTHO JIKIIb, 9T0 KO3 HIACHTE! hYHKIHE e/ OPHHEAIIEXAT K JAREOMY BBIIyKIOMY MHOXECTRY.
PaccMoOTpeRE! B KpaiHue CTpaTerdd, COCTOAMREe B HOUCKEe PeIleHnii 3a8a4y IpH IpPeAnoChUIKE,
9To QYHKIMS e/ ABISCTICS HauXy[ el jqr00 HamIydmel ®3 BO3MOXKHBIX. PaCCMOTpPEHbI 3a0aH
IEJIOYACICHHOT0 OPOrPaMMEPOBAEAS THNIA MAaKC-MUH B MAaKC-MakC, a TAKKe NPEHIararorcs TpH
aJrOPHTMA PEINCHREA 3a/[a4H MaKC-MAH, AJTOPATMBL AIIFOCTPEPYIOTCA HeOONBIEME TPEMEPaMI.
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