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In the paper an integer linear programming problem is considered in which coefficients of the 
objective function are given with uncertainty. Several levels of this uncertainty are described and 
possible methods of dealing with inexact parameters of the problem are mentioned. 

The case when the coefficients of the objective function are known only to belong to a given 
convex set is discussed in details. Two extreme strategies consisting in seeking the solutions of the 
problem under the assumptions that the objective function is the worst and the best possible are 
considered. Corresponding max-min and max-max integer programming problems are discussed 
and three algorithms for solving max-min problem are proposed. Small examples illustrating the 
algorithms are given. 

1. Introduction 

Almost all parameters of practical mathematical programming problems are 
estimated with errors. On th~ other hand, available methods for solving these pro~ 
blems assume that the parameters of models are exact. 'to deal with the unceratinty 
of data description several approaches are possible. Some of them, in the context 

·Of integer programming and inexact objecLive function, are mentioned in Section 2. 
, The case, when the objective function coefficients of integer linear programming 

problem are known only to lie in a given convex set is discussed in Section 3. Small 
numerical---examples illustrating the algorithms proposed in Section 3 are given 
in the Appendix. 

2. Uncertainty .Levels 

Consider an integer linear programming problem (P) 

maxcT x 
(P) Ax~b 

x;;?:O and integer 
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Let us assume that the parameters of the constraint set (i.e. matrix A and vector b) 
are exactly known and the uncef.tainty concerns only the coefficients of th~ objec­
tive function. The situation-when the objective function of the problem is not known , 
exactly occurs frequently in practice. The coefficients of the objective function 
represent often ptices or profits wliich are estimated with errors and sometime are 
assumed rather arbitrarily . . Another reason, which motivates the analysis of pro­
blems with inexact parameters, is the simplification of mathematical programming 
model with respect to real-life situation. For · example, some nonlinearities of the 
objective functio!l and the dependence of prices on time are frequently neglected. 

One. can distinguish several levels , of uncertainty concerning the objective func­
tion and in each case different approaches are applicable. The most frequent case 
is when 

(i) A particular objective vector c is given and no additional information about 
possible changes of objective coefficients is available. · 

In this case the problem (P) with c = c can be solved and the optimal solution x 0 

or, sometime, several optimal solutions can be obtained. 

One can hope that the possible changes of the objective coefficients are "small" 
enough not to destroy the validity of computed solutions. But even under this as­
sumption several questions immediately arrise. For example, one wants to know 
for which changes of c solution x 0 remains still optimal (or e-optimal) or which 
solution obtained allo.ws maximal changes of c. More formally: it is interesting 
to find for a g1Ven optimal vector x 0 the set c (x0) of all vectors c such that c E c (x0

) 

if and only if x0 is an optimal (e-optimal) solution of the problem 

max {cxiAx~b, x~O integer}. 

Another related question is, how the optimal value of problem (P) varies with 
small changes of c. All of these questions belong to the sensitivity analysis which 
has just begun to be developed for integer programming [6, 8]. . _-

The approach presented above can be regarded as a passive one. In fact we 
accept the SOlUtion X 0 While the sensitivity analysis is performed mainly for assuming . 
that the choiCe of x0 has been good. 

Quite different situation occurs, when 

(ii) The set C of all possible vectors c is given. _ / 

One if faced with such a problem when, for example, it is possible to describe 
the bounds for changes of prices but one can not predict _the exact values which 
will occur. This case contains also the problems for wh...ch the objective coefficients 
are measured with known errors. Sometime one can not describe the exact values 
of coefficients, but it is possible to establish the functional relations between them. 
In all these cases instead of one objective vector c we have the well described set C 
of all possible realizations of c. 

Several approaches ~re possible for such untypica1ly stated mathematical pro­
gramming problem. 
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Of course, one can choose an arbitrary vector from C and solve the p~roblem 
(P) with this vector. But in general there is no rule for such a choice. It is also pos­
sible to regard the problem stated as a multiobjective programming problem (in 
general with infinite number of objectives) and try to find nondominated solutions. 
There are also possible two extreme strategies: a "pessimistic" and an "optimistic" 
one which for a given set C yield minimal guaranteed profit and maximal possible 
profit respectively. 

The pessimistic strategy consists in seeking x* which gives maximal profit aniong 
all feasible solutions under assumpticn that c is the worst possible. It means that 
for any x EX= {y!Ay~ b, y ~0 integer} the following inequality holds: 

min cT x* ~min cT x 
cEC cEC 

The pessimistic strategy gives minimal guaranteed profit ~ (P, C), where 

~ (P, C)=min cT x* 
cEC 

. (1) 

(2) 

The optimistic strategy consists in the choice of feasible vector x* * E X maxi­
mizing the profit,, under the assumption that the objective vector is the most con­
venient, i.e., for any x EX the following relation is fulfilled 

max cT x* *~max cT x (3) 
cEC cEC 

The optimistic strategy gives the upper bound v (P, C) for all possible profits, 
where 

v (P, C)=max cT x** (4) 
cEC 

Having found the values ~ (P, C) and v (P; C), we may characterize the problem 
and its sensitivity on data changes. It also provides the decision maker with useful 

. information about conservative solution (x*) and risky solution x**). 
It is interesting to note some connections between case (ii) and (i). Suppose 

that we a given the set C and for a particular c E C we have obtained the optimal 
solution x 0 of problem (P). Then it is easy to see, that 

PRoPOSITION 1. If C E C (x0
) then x:!< = x* * = x 0

• / 

This follows immediately from the definition of stability region C (x0 ). 

Although frequently it is too difficult to find the set C (x0
), sometime we ·have 

a subset C (x0) of C (x0 ) obtained as an 'inexpensive by-product of solving (P) (see 
[5] and [8]). In this case we can try to use Proposition 1 with C (x0) instead of C (x 0). 

Different approach can be used when it is assumed that c is a stochastic va­
riable and 

(iii) Probability distribution of c is known. 

In this case the decision maker has several strategies characterized by the ex­
pected profit and the risk level. Two of them are the most straightforward. 

_~ , 

-
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The first one consists in choice of feasible vector xE EX, which maximizes the 
expected vame of profit. It is easy to see that in this case the following linear integer 
programming problem has to be solved 

xE=arg max {cx!Ax~b, x~O integer} 

where c=E'(c) (E ( •) denotes the expe<::ted value). 
Another approach consists in calculating feasible solution xv EX which mini~ 

mizes a variance of profit with the assumption that the expected value of profit 
is not less than a given value q. In this case a nonlinear programming problem 

xv =arg min {f(x)IAx~b, cx~q, x~O integer}-

has to be solved, wheref(x)=E(cTx--E(cTx))2 is a quadratic function (see [7] 
for methods of solvmg nonlinear integer programming problems). 

3. Extreme Strategies in the Case when All Possible 
Objective Vectors are Given 

In this Section two extreme strategies mentioned in Section 2 are analysed. 
We assume that in the problem (P) constraint matrix A E Rm x n and right hand 
side vector b E Rm are fixed. Thus the set 

X={x[Ax~b, x~O integer} 

of feasible solution is also fixed. Assume that X is nonempty and finite. 
Any realization of objective vector belongs to a given set C£.R". 
The pessimistic strategy as defined in Section 2 leads to the following max-min 

problem 
x~' = arg max min (:r x (5) 

XEX CEC 

The problem (5) can bereformulated by introducing an additional . variable 
t E R into the following programming problem 

maxt 
t~ cT x for any c E C 
Ax~b, x?;:O integer 
tER 

(6) 

The problem (6) is a mixed integer programming problem with single conti~ 
nuous variable t_. If the set Cis infinite (which is almost always the case), it is the 
problem with infinite number of constraints. Mathematical programming problems 
of this type have been considered in the context of continuous nonlinear programming 
(see e.g. [1]). The first two algorithms presented in this Section employ the basic 
ideas of methods used in ihfinitely constrained programming problems for discrete 
case. Both of them construct the sequences of integer vectors {xk} and real vectors 
{ck}, k=O, 1, 2, ... , by solving auxiliary problems (Pk), (Sk) and (Qk). 

Let us begin with the formal description of Algorithm 1. 
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Algorithm 1 

1°. Choose c0 e C 
k:=l 
Go to 2° 

2°. Solve the problem (Pk) 
max t 

(Pk) t~(cl)T x, j=Q, 1, ... , k-1 
xeX, teR 

Let x", t" denote an optimal solution of (Pk). 
Go to 3° 

3°. Solve the problem (Qk) 
(Qk) min cT x" 

cEC 

Let c" denote an optimal solution of (Qk). 
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If (c")T x"?::-t" then STOP: x" is an optimal solution of the problem(~ and 
::_ (P, C)=t" 

else 
k:=k+1 
Go to 2°. 

By the step . of the above algorithm a solution of pair of problems (Pk), (Qk) 
is meant; If X is finite, then 

PRoPOSITION 2. The Algorithm 1 solves the problem (5) in ~ finite number of step~ 

Proof. To prove the finiteness of Algorithm 1 it is enough to see that no vector 
x" can be repeated before the optimality because if x"=x1, l>k, then (c")T x"= · 
= (c1)T x 1 = t 1 and the stop criterion is fulfilled. Assume that algorithm terminates 
after l steps.~. 

For the proof of validity of Algorithm 1 observe that for any k the problem. 
(Pk) is a relaxation of problem (5). So it is enough to prove that if the pair (t 1

, x1
) 

fulfils the stop criterion (i.e., 

where c1 is a solution of problem (Ql)) then (t 1
, x1

) is feasible J o problem (5). To do 
this we must check that 

t 1 ~cT x1 for any ceC (6') 

But this is immediate from the definition of problem (Ql) and the fact that the stop 
criterion holds. We have 

CEC 

which is equivalent to (6'). 
In the Algorithm 1 for any k the problem (Pk) is a mixed integer (with single 

continuous variable) programming problem. So this step of algorithm may be 

/ 
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very time consuming. It is possible to modify this step by replacing the problem ­
(Pk) by practically easier problem (Sk) consisting in finding a-feasible integer solution 
of a system of linear constraints. The formal description of this modification is 
the following: 

Algorithm 2 

, 1° Choose a feasible solution-x1 E X 
k: =1, t: = -oo, .X: =x1 

2° Solve the problem (Qk) 
(Qk) min cT x" 

• CEC 

Let c" denote an optimal solution of (Qk), tk: =(c")T x" 
If t">t, then t: =t", .X: =x" 
Go to 3° 

3° Find a solution of the following system· of co~straints 
t<(cl)Tx forj=1, ... ,k 

(Sk) Ax~b 

x);:O integer 

If(Sk) is inconsistent then STOP: .X is an optimal solution of(5) and ~· (P, C)=1 
else: 
Let x"- 1 denote the solution of (Sk) 
k:=k+1 
Go to 2° 

The proof of validity and finiteness of Algorithm 2 is similar as in the case of 
Algorithm 1. Instead of solving the problem (Pk) to the optimality, it is enough 
to find in Step 3° a feasible solution decreasing the actual value t. This step can be 
realized by any enumerative scheme. A similar structure of ~lgorithm appears when 
Benders' ·decomposition method to mi:x:ed integer programmmg is used. Results 
presented in [3] suggest that in Step 3° the branch and bound scheme used in pseu­
doboolean programming could be suitable. 

One can expect that in Algorithm 2 the problem (Qk) is solved more times than 
in Algorithm 1. Due to this faCt Algorithm 2 seems to be applicable to cases when 
(Qk) can be solved efficiently. Such a situation potentially occurs when (Qk) can be 
solved an;:tlytically (for example if C is a ball in R") or when it is easy to reoptimize 
(Qk) for successive x". 

As it is mentioned above, the main drawback of Algorithms 1 is the necessity 
of solving discrete auxiliary subproblems (Pk), which is in general a difficult task. 
But it worth to mention an important advantage of algorithm of this kind. Namely, 
in any step of Algorithm 1 the bounds for value of optimal solution are known 
and one can stop the computation with known approximate solution and its accuracy. 
Let for any k 
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and r be any index q for which this maximum is attained. Then choosing xr as an 
approxi~ate solution we have 

In both of algorithms described above the i}litial problem is in fact decomposed 
and optimization proble)lls over X and C were solved separately. The next algorithm 
uses quite different approa~h. It applies ordinary branch and bound scheme (see [SD 
in which bounds in nodes are computed by solving continuous relaxation of the 
initial max-min problem. 

Algorithm 3 

To describe algorithm we specify main elements of the branch and bound scheme, 
i.e., bounds calculation and separation rule. 

The candidate problems have the form 

max mincT x 
_ x E X~ CEC 

where X~={xeXIl~x~u}, u, leR",_ and integer. __ ------
If in the optimal solution x of relaxation of (P'() the element x1 for some i, 

·1~i~n, is noninteger, then two new candidate problems are created by adding to 
(P;') one of the constraints x1~ [x1] or x1 ~[x;] + 1 (where [a] denotes integer part of aJ. 

As a relaxation of candidate problem (P'() a continuous relaxation of (P~) is 
used, i:e., the following continuous max-min problem must be solved for bound 
calculation 

(P'i) max min {cT xiAx~b, l~x~u} 
X CEC 

The efficiency of the above algorithm depends mainly on possibility of efficient 
solution of problem (P~). Several papers [2, 9, 11] addresses the methods of solving 
continuous max-min problem ofthe form 

z=sup inf {cT x!Ax~b, x~O} (7) 
X cEC 

In [11] Soyster has formuJated a dual problem to (7) under assumption that 
C=C+R",_. Observe that this assumption does riot change the optimal solution 
of (7). This dual has the form 

v=inf {bT y!AT y=::c~ C E C, y~O} (8) 

where y denotes a dual variable vector, y E R"'. 

If C is a closed convex set in Rn, then (8) is a convex programming problem 
with linear objective function. When some constraint qualification holds (see [9] 
for different formulations of these conditions) then the following duality theorem 
is true [11]: . 
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THEOREM 1 

One of the three following cases occurs: 

(i) Both of the problems (7') and (8) are feasible. Then x 0 optimal to (7) and 
y 0 optimal to (8) exist and there is no duality gap, i.e., 

z=min cT x 0 =bT ye=v 
cec 

Moreover, ~omplementary slackness holds 

(Ax0 -b)T y 0 =0 

(ii) One qf two problems (7), (8) is infeasible and another is unbounded. 

(tii) Both of problems (7), (8) are inconsistent. 

This theorem provides a way of computing the upper bound for subproblem 
(Pr) in the case when Cis a convex set by solving the convex programmmg pro?lem 

(9) 

where ji, ~ E Rrr. denote the dual variables corresponding to the constraints l~x~!:!· 

If the value v~ is less than or equal to the value of actual incumbent or the pro­
blem is inbounded, then the vertex corresponding to the problem (P;) can be fat­

. homed. In the opposite case we must find the solution x of the problem (P;) to 
check it for integrality. Theorem 1 does not give any way to find optimal x. In · [2} 
Falk uses the results of Soyster to propose a method of obtaining an optimal solution 
of (7) in the case when 

C={zeRn/h1 (z)~O, i=1, ... ,r} 

and h1 (z), i= 1, ... , r, are convex, continuously differentiable functions and the 
constraint qualification hold. Let y 0 denote an optimal solution of (8~ and c0 =AT y 0 • 

Then [2] 

THEOREM 2 

The optimal solution x 0 of (7) fulfils the following set of linear constraints 

r 

x 0 + 2,; A-1 Vh1 (c0)=0 
i=l 

where Vh denotes the gradient of function h. 

(10.1) 

(10.2) 

(10.3) . 

(10.4) 

First two conditions (10.1) and (10.2) represent feasibility 'conditions for x 0 

in problem (7) and complementary slackness condition obtained by Soyster. Next 
two constraintH10.3) and (10.4) are the necessary and sufficient conditions of opti-
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mality. of c0 in the inside convex programming problem min cr x0 • This theorem 
. I . 

• CEC 

gives the possibility of computing the optimal solution of the relaxed . problem (P;'). 
Thus for any subproblem (P;), i.e., in each vertex in the -branch and bound tree, 
one can distinguish two phases of computations. In the first phase the optimal 
value v (P;) of co:1tinuous relaxation of problem (P;) is computed by solving the 
dual problem (9). If v (P;)=v~ is not greater than the actJal incumbent value or 
if the problem (P;') is unbounded, then the vertex (P;) is fathomed. Else, using 
Theorem 2, an optimal solution x 0 of (P~) js computed. lf x 0 is integer, then it 
becomes to be a new incumbent, if not - two new subproblems. are createc accor­
ding to the described above separation rule. 

The solution of problems (9) and (10) may be in fact a difficult task and it de­
pends on description of the set C. 

The problem is significantly simplified if we assume that Cis a polyhedral convex: 
set, i.e., 

C={c s R"!Kc;?:k} (11) 

where K E Rrxn and keRr are given. 

One can specify the general considerations for this case and from (9) and (10) 
obtain formulae for computing the value v~ and optimal solution x0 of (P~). The 
same results in more convenient form can be obtained directly by reformulation 
of the problem (P;) .. We have 

v~= max min cr x 
Ax~b Kc~k 

.,..,. z::::;;;x:s;;u 

Replacing the inside problem by its duai we obtain 

v~= max max kr A 
Ax<:;b KT .<=x 
l~x~u .1~;;:::.0 

But this problem is equivalent to 

v~= max kr A 
AK1 A<:;b 

l~KT A:s;;u 
;.~o 

(12} 

(13) 

. (14), 

The optimal value v~ of the problem (12) gives the required upper bound for 
subproblem (Pf) ap_d due to (13) the optimal solution x 0 is immediately given by 

(15) 

where A0 is an optimal solution of (14) . Thus in the case, when Cis a polyhedral 
set, then the relaxation (P~) is a linear programming problem and ·the integrality 
of obtained solution x 0 can be easily tested because (15) holds. Due to these facts. 
this approach can be computationally efficient and even in the case when C is not 
polyhedral it may be profitable to approximate C by a polyhedral set. In the Ap­
pendix, an example of problem with polyliedral set C is given and all steps of sol­
ving it by Algorithm 3 are described. 
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The "optimistic" strategy as defined in Section 2leads to the following max-max 

problem 

x**=arg max max cTx 
. xex cec 

(16) 

This problem seems to be more Q.ifficult than problem (5) even in the case, when 

C is a_ convex polyhedron, C={ciKc;?:k}. In this case the continuous relaxation 

of (16) becomes so called bilinear programming problem 

max max cTx_ 
Ax.;b Kc;.k 
x~O 

(17) 

which is a rather difficult nonconvex problem [4}. So it ~eems to be not promising 

to use (17) in branch and bound scheme to calculate the bounds for subproblems 

of (16). 

In. contrast with problem (5) it is possible to prove that when the problem (16) 
is consistent, then there exists an optimal solution x* * which is a vertex of · 

<:onv (X) (where conv (S) denotes the convex hull of S). 

APPENDIX 
\ 

We give two small examples of solving the problem of the form (5) using des­

cribed. algorithms. Both of the problems have the same set X, but the sets of pos­

. sible objective vectors are different. In Example -1 the Algorithm 1 is used; in Example 

2 the solution by Algorithm 3 is given. 

Example 1 

Consider the problem 

(P) max min cT x 
xeX cec 

where X={xl6x1 +8x~~21, xb x2 ;?:0 integer} 

C=K {1/2, 1)T, 1/2}, K(p, r) denotes a ball with center in p arid radius r 

We solve this problem using Algorithm 1. 

Let c0 =(1/2, 1)T, k:=l. 

Problem (Pl): max{tit~(c0)T x, xEX, tER} has the optimal solution x 1 =(0,2)T 
and t 1 =2. 

Solving the problem (01): min cT x 1 we obtain: 
cEC 

c1 =(1/2, 1/2)T and (c1)r x 1 = 1. The stop criterion is not fulfilled and we have to 

increase k (k: =2) and solve the problem (P2). 
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(P2) max t 
t:::;;(c0)'T X 

t::::;(c1)T x 
XEX, tER 

We obt_ain x 2 =(3, O)T and t 2 =3/2. 

Solving the problem (C2) we have c2 =(0, l)T and (c.2)T x 2 =0. 

199 

The stop criterion is .not still fulfilled, so we must solve the problem (Pk) 
with k: =3 

(P3) max t_ 
t:::;;(c1)Tx, i=1,2,3 
XEX, tER 

The optimal solution of (P3) is x3 =(0, 2)T and t 3 = 1. 

Solving (C3): min cT x3 we have c3 =(1/2, 1/2)T and (c3)T x 3 = 1 =t3 which indi-
CEC 

cates that x3 = (0, 2)T is an optimal solution of (P) and '1!. (P, C)= 1. 

Example 2 

Consider the problem (see Fig. 1) 

(P) max min cT x 
xeX cec 

3 

2 

Cz 

X 

oFeasible solutions 

Xt 

Fig. 1 
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where X={xl6x1 +8x2 ~21, x1, xz;;:;,O integer} 

C={clc1 +2c2 ;;:;,2, c1 ;:;::,-1, Cz;;::,O} 
i.e., 

A=[6, 8], /(=[H)' k=Hl AJ(T=[22, 6, 8] 

M. LIBURA 

We present the solution of this problem using Algorithm 3. The problem (F0 ) 

is formed by adding obvious bounds for x 

and relaxing the integrality conditions. 

The problem (14) corresponding to (P0) has the form 
'I -

max 221-22 

2221 +6-12 +-13 ~21 

O~A-1 +A.z ~4 

0~2.11 +-13~3 

.11> A-2, .13 ~ ;;::,o 

The optimal- solution of this problem is 
1 

A. 0 = ( ~~ , 0, 0) T and corresponding 

- _ ( 21 42 )T _ 42 _ 
optimal solution of (P 0) is x0 = 

22 
, 

22 
, v (P0 ) = 

22 
. As x0 is noninteger, two 

new problems (P1) with !1 =(0, O)T, u1 =(0, 3)T and (P2) with [2 =(1, O)T, u2 =(4, 3)T 
are created. 

Solving appropriate problems of the form (14) we obtain 

-11 =(0, 0, O)T 

x 1 =(0, O)T 

v(P1)=0 

- ( 15 )T (P2) x2= 1, S , 

- 29 
v (Pz)= J6 

This solution is integer, so· 
we obtain an incumbent 
with value 0. 

Problem (P2) separates int~ two problems: (P3) with P=(l, O)T, u3 = (4, J)T and 
(P4) with 14 =(1, 2)T, u4=(4, 3)T. Problem (14) corresponding to (P4

) is infeasible, 
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this vertex is fathomed .. Jn the last live vertex {P3
) we obtain the following solu· 

ns 
.P=(!,t,O)T 

x3=(l, t)T 

V (P3)=t 

The solution x 3 is integer and better than the incumbe:ut. There is no live vertex, 
so algorithm terminates and x*=x3 =(1, l)T is an optimal solution of (P) and 

(P)=}. It is interesting to note that x* is not a vertex of conv (X). 
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Problemy programowania calkowitoliczbowego 
z niedokladnie okreslonl! funkcjl! celu ' 

W artykule rozpatrywany jest problem programowania calkowitoliczbowego, w kt6cym wsp6l­
czynniki funkcji celu dane SI! z pewn!! nieokreslonosci!!. Opisano kilka poziom6w nieokreslonosci 
oraz przedstawiono moZiiwe .metody poste<powania w przypadku wystl}pienia problem6w o nie-­
dokladnych wartosciach parametr6w. Szczeg6lowo om6wiono przypadek, w kt6rym wiadomo tylko, 
:le wsp6lczynniki funkcji celu nalei!l do danego zbioru wypuklego. Rozpatrzono dwie krancowe 
strategic polegaj!lce na poszukiwaniu rozwi!lzan problemu przy zaloi:eniach, i:e funkcja celu jest 
najgorsz!l lub naj!epsz!l z moiliwych. Om6wiono problemy programowania calkowitoliczbowego 
typu max-min i max-max oraz zaproponowano trzy algorytmy rozwi!!zywania problemu max-min. 
Algocytmy zilustrowano niewielkimi przykladami. 
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3a.~~:a'lll qeJIO'IIICJieHHoro nporpaMMHpoBauua: c ueonpe.~~:e­

~eHHou ~yHKq&eu qeJIU 

--
M. LIBURA 

B CTan.e paCCMaTPJIBaeTC.II 3a.IIa'Ia [\eJiolJ,HcJieRRoro nporpaMMI[poBamm, :B KOTopoH: K03$qJ:O:­

I:IHellTbi $)'HKIJ.lm I:~eJil£ 3li.IIllHI>I c IleKOTopoii: aeonpe,D;eJieRHoCTI.ro. On:o:caao aecKoJibKO ypoBHeli: 

neonpe.IIeJieltRocnt, a TaiOKe npe,D;C'I'aBJiellbi B03MOJKHbie MeiO,D;bi pemeRHll. B CJIY'lae nOJuineRHH 

3a,D;a'i C IleTO'lllbiMH 3Ila'IeHIIJlMJI napaMeTpOB. IlO,D;p06HO paCCMOTpeH CJIY'laH, B KOTOpOM H3· 

BeCTHO .JJ.liml,, '!TO K03$$li'I:IHeHTbi $)'IIKI:Ilill' [\eJIH IIplllla.IIJieJKaT K .IIaltROMy BbinyMOMY MHOJKCCTBY. 

PaCCMOTpegr,I ,D;Be KPa:lfime C1'pa1'e1.1lH, CQCTo.!iliJ;lie B IIOHCKe peme:aHll: 3a,D;a'Il£ IrpH npe,D;IIOCbiJIKe, 

'!.TO $ynKIJ;I{Jl [\eJil£ .siBJI.IIeTc.st naaxy,D;meli: Jil£6o Hali:JIY'lmeli: :0:3 B03MOJKllbiX. Pa(,;cMorpellbi 3a,D;alfH 

[\enolfllcneJtRoro nporpaMMli'POBa.HIIll Tmra Ma.KC-Mllll H MaKC-MaKc, a TaKJKe npe.IInararoTCJI Tp.U: 

aJirOpBTMa pemellHJI 3a.IIa'.tll: MaKC-MHil. A.rrrop;lttMbi ;HJIJIIOCTP:O:PYIOTC.II Ite60J1bmHM.o: np:HMepaMH. 

" 

~ 
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