Control
and Cybernetics
VOL. 9 (1980) No. 4

- Convergence of approximations to quadratic
optimal control problems with amplitude
constrained control

by

KAZIMIERZ, MALANOWSKI

Systems Research Institute
Polish Academy of Sciences

A method of estimating the rate of convergence of approximations to quadratic optimal control
problems with control subject to amplitude constraints is presented.

In the method the form of the optimal control is exploited.

The obtained general results are appiied to get the estimation of the rate of convergence of
Galerkin type approximations to a boundary control problems for a linear parabolic system, with
the cost functional depending on terminal state.

1. Introduction

Optimal control probiems of distributed systems as a rule can not be solved
in an analytical way and necessitate numerical approach.

This in turn requires approximation of initial problem by some finite-dimensionat
problems of optimization depending on a parameter of discretization.

The approximations should be defined in such a way that the solutions of dis-
cretize problems converge to the solution of the initial one, when the parameter
of discretization tends to zero.

In some cases of convex optimal control problems it is possible to estimate the
rate of this convergence.

This estimation becomes more difficult if controt or state of the system is subject
to inequality constraints. :

The most typical example of such constraints are amplitude constraints of the
control function. s

In this case to obtain estimations of the rate of convergence of approximations
two different approaches have been applied.

One is to use necessary conditions of optimality in variational inequalities form
[3]. This approach in general does not allow to obtain optimal estimations.
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In the alternative approach the Lagrange formalism is used (cf. [4, 7, 8]). This
in turn requires investigation of regularity and convergence of Lagrange multipliers
corresponding to control constraints. It is rather complicated procedure.

In this paper another approach is proposed in which the form of optimal control
is exploited directly to obtain appropriate estimations. This approach was first
applied by W. Hackbusch to investigate convergence of multi-grid method [5].

The general result obtained in Section 1 shows that to estimate the rate of con-
vergence of approximations it is enough to estimate the distance between the optimal
solution to the initial problem and its projection on appropriate subspaces as well
as the convergence of approximations to the state and adjoint equations.

In these estimations regularity of optimal solutions to the initial problem plays
a crucial role.

All investigations are performed for linear-quadratic problem, but can be easily
generalized to the case of strongly convex cost functional.

The obtained results are applied in Section 2 and 3 to estimate the rate of con-
vergence of discrete-type Galerkin approximations to boundary control problem of
a parabolic system with the cost functional depending on terminal state.

1. Optimal control problem and its approximation

Let U and Z be two Hilbert spaces with inner products and norms denoted by
(+,*) ((+5*)) and |+, || || respectively.

It will be assumed that U=L? (%) where Z is a bounded domain in R"

On Z x U there is defined the quadratic functional

R .
7= [lz—wlP+ 2l Ly -

where w € Z is a given element.
Iict
z: U2

be a continuous affine mapping.
The derivative of z (the linear part of the mapping) will be denoted by ¢.
Define by

J: U>R*
Jw)=J (z (), u).
We have
DJ (W)=q* (z (W) —w)+Au (1.2)
(v, D2 J (W) v)=(v, (¢* g+ ADv)=Av|> Vu,veU (1.3)

We introduce a closed, convex subset Ve U:

V={uec U=L? (E)[lu ©®|<1 foraa. (€5} (1.9
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The following abstract problem of* optimization (P) corresponds to quadratic
optimal control problems subject to amplitude constraints of the control function:
(P) : :
find u° € V such that

J @®)=inf J (u) 1.5V

uey’

It is well known (cf.e.g. [9]) that Problem (P) has a unique solution u#°, which
can be characterized by the following condition

(DJ @), u—u®)=(g* (z @°) —w)+ W, u—u®)>0 VueV (1.6)
It 1s easy to see that condition (1.6) is equivalent to the following one
u® —sg (—DJ @°)+u°)=0 ' 1.n
where
sg: U->U
is defined as follows ,
1 if 1<f(©
sgf(O)={f(©) if -1<f(O<1
-1 if f&<-1

Note that in case where control constraints are not active, or where in (1.5) V is
substituted by U, (1.7) reduces to

DJ (u®)=0 ' (1.72)

We consider finite-dimensional approximations to Problem (P).

Let /# be a parameter of discretization destinated to tend to zero, and let U,c U
and Z,<Z be finite-dimensional subspaces of U and Z respectively depending on /
~and

LJ U;==LC kJ 2%==21

h>0 h>0
Denote by
RY: U-U,
and
' RZ: Z-57Z,

operators of orthogonal projections on appropriate finite dirnensional subspaces
in Uand Z.
Let
Zy: U2y

be continuous affine mappings approximating z.
It is assumed that the usual stability and consistency conditions are satisfied [1].
We shall denote by ¢, the derivative (linear part) of z,.

Define

Ju: Up>RY Ty (uy) A F (2 (i), 1) . (1.8)
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Similarly to (1.2), (1.3) we have

DJ, () =RY g, (za () — W)+ Iy (1.92)
(‘Z’m D2 J, (up) ”n) = (Wh, (Q: qn+AD) 7Jh) = Moy Vuha» %€ Uy (1.9b)

Denote .
V=V O Uyp={uy € Uyl (§)I<1 for a.a. £ € 5} (1.10)

Problem (P) is approximated by the family of the following finite-dimensional
problems of optimizaticn (P,):

(Pr) :
find w) € Vy such that Jy, (u))= inf J,, (uy) (1L1)Vvy

upEVy
Like in (P) Problems (P;) have unique solutions. By (1.9) and (1.10) these so-
lutions are uniformly bounded.

upl<c (1.12)
It will be assumed that
4 sgupe Uy,  Vu, € U, (1.13)
Note that condition (1.13) impose some restrictions on the form of subspaces U,

This condition holds if U, are spaces of piece-wise constant functions.
If (1.13) is satisfied then u? can be characterized by the equation analogous to
1.7): . :
ug —sg (—DJ, (u))+ug)=0 (1.19

Equations (1.7) and (1.14) will be ased to estimate the difference between u° and uj.
Denote -
KUt K () Lu—sg(—-DJ(w)+u) (1.152)
and ; 2 ’
Ky: Uy>Uy, K, () & wy— g (— Dy, () + ) (1.15b)

Subtracting (1.7) from (1.14) and using the above notation we get
K (up) =K (°)
Adding to both sides of this equation — K, (v;), where
T R (1.16)
we obtain ;
Ky () — Ky (o) =K ()~ Ky (v) (L.17)

This equation will be used to estimate |[u®—u2|. First we shall investigate the-left
hand side of (1.17). To this end let us introduce the function of real parameter
s defined by

by (DAK, (+s @ —2)) for se[0,1] (1.18)
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It is obvious that k; is a Lipschitz ccntinuous function, therefore it is difierentiable.
almost everywhere and the following equality takes place [12]:

e (S) -
K ) Ky @) =Fy () —Fe, 0= f (1.19)
Let s [0, 1] be any point at which k;, is differentiable and denote
oS =v,+5 U —v,).
Define a linear operator
Lh (MI?: Opsy S): Uh"'>Uh
puttiqg :
: if |~DJ, (2}) (©)+9; )| >1
L, (0, vy, 5) 44 e © : LS ' 1.20)
s ) {DZ L@ uw© i 1-DRE) @+ @<t 10
for almost all € € Z. :
Note that in case where
meas {¢ € 5||—DJ; (©) &)+ ()| =1}=0
L, is the Gateaux derivative of Kj at o}.
It follows from the definition (1.15) (-f. Appendix) that
dky, (5) : ‘
e =L, (ug, v, 8) (U2 —v3). (1.21)
From (1 19) and (1.21) we get
K, (u,,) K, (0)= f Ly, (g, v 5) ds (uf —v). (1.22)
Let us define the linear operator
’ 1
Ao 000 Uy U, Ay (s o) 2 [ Ly (uf, 04, 5) ds. (1.23)
0
By (1.9b), (1.20) and (1.23) we have
(uh, '%‘h (Li;?, vh) u},)Zyluhlz Vuh € Uh \ (1.24}
where : ‘
s y=min {1, 1} (1.24a)

Substituting (1.22) and (1.23) to (1.19) we get
H y (g, op) (u —0) =K (u°) — K, (v)

Let us take inner products of both sides of this equation by (u2—v,). Using (1.15),
(1.24) as-well as the norm inequality and the fact that

= |sgf—sgpl<|f—¢l
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we obtain

1 1
|ty — vyl <7 [K (u°) — K, (v)] s—y— [lu® —4| + | —sg (—DJ (u°) +u®) +

1 3
+sg (—DJ (vh)—vn)l]<7 [IDJ (u°) —DJ, (@)l +2u° —v,l]  (1.29)

Taking advantage of (1.2) and (1.9) after simple rearrangements we get
|DJ () —DJ, () =[g* (z (u®) —w)+ u’]—[R] g, (z,, (o) — W) +A7,]|<
<lg* (z (W°)—w)—R/ q, (z ) —wp) |+ 4 [u° fwhlg lg* (z @) —w)+
—RY q* (z () —w)|+|RY [* (z @) — W)~ (2 @) —wi)]| + A’ vyl <
<lg* (z @) —w)— R} q* (z @) ~w)| +|(g* — g; RY) (z @) —w)| +
+1g; RZ (z @®)—w)— g} (20 @) —wy) |+ Au® —2|  (1.26)
Using the fact that |||l is bounded uniformly with respect to & we get
|4} RZ (2 @)~ w (=) 2 @) — W)l =1} RE [z %)~ 2, @II< '
<ligyll llz @°) =z, @< cllz @)=z, @I #  (1.27)
Taking into account that '
lu —u®| < [u — | + [u° —
we finally obtain from (1.25) through (1.27) the following
TrEOREM 1.1

If condition (1.13) is satisfied then the difference between the solution u° of Pro-
blem (P) and the solution uS, of Problem (P,) can be estimated as follows

[ —ug| < cllu® —o| +1g* (z (°) —w) — RY ¢* (z (=) —w)| +
+1(q* —g5 RY) (z @®) = w)| +liz (%)~ z, @II] (1.28)W

Note that all terms on the right-hand side of (1.28) contain only optimal solution
u° of (P) and its projection v, on U,.

By properties of the space U, the first 2 terms tend to zero together w1th h. If
approximation z, of z is convergent also the other 2 terms converge to zero.

1t follows from (1.28) that in estimating of rate of convergence of |uy —u°| an
a prior1 information on regularity of optimal solution to (P) plays crucial role. Such
an information is used in estimation of the distance between given elements and
their projections as well as in estimation of the rate of convergence of approximations
2z to z (respectively g, to g*).

It will be illustrated by an exampie in next sections.

*) Letter ¢ denotes a generic contstant not necessarily the same in different places
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2. Boundary control of parabolic system. Regularity results

Let Q be a bounded domain (open set) in R" with properly regular boundary I
For the sake of simplicity we shall assume that I"is of class C*, Moreover we assume
that locally 2 is situated on one side of I

The following functional space defined on 2 (resp. I") will be used in the sequel.
For their precize definitions and properties see [10].
H® (2)=L? (Q)—space of measurable functions, square integrable on Q.
Hs (2)—Sobolev space of fractional order s defined on .
Let T be a fixed time. Denote

2 0=0x[0,T], Z=IXx][0,T|.
On Q (resp. ) we define the spaces
H' (0, T; H* (@)

which are Sobolev spaces of order r with respect to ¢ with the range in H* (Q).
Denote

H"s (Q)=HP (0, T; H" (@) N H* (0, T; H° () .
For a sufficiently regular function y defined on O by
: Vo and ¥l

we denote its traces on 2 and X respectively.

In the sequel we shall need the following known results ([10]vol. 2, p. 10) con=
cerning regularity of traces:

Lemma 2.1
Let y e H**2(Q)
then

1
Yae HY1(Q) for q>

1
She 2O Dei(E) for g>

and the mappings
y->Yla and  y->yls
are continuous in respective topologies. V
By Z (X; Y) we shall denote the space of linear, continuous operators from X into Y.
Consider the system described in the cylinder Q by the following parabolic
equation (state equation):
' 8y (x, 1)

Ey —Ay (x,2)=0 2.1
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where

n

d
SR . ( iy (¥) =5

the functions a;; (*)=a;; (*) are properly regular (for the sake of simplicity of
class C®) and there exists such a constant p,>0 that

P9) a0y, @.12)

2 a5 () & Er=po 2 & VxeQ, V&R (2.1b)
i,j= 7 -
For (2.1) the Neumann type boundary conditions are satisfied:
dy (o, 1) ( t)
-asYA—é dlo)—+— cos(#; 0':) =g(o,t) inX 2.2)
i,j=1

where # is the unit outward normal to I" and g is a properly regular function defined
on 2.
Moreover the initial condition

y(x,0=y"(x) inQ (2.3)

is satisfied where y? is a properly regular function defined on Q.
In the sequel it will be assumed that

»weH¥?(Q). ) (2.3a)

The solution of (2.1)~(2.3) will be understood in the weak sense (cf. [10]) i.e.
as the properly regular function for which the follwoing identity holds

(J:ig)"p)"'a(y(’) @)= (), 9» VoecH (Q)foraa. t[0,T] (2.4)

along with (2.3).
Where

2 dy(x) 0
50,92 | [ > a (x)—%l ‘Zi 0y )y ¢ (x)] i oS
(*,*)—denotes inner product in L2 (Q) and {*,*)— inper product in L? (I') ex-
tended by continuity to H~1/2 (I')x H/2 (I').

We shall need the following lemma concerning existence and regularity of boun~
dary value problem (2.1)-(2.3), which is a particular case of results presented in
[10] (vol. 2, pp. 69 and 84)

Levma 2.2
Let se[—1/4, 1/4).
If ge Hz (s+3,s+% ():)

yp = H2s+1 (Q)



Convergence of approximations to quadratic optimal control problems 211

then theie exists a unique solution
ye H2(5+1) s+1 (Q)
of (2.1)~(2.3) which continuously depends on g, y®. A 4

Remark 2.3 :

Results similar to those in Lemma 2.1 are also true for s ¢ [—1/4, 1/4), but the
case s<—1/4 is not interesting for our applications while for s>1/4 additional
compatibility conditions must be satisfied, which usually are not met in boundary

control problems. A 4
We shall assume that the space of control
U=H>% ) 2.6)
and we put =
g()=Cul(r) (2.6a)
where
Ce¥(H (2),H (X)) O<r<l. - (2.6b)

The set V of admissible control is defined as in (1.4):
V={ue H*°Z)|lu (s, 1)<l foraa. (s,?)eZ}. .7
As the space Z of output we take A
Z=H ° @

and we put z(u)— =y (T; u), where y (*, ¥) denotes the solution of (2.1)~(2.3) along
with (2.62)

Hence the functionals J(z, u) and J () take on the form

1
Iz, )= llz= o @+ Ml cs] 28)
1
Jw=J (z (), u)= 5 [y (T'; #) = wliZo @+ Al 0,0 (2] 2.9
It will be>assumed that
we H32(Q). (2.9a)
Now we can formulate Problem (P) of optimal control '
@Y
~ find u® e V such that _
J (%) =inf J (). - v
uey

Problem (P?) is a special case of Problem (P) hence it has a unique solation
which can be characterized by (1.6) or (1.7).

Using results of Section 1 we shall investigate convergence of some finite dx—
mensional approximations to (P).
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To this and we shall need informations on regularity of the solution to (P%).
This informations will be obtained by analyzing (1.7).
The gradient of the functional (2.9) takes on the form

DJ (w)=g* (y (T; ¥)—w)+Au=C* p (W)|z+u (2.10)
where p (u) is the solution of the following adjoint equation ([9] p. 139).

dp(w)

o TP W=0 @.11)
t
‘ o ()

B = pe (2.11a)/
p(Tw=yT;w-w - (2.11b)

From (1.7), and (2.10) we get

1
u°=max{— 1, min {1, i C*p (u°)|,}} 5 2.12)

Since u° € H*? (X) substituting s= —1/4 and taking into account (2.3a) by Lemma
2.2 we get

y (W) € H3>31%(Q). (2.13)
Hence by Lemma 2.1
y v (T; u®) e HY? (Q) (2.14)
By (2.8a), (2.11), (2.14) and Lemma 2.2 we have :
; p ) e HI>34 (Q) @15
and by Lemma 2.1
pW)lze HV 12 (2) ‘_ (2.16)
Condition (2.6b) together with (2.16) yield
C*p WO)|z € H» 12 (X). (2.17) g

On the other hand it is known [11] that:

if feH™(0)
then
pLmax {l,f}e H»1(Q) (2.18)

where p=min {1, r}, g=min {1, s}.
Therefore (2.12) together with (2.17) lmply

0 e Hi- 12 () 2.19)

.Taking advantage of (2.19) and reiterating the whole process with s=1/4—¢& we

obtain the following:
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'THEoREM 2.4
Let y*, w € H*? (Q), and condition (2.6b) be satisfied then
¥ @), p ®) € H312=2%514=2 () (2.20)
W e H1=¢ (%) Q2D

~ Note that the limiting factor in the obtained regularity of y (u°) and p (u°) is
not the regularity of u#°, but compatibility condition (cf. [10] vol. 2, p. 69) Due
to this fact we can not use condition (2.21) to repeat again the process (2.13)-(2.17).

3. Boundary control of parabolic system. Approximation

To introduce finite dimensional approximations to Problem (P!) first we must
define subspaces U, and Z,.

To this end in the domain 2 we introduce a family of grids depending on the :
* parameter A.

On these grids we define spaces Gy (2) and G; (22) of piece-wise constant and
piece-wise linear finite elements respectively (cf. [2]).

Let :
R} o: H° (Q)+G, () i=0,1
denote the operators of orthogonal projection on appropriate spaces.
It is assumed that the grids are introduced in such a way that
ko= R} o @llge oy <chB=Uollms oy Vo € H (2) ER))
where :
«ecf0,i], pelo,i+1], i=0,1.
Moreover for G, (2) the following inverse property [2] is satisfied
ol (9)<Ch8—1"‘v"Hﬂ @ VYvEe G, (@) (3.2

where 0<e< f<1.

Let G (I') and G} (I") denote the spaces of traces of Gy (2) and G; (22) respec-
tively on I,

can be shown [2] that conditions similar to (3.1) hold:
"'Z)_R;i.,r 'v"HO(r)QCh“ ellra ary UVE HA(T), « aeifl, 1] (3.3)

where R; . (i=0, 1) denote orthogonal projections on G (I).

To discretize the functions define on Q the interval of control [0, 7] is divided
into T/t=N (z) subintervals of the length 7.
It is assumed that there exist such constants 0<c;<c, that

¢ <1<, P (3.4)

Hence % can be considered as the only parameter of discretization.
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-

On the cylinder Q=Q x (0, T') we define a family of functions piece-wise constant
on intervals [jz, (j+1) 7):

YR (@) ={nn =y (1) for telir,(j+D1), x()eCG (@} (3.3)
By -
RLO: H*°(Q)->YF°(Q) (i=0,1) (3.6a)

RbG: HYC (Z)>YP0(2) (=0,1) (3.6b)

we denote operators of orthogonal projections on appropriate spaces.
Condition (3.3) and definition of R} § imply:

lo— RS Wllwo, 0 iy< [+ lellas,, Vo€ HO?(2), B yel01]l. (3.7

We put
Up=Y%° (2), : " (38)
Z,=G: (Q). : (3.9)

The state equation (2.4) is approximated by a discrete-time Galerkin scheme.
Namely we define a unique function y, € ¥;**(Q) which satisfies the equation

(V4 (k7), pr) +a (J’h,q (k7), pu) =<& (kT), Qs> (3.10)
Voue Gt (Q), k=0,1,..,N()-1
v ©@)=R, 5y° (3.10a)
where
(k+ 1)z
Ek)=— k! g (t)dt @3.11)
; k+1) 1) =y, (kt
By (kr)éyh-(( )7) Vi (k7) (3.122)
Vi 0 (k7) 20y, ((k+1) ©) +(1—0) ys (k7) (3.12b)
and a (.,.) is given by (2.5).
It is assumed that
1
o= 5 (Crank-Nicholson scheme) (3.13a)
or
0=1 (implicite scheme) (3.13b)

In the sequel we shall use the following results due to Hackbusch (cf. [6] Lemmas

4.1 and 4.2) concerning convergence of solutions of (3.10) to the solution of (2.1)-
2.3
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Lemma 3.1

Let y be the solution of (2.1)~(2.3) and y, the solution of (3.10) where (3.4) and
(3.13) are satisfied then the following estimates hold

Iy = yallgar, o @S GhEN [P llgras, %(Q) (3.14)
[oz) selz]
for re 0,-2— , SE ?,1

Iy (T) = y4 (Dllgo 2y < CA**~||Yllgras,s @ (3.15)

1
Jor -~ se(——, 1]. . \ 4

2

" To approximate the control problem considered in Section 2 we put in (3.10)

g (k)= Cu, (k) : (3.16)

The set of admissible control is defined by (2.7) where U is substituted by U,
The cost functional to be minimize is

1
T () =J (z (uy), ) = 5 s (T; up) — wllgo @t A |lusllzo, o @l (3.17)
Problem (P) is approximated by the family of the following Problems (P})

®;) v 3 |
find uw? € V,, such that

Ju )= inf J, (1) (3.183)¥

up€Vy
Problems (P}) have unique solutions.
We shall use Theorem 1.1 to estimate

ll4° — llzro, 0 0y -
It is easy to see that in this case like in (2.10), (2.11)
| g ()=C* pils (3.19)
where p, € Y'° (Q) satisfies the following equation adjoint to (3.10)
(VPh (k2), <Ph) —a (Ph,(] -8) (k), pn)=0
Ve, e G (2), k=N()-1,..,1,0 (3.20)
Pu(N (©) ) =py (T)=2. (3.20a)

Note that changing direction of time we can apply Lemma 3.1 to adjoint equa-
tions (2.11) and (3.20).
Now we are in position to use Theorem 1.1 to estimate

”uo“";?”m,oa)-
Taking advantage of (1.16), (2.21). (3.4), (3.7) and (3.8) we obtain

[14° —Vallzzo, 0 (zy < € 471 =N tllirs, 12 (y S € (3.21)
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By (2.6b), (2.9), (2.10), (2.20) and by Lemma 2.1 we get -
: q*r (y (T; ) —w) e H>=2»1-2 (%),
Hence by (3.4) and (3.7)
llg* (v (T; u®)—w) = R ¢* (v (T; 4°) = W)llgzo,0 ()< 1. (3.22)
Note that by (3.9), (3.19) and (3.20)
q; (RY D=4, (2).
Hence by (2.10) and (3.19) we have
g—ap) (v (T; 4°) = W)llgo, o zy< € Ip @)z —Pn @0)|sllzzo,0 (3 (3.23)
Well known theorem of trace (cf. [10] vol. 1, p. 47) implies
‘ lp1sllzo, 0 5y < € 1PMlE1/2 -+ 26,0 ) §>0.

Hence substituting in (3.14) r=1/4+¢, s=1 and taking into account (2.20) as well
as (3.23) we obtain

”(Q*“qz RY) (y s “o)"W)”Ho,O(z)SC llp (®)—pa (uo)”él/zuz, D(Q)gc}f’/z_za- (3.24)
By stability of Galerkin approximation (3.10) we have
lly (T3 1) =1 (T 2n)llms cay <1l (T3 82 =1 (T 4 llzo oy + _
+llya (T3 4%) =34 (T3 00)las cay <Y (T5 ) =73 (5 6o g+ 14 ~illzo, o 3y
Putting in (3.15) s=1 and taking into ‘account (3.21) we get
ly (T5 u®) = yu (T; 0p)llgo 2y < ch (3.25)
Substituting (3.21), (3.22), (3.24) and (3.25) irto (1.28) we finally obtain

THEOREM 3.2 E
If conditions (3.1) through (3.4) and (3.13) are satisfied then

14 — ullgzo, 0 (zy S € _ v
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Appendix

Prooef of (1.21)

It is assumed that at the point o} =v,+s (u? —v,) the function k, (s) is differentiable.
Consider the following subsets of &

gt ={¢ € &||-DJ (¥} (D+7; (DI>1},
“={¢ e Ell-DJy(v) D+, DI <1},

E0={¢ e E||-DJy(z) (O +7, O)|=1}.
It follows from definitions (1.15b) and (1.18) that

h()(f) wp~v) () for ¢eE*. (A.1)

G

4]

For ¢ € &~ we have

sg (—DJn (¥})+93) (O)= ~DJ, (2}) (§)+7; (&),
hence from (1.15b) and (1.18) we get

"( e @) (0 —2y) (©). . (A.2)

Note that for & € Z° we have

ky (s+ 4s)—ky (s) % lim ky (s+ 4s)—ky, (5) ®

As>0+ 4s As—>0— 4s
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unless
() —vy) (=D 7, (v5) (ug —1) (¢) (A.3)

Since k;, (s) is differentiable condition (A 3) must be satisfied for almost all 6 €50
which fields

40 , o
—(0)=0 -9 (5} foraa LeB° (A.4)

(A.1), (A.2) and (A.4) imply (1.21). q.e.d.

sterowania' optymalnego z ograniczeniami amplitudy
funkcji sterujacej

Podaje si¢ ogdlna metode oszacowania predkosci zbieznosci aproksymacji dla kwadratowych
zadan sterowania optymalnego z ograniczeniami amplitudy funkcji sterujace;j.

W metodzie tej wykorzystuje si¢ bezposrednio postaé sterowania optymalnego.

Otrzymane wyniki ogo6lne sa uzyte do oszacowania predkosci zbieznoSci aproksymacji typu
Galerkina dla zadania sterowania brzegowego dla ukladu opisywanego hmowym réwnaniem
parabolicznym z funkcjonalem jakosci zaleznym od stanu konicowego.

CxonuMoCTh AMIPOKCHMANMN [ 3334 ONTHMAJILHOrO
yOpaBJieHNsS ¢ KBaJpaTHbIM (PYHKIHOHANOM Ka4ecTBa H
OTPaHHYEHESAME N0 AMIUTATY/E YUpaBJ/isiomeil QyHKim

Haerca obmmii METOS OLEHKE CKOPOCTH CXOAMMOCTH ATMPOKCHMAINE [ 3224 ONTHMAIIb-
HOTO YUPABICHWS C KBAIPATHHIM (YHKIMOHAIOM KAYeCTBA M OFPAHMYCHUAMA IO AMIUIATYIS
yoparisonei GyEKna.

* B 3T0M METOOE HEHOCPEACTBEHHO NCIOJIE3YyeTCS BHI ONTHMAIBHOTO YIPABICRUS.

Tlony4ennsle 00mIEe Pe3yIbTATH HCHOIB3YIOTCS B OLEHKE CKOPOCTE CXOJMMOCTH AImpo-
KCHMAIHH JITIst 32149 KPAeBOTO YIPABIEHHs B CHCTEME ONUCHIBAEMON TMHEHHBIM 1apabomyeckam
yPaBHEHHEM, C (YHKIOHATIOM KaueCTBA 3aBUCSIMM OT KOHEYHOTO COCTOAHHS. ;
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