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For a given discrete-time system xk+ 1 =Axk+Buk, where xk EX, uk E U, X and U are Banach 
spaces and A, B are linear bounded operators, some controllability problem"s are considered. 
Throughout the paper the assumption uk E Qc U, where 0 is not necessarily an interior point of 
fl, is made. Necessary and sufficient conditions for local and global controllability are given. They 
are Illustrated by some examples. For finite-dimensional systems corollaries to the main theorem 
include some well-known results of Evans and Murthy. The proof of the main result is based on 
the prominent Krein-Rutman theorem concerning properties of a convex cone invariant with 
respect to a linear bounded operator in a Banach space. 

1. Introduction 

In this paper ~e shall be concerned with controllability of linear time-invariant 
systems whose input state dynamics are described by difference equations in (in
finite-dimensional) Banach spaces. 

The study of controllability for discrete-time systems has received considerable 
attention during the last t~enty years. One of the first works devoted to this pro
blem is the paper by Kalman and others [1], in which the authors introduced a con
cept of complete controllability and derived algebraic testes for this property for 
linear discrete-time systems of the form xk+ 1 =Axk + Buk in the finite-dimensional 
space Rn. Controllability for various types of discrete-time systems with delays 
was studied by Gabasov and others [2]. In a series of papers (see, e.g. [3], [4]) 
Fuhrmann undertook the study of controllability and some other related proper
ties such as realizability and observability for linear discrete-time systems which 
have a Hilbert space as their states space. 

We note that all the above references are concerned only with systems with 
unconstrained controls, i.e. the case where input uk takes values from a linear 
space of controls. For systems in R11 with constraints on controls of the form uk E Q, 
where Q is a closed convex subset of Rm with the origin in its interior, a necessary 
and sufficient condition for controllability was presented in [5]. Recently, some 
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easily checkable criteria for complete controllability have been derived in [6] for 
single input discrete-time systems with positive controls, i.e. for the system xk+l = 
=Axk +buk, xk ERn, uk;)O. 

In this paper we consider controllability of linear discrete-time systems in Banach 
space with control constraints of the general form uk E Q where the origin need 
not be an interior point of Q. From the results obtained in this paper we derive, 
as a corollary, a criterion for local controllability of linear discrete-time systems 
in Rn with constrained controls, which can be considered as an extention to discrete 
systems of the well-known result due to Brammer [7] for continuous finite-dimen
sional linear system x = Ax + Bu, u E Q. Our method is based on some fundamental 
propositions of analysis, among which the theorem of Krein and Rutman (con
cerning with the properties of convex cones in Banach spaces invariant under a cer
tain family of commutable linear bounded operators) plays a crucial role. This 
approach enables us to obtain more general results in a unified and much simpler 
way than techniques of other authors. It is worth to note that the methodology 
used in [6] , [7], clearly, does not apply to the case of infinite-dimensional systems. 
An analogous technique has been used in [11] for continuous-time systems in Rn 
and in [12] for ones in Banach spaces. 

For the aim of our paper, the mentioned above Krein-Rutman's theorem can 
be stated as follows. 

THEOREM A (Krein M.G. and Rutman M.A., [8]). Let C be a convex cone with 
a nonempty interior in a Banach space X and C not be dense in X. Let A be a linear 
bounded operator mapping the cone C into itself, i.e. ACe C. Then there exists a bound
ed positive linear functional x~ E C* c X*, which is an eigenvector of the dual ope
rator A* corresponding to a nonnegative eigenvalue .A.: A* x~ = ;l.x~. 

2. Preliminaries 

Consider the linear discrete-time system 

(1) 

where X and U are real Banach spaces of states and controls, respectively; A: X--+ X, 
B: U-+X are bounded linear operators; Q is a given nonempty convex subset of 
the control space U, which satisfies, in general, only one requirement: 

(2) 

The solution of system (1) after k steps corresponding to a sequence of inputs 
ui E Q for j= l, 2, .. . , k and an initial state x=x1 is given by 

xk+l =Akx1 +Ak- 1Bu1 + ... +ABuk- 1 +Buk. 

For each integer k;) 1 we denote by Uk the Banach space of all vectors of the 
form uk ~:;. (uu u2 , •• • , uk), ui E U for f= I, 2, ... , k with algebraic operations defined 
in the natural way and with t.p.e norm llukll=lltt1 ll +llu2 ll + ... +lludl. 
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Let the symbol Q" stand for the set of all vectors u"= (u1 , u2 , ... , uk) E U" such 
that u1 E Q for j = 1, 2, ... , k. · 

Consider, for every fixed k~ 1, the controllability operator of system (1) F~.:: 1 

: u"~x which is defined as follows 

F~.: u"= A"- 1 Bu1 +Ak- 2 Bu2 + ... +ABu~.:-~ +Bu". (3) 

Obviously, F~.: is a bounded linear operator. 
The set S~.:= F~.: (Q") will be called the reachable set of system (I) after k steps 

00 

and the set S= U S" will be simply called the reachable set of system (1). 
le= 1 

According to Fuhrmann (see. e.g. [3]) system (1) with Q = U is said to be we-
akly controllable (weakly controllable after k steps) if the r~achable set S (respec
tively, the reachable set S~.: after k steps) is dense in X and is said to be strongly 
controllable (strongly controllable after k steps) if the reachable set S (respectively, 
the reachable set S" after k steps) coincides with the whole space X. 

The above mentions motivate the following definition of local and global con
trollability for system (1) with constrained controls. 

DEFINITION 1. The system (1) is said to be locally controllable (locally control
lable after k steps) if the reachable set S (respectively, the reachable set S~.: after 
k steps) contains the origin in its interior, i.e. 0 E int S (respectively, 0 E int S~.:) 

and is said to be locally e-controllable (locally e-controllable after k steps) if S 
(respectively, S~.:) is dense in some neighborhood of the origi11, i.e. 0 E int S (respec
tively, 0 E int S,c). 

In what follows we denote sometimes, for the sake of convenience, the above 
four types of local controllability briefly by (LC), (LC)I.: (e-LC), (e-LC)~.:. 

If the reachable set S of the system (1) coincides with the whole space X we will 
talk about global controllability. The concepts of global controllability after k 
steps, global e-controllability and global e-controllability after k steps are defined 
in a similar fashion. 

In Section 3 we illustrate, with the aid of some examples, the difference between 
the various types of controllability introduced above and establish their relations. 
The main purpose of Section 4 is to derive necessary and sufficient conditions for 
local and global controllability of the system (1) with the convex control set Q 

satisfying the additional condition (2). 

3. Relations Between the Various Types of controllability 

Firstly, it directly follows from Definition 1 that (LCh implies (LC) and (e-LC)k 
implies (e-LC). Further, suppose that the control set Q is convex and satisfies the 
condition (2). If the state space X is finite-dimensional, then, by virtue of convexity 
of the reachable set S, (LC) and (e-LC) are equivalent. Moreover, since S~.: c Sk+ 1 

by (2), we may observe that (LC) implies (LC)~.: for some finite k. However, the 
last two properties, in general, do not hold for infinite-dimensional systems. 
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Example 1. Consider the system xk+ 1 =Axk+uk, ukeQ defined on the space 
C [0, 1] of all continuous functions with usual uniform norm llfll=max{ jf(t)j, 
O~t~1}, while the operator A is given by Af(t)=tf(t) and the control set is D= 
={f(t):f(t)=any real number}. Clearly the reachable setS of this system is equal 
to the set of all polynomials. Therefore, this system is (e-LC) but not (LC). 

Example 2. Consider the following system defined in X=/1 : xk+ 1 =Axk+buk> 
uk E Qc /1 , while A is the right shift operator: A (~1 , ~2 , ••. )=(0, c;l> c;2 , ••• ), b= 
=(1, 0, 0, .. . ) and D=[ -1, 1]. The reachable set of this system after k steps is 
equal to Sk={x=(~l> ... , ~k> 0, 0, ... ): /~il ~ 1}. Thus, this system is not (e -LC)k 
for any finite k. On the other hand, for arbitrary point x0 =(~~' c;~, ... ) in the unit 

00 

ball of 11 and e>O we can find an integer N such that }; Jc;~l <e. Putting x = 
N+1 

=(c;~, c;~, ... , c;~, 0, 0, ... ) we have llx0 -xll <e and x E SNc S. Since e>O is arbitrary 
we conclude that the system is (e-LC). 

Example 3. As a state space X we take L 1 [0, 1] (the Banach space of integrable 
1 

functions). A control set is D={f(t)EL1 [0, 1]: jlf(t) Jdt~l, f(t)=.O on some 
0 

interval [0, c5], c5>0}. It is easy to show that Q is a convex set with empty interior 
in L 1 [0, 1]. We verify that 0 E int Q. Let f(t) be an arbitrary element in the unit 
ball of the space L 1. [0, 1]. By the absolute continuity property of integrable func-

;; 

tions, for any e, O<e < 1 we ca11 find c5>0 such that J lf(t) I dt<e. If f. (t) is a func-
o 

tion which is equal to f on (c5, 1) and is null otherwise, then we have f. E Q and 
llf.-fll<e. Therefore, Q is dense to the unit ball of L 1 [0, 1]. Now, setting A=O 
and B=l (the identity operator of X=L 1 [0, 1)). we obtain the system xk=uk> 
uk E Q, which is (e- LC)1 but not (LCk 

If we set 

and 

Af(t)= {0 for 
f(t-1/2) 

t E [0, 1/2], 
for t E (1/2, 1], 

Bf(t)= {f(t) for t E [0, 1/2], 
0 for t E (1/2, 1], 

then it can be shown that the system in X=L1 [0, 1]: xk+ 1 =Axk+Buk> uk e D, 
where the control set Q is defined as above is (e-LC) 2 but not (LC) 2 • 

The previous examples generate the interest to study the relations between the 
various types of controllability for infinite-dimensional systems. Some of these 
relations are presented in the following. 

THEOREM 1. Let the control set Q be convex and satisfy the condition (~). We have 
the following: 

a) If the system (I) is locally controllable then there exists an integer k 1 ~ 1 such 
that the system is locally a-controllable after k 1 steps. 
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b) If the system (1) is locally controllable and, in addition, the control set Q has 
a non-empty interior in U, then there exists an integer k 1 ?; 1 such that the system 
is locally controllable after k 1 steps. 

c) Suppose that the control set Q is bounded and contains the origin in its interior. 
If the system (1) is locally e-controllable after k steps then it is also locally control
lable after k steps. 

The proof of Theorem 1 is based on the lemma below. 

LEMMA 1. Let MJ (j=O, 1, ... ) be a sequence of convex subsets with non-empty in-

terior in a Banach space X such that 0 E MJ c MJ+ 1 and 0 E int CU MJ)· Then there 
exists an integer j 0 such that 0 E int MJ . r=o 

0 

Proof. We will prove Lemma 1 by contradiction. Suppose that for every j, O~int MJ. 
Let NJ denote the cone of support functionals to MJ at the origin. i.e. 

NJ={x* eX*; x* (x)?;O for all xeMJ}. 
) 

Since 0 ~ int MJ, the cone NJ contains nonzero element by the Hahn-Banach the
orem. It is evident from the properties of the sequence MJ that the cones Ni are 
convex and decreasing, i.e. NJ=>NJ+ 1 for j=O, 1, 2, ... Besides, it is not difficult 
to show that NJ are closed in the weak* topology of X*. Let x0 be an arbitrary 
element interior to M 0 . Choose a number 17.>0 such that x0 -<Xe E M 0 for all e in 
the unit ball X 1 of X. Then, for any x* E N 0 we have 

x* (x0)?; <XX* (e) for all e E X 1
• (4) 

Therefore, x* (x0)?; <XIIx*JI for every x* E N 0 • Denote by N~ the intersection of NJ 
with the hyperplane H={x* EX*: x* (x0)=1Z}. Then, obviously, for every j, N~ 
is non-empty, convex and closed in the weak* topology. Moreover, since N~ N~ 
when j?; 0, from ( 4) we get x* (x0 ) = <X?; odlx*li for every x* EN~. It follows that 
Hx*l!~l for all x*eN~ andj?;O. On account of Alaoglu's theorem (f9], p. 424) 
we conclude that N~ is a weakly* compact set in X*. Hence, by the finite intersec-

co 

tion property, the set N~ = n N~ is non-empty. Let x: be an arbitrary element 
j =O CO 

of N~. Then, clearly, x: is a nonzero support functional to the set U MJ at the 
eo j=O 

origin. This contradicts the assumption 0 E int (U MJ) and completes the proof. 
J=O 

Proof of Theorem 1. 
a) Suppose that system (1) is locally controllable, i.e. 0 E int S. It follows that 

the reachable set S is absorbing and hence we can write 

CO 00 

X=U u usk). 
j= 1 K= 1 

By Baire's theorem, one of the sets, say jo sk 'is dense to some ball, i.e. int Uo sk ) =!=(/>. 
0 0 

Since the map X-+jo X is a homeomorphism of X onto itself, it follows that sk 
0 
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has non-empty interior in X. By convexity of the control set Q and the condition 
(2), Skis convex and S~<csk+l for all integers k. Now, we put Sko+i=Mi for 
j=O, I, ... By Lemma 1, there exists an integer j 0 such that 0 E int (Sk +i ). This 

0 0 

means that the system (1) is locally c-controllable after k 1 ( =k0 + j 0 ) steps and 
concludes the proof of a). 

b) Consider the controllability operator Fk of the system (I) defined as (3). 
ct;J 

If the system is locally controllable, then, by the definition, 0 E int (U Fk (Qk)) 
ct0 K=l 

and, therefore, X= U Fk ( Uk). By the Baire's theorem, there exists an integer k 0 :;;:: 1 
K=l 

such that Fk (Uko) is of the second category and, therefore, according to the Banach 
0 

open mapping theorem, we conclude that Fk
0 

is an open mapping from Uko onto X. 
On the other hand, by the assumption int Q =/= (/), the set Qko has also non-empty 
interior in the Banach space Uko. Hence, the reachable set Sk ( =Fk (Qko)) of 

0 0 

system (1) has non-empty interior in X. Applying Lemma 1 with Mi=Sk +i (j=O, 
0 

1, 2, ... ) we obtain that 0 E int Sk, for some finite k1. This completes the proof of b). 

c) Denote by U~ the unit ball of the Banach space Uk. Then, by the boundeness 
of Q and the assumption 0 E int Q, we can choose the positive numbers cl> c2 (0 < 
<c1<c2 ) SUCh that c1 U~ cQkccz U~. lt folloWS that 

(5) 
Hence 

(6) 

Letting the system (1) be locally controllable after k steps we find a positive A.> 0 

such that A.X1 c Sk=Fk (Qk), where X1 denotes the unit ball of the Banach space X. 

A. ---
Therefore, by (6) we have-X1 cFk (Uf). Since Fk is a linear bounded operator 

cz 
from the Banach space Uk to the Banach space X, it implies from the last inclution 

A. 
that-X1cFk(Uf) (see [10], Lemma 4.13, p. 113). Hence, by (5) we obtain 

cz -
cl A. 
- Xt cFk (Qk)=Sk. 
cz 

This means that 0 E int Sk and so the system (1) is locally controllable after k steps. 
The proof of Theorem I is complete. 

REMARKS 1. Let u0 be an arbitrary element of Q such that Bu0 =0 and let V be the 
closed linear span of Q-u0 : V=sp(Q-u0 ). Denote by ri(Q-u0 ) the relative 
interior of Q- u0 , i.e. the interior of Q- u0 relative to the inducde norm on V. 
Then, the parts b) and c) in the theorem 1 remain true if one replace the assump
tion (0 E) int Q =/= f/J by the weaker one, namely by (0 E) ri (Q- u0 ) =1= (/). Indeed, it 
suffic~s to replace U\ U1 and Qk respectively by V\ V1 and Qk- u~, where Vk is 
defined similarly, V~ is the unit ball of Vk and u~ =(u0 , u0 , ... , u0 ), and we may 
observe that all the argumentation in the above proof remains valid. 
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The results obtained above are collected in the following diagram, where im
plications are denoted by arrows; some arrows are drawn together with the ad
ditional conditions, under which these implications hold. 

(LC)----+ (e-LC) 

it"' t 
int Di'0 ~~ '-,, I 

~ I "'~ I 
(LC)k +----+(e - LC)k 

0 E int .Q 
and .Q is bounded 

To end this section, we note that if the state space X is infinite-dimensional 
and the operator B: U--+X is compact, the system (1) is not locally controllable. 
Moreover, if in addition, the control set .Q is bounded, then the system (1) is not 
even locally e-controllable after any finite number of steps. This property follows 
from the fact the controllability operator Fk of the system (1) defined by (3) is com
pact whenever the operator B is compact. 

4. Criteria of Local and Global Controllability 

The main result of this paper is the following. · 

THEOREM 2. Suppose that the Cf!ntrol set .Q is convex, has non-empty interior in U 
and satisfies the additional condition (2). Then a necessary and sufficient condition 
for the system (1) to be locally controllable is that: 

a) The dual operator A* has no eigenvector with nonnegative eigenvalue, sup
porting to the set B.Q at the origin; 

b) The corresponding system with unconstrained controls 

(7) 

is strongly (in Fuhrmann's sense) controllable, or, equivalently, for some integer k~ 1 

sp {BU, ABU, ... , Ak- 1BU}=X (8) 

Proof. Necessity. The necessity of b) evidently follows from the definition. To 
prove the necessity of a) we assume that there exists a nonzero element x~ EX* 
such that A* x~=h~, A.~O and x~ is a support functional of BQ at the origin: 
x~ (Bu)~O for all u E .Q. Then for each u E .Q and j~O we have x~ (Ai Bu)=(A*i x~) · 
· (Bu)=A.i x~ (Bu)~O. Hence, it follows from the definition of the reachable set 

of system (1) that x~ (x)~O for all x E S. However, this contradicts the local con
trollability of the system (1) and so proves the necessity of a). 
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Sufficiency. As in the proof of b) in Theorem I, it follows from the strong con
trollability of system (7) that for some finite k>O the controllability operator Fk 

is open. Therefore, by convexity of Q and the assumption int Q =/=- (/), the reachable 
set Sk ( = Fk (Qk)) is convex and has non-empty interior in X. Since Sj c Si+ 1 by 
(2), we conclude that the reachable set S of the system is also convex and has non
-empty interior in X. It remains to show that 0 E int S. Suppose that this is not 
the case. Consider the cone C generated by the reachable set S, i.e. C= U yS. 

1> 0 

Clearly C is a convex cone with non-empty interior and C is not dense in X. We 
show that C is invariant under the operator A, i.e. ACe C. For this, it suffices to 
show that ASc S. Let x be an arbitrary vector in S. Then by definition, there exists 
a sequence of controls in Q, say u1 , u2 , . •• , urn, such that 

x = Am Bu1 +Am- 1 Bu2 + ... +ABum- 1 +Burn. 

Hence, Ax= Am+ l Bu1 +Am Bu2 + ... +A2 Bum-l +ABum. By (2), putting Um+ 1 = u8 

we can rewrite the previous relation as follows 
Ax= Am+l Bu1 +Am Bu2 + ... +A2 Bum-1 +ABum+Bum+1· 

This means that Ax is reachable from the origin according to the system (1) after 
m+ I steps by virtue of the sequence of controls u1, u2, .. . , um, um+ 1 taken in the 
restraint set Q. It follows that Ax E S and, on account of arbitrariness of x E S, 
we get AScS. Further, by the Krein-Rutman theorem (see Theorem A in the Intro
duction) there exists a nonzero positive functional x~ E C~ and a nonnegative 
number }, such that A* x~ =.h~ . Since x~ E C~, x~ (x);;, 0 for all x E S. In parti
cular, it follows that x~ (Bu);:.O for all u E Q, i.e. x~ is a support functional of BQ 

at the origin. This contradiction to the condition a) concludes the proof of the 
sufficiency. The theorem has been completely proved. 

We derive some important consequences of Theorem 2 . 

CoROLLARY 1. Assume that the control set Q sati~fies all conditions of theorem 2 
and, besides, the point spectrum of the dual operator A* i$ empty. Then the system 
(1) is locally controllable if and only if the corresponding system with unconstrained 
controls (7) is strongly controllable. 

Proof is obvious. 
As an example, consider a control system described by the following integro-dif

ference equation of Voltera type 
t 

xk+l (t)= J xds) ds+udt), t E [0, 1], 
0 

The system is locally controllable if for the control set we take 

!l=Y( ·) ELz [0, 1], j ff(s) - fo (s) [2ds<I}, 

where fo ( · ) is a function with a L2-norm equal to I. 

\ 
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Indeed, the above restraint set Q satisfies all conditions of Theorem 2. Further, 
the spectrum of the operator A defined by our example consists only of the points 
of the continuous spectrum, and, therefore, the point spectrum of A* is empty. 
Note that the system with unconctrained controls 

t 

xlt+ 1 (t) = J xk (s) ds+uk (t), xk ( ·) E L 2 [0, 1], uk ( ·) E L 2 [0, 1] 
0 

is strongly controllable. Consequently, this system is locally controllable by the 
previous corollary. 

Applying Theorem 2 to finite-dimensional systems, where X=Rn, U=Rm and 
so A and B are real matrices, we firstly note that the condition b) of Theorem 2 
can be replaced by the wellknown algebraic test of Kalman for complete control
lability 

rank {B, AB, A 2 B, ... , An- 1 B}=n. (9) 

Therefore, we obtain the following corollary of Theorem '2, which can be con
sidered as a discrete version of Brammer's criterion of controllability for conti
nuous linear systems with constrained controls [7]. 

CoROLLARY 2. Let the control set Q be convex and have a non-empty interior in 
Rm. Then a necessary and sufficient condition for the system 

' 
(10) 

to be locally controllable is that: 
a) The dual matrix A* has no eigenvector with nonnegative eigenvalue, suppor

ting to the set BQ at the origin: 
b) rank {B, AB, A 2 B, ... , An- 1B}=n. 

CoROLLARY 3. Suppose that the control set Q is a convex cone with a non-empty 
interior in Rm. Then a necessary and sufficient condition for the system (10) to be 
globally controllable is that: 

a) The dual matrix A* has no eigenvectors with nonnegative eigenvalue, supporting 
to the set BQ at the origin; 

b) rank {B, AB, A2 B, ... , An- 1 B}=n. 

Proof. Obvious. 
Let b be a vector in Rn. Then for any vector x E Rn, clearly, either x or - x is 

support to the ray {bu, u?:!=O}. Hence Corollary 3, in particular, implies the following 
results of Evans and Murthy [6]. 

COROLLARY 4. The system in Rn with single input 
xk+ 1.= Axk +buk 

is globally controllable by virtue of nonnegative controls uk;?:!=O if and only if 
a) The matrix A has no real eigenvalues A.?:!=O; 
b) rank {b, Ab, A 2 b, •.. , An- 1 b}=n 
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REMARK 2. It is worth to emphasize that the condition of the control set Q to have 
nonempty interior in the control space U is essential for Theorem 2. We illustrate 
this with the following 

Example 4. Consider the system 

xk+ 1 =Axk+uko ukeQcl2 , 

defined on X=l2 , x=(~1, ~2 , ••• ,),while A is the left shift operator: A (~ 1 , ~2 , ~3 , .•. )= 
=(~2 , ~3 , ••• ) and Q is the set of all nonnegative vectors in 12 , i.e. 

Since the dual operator A* has no eigenvectors, the condition a) of Theorem 2 
is satisfied automatically. Further, it is clear that the system with unconstrained 
controls xk+ 1 = Axk +ub uk e 12 is strongly controllable, i.e. the condition b) of 
Theorem 2 also holds. But this system is not locally controllable since its reachable 
set S is equal to Q, and henceforth, int S=f/J. 

However, Theorem 2 can be actually strengthened, replacing the assumption 
int Qi=f/J by the weaker condition that the relative interior of the set Q-u0 for 
some u0 e Q is non-ampty: ri (Q- u0 ) i=f/J. More precisely, we obtain the following 
theorem. 

THEOREM 3. Suppose Q is a convex subset of U satisfying the condition (2). If for 
some u0 e Q with Bu0 =0 the relative interior of the set Q- u0 is not empty, then 
a necessary and sufficient condition for the system (I) to be locally controllable is 
that: 

a) The dual operator A* has no eigenvectors with nonnegative eigenvalues sup
porting to the set BQ at the origin: 

b) The system with unconstrained controls 

(11) 

is strongly controllable, where jj denotes the restriction of the operator B to the sub
space V and V 6 -sp (Q -u0 ) . 

We omit the proof of this theorem since it is not difficult to show, using the 
Remark I of Theorem I. 

The following example shows an application of Theorem 3. 

Example 5. Consider the system defined as in Example 4 but instead of the pre
vious control set we take 

Q={u=(~1 , ~2 , ••. ):!lull~ I and ~j=O for j=I, 2, .. . , k}. 

We observe that int Q=f/J, but the interior of Q relative to the subspace V of alt 
vectors of the form u=(O, ... , 0, t;k, c;k+l> ... )is non-empty, i.e. riQi=f/J. Furthermore,. 
clearly 

sp {BV, ABV, ... , Ak- 1 BV}=X=/2 • 
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Thus, the system xk+ 1 = Axk + Bvk> vk E V is strongly controllable. Since the con
dition a) and b) of Theorem 3 are satisfied, we conclude that the system under 
considation is locally controllable. 

Applying Theorem 3 to systems in Rn, where, as is well known, any convex 
subset has a non-empty relative interior, we can state the following result with 
the assumption int Q =1= 0 being removed. 

CoROLLARY 5. Suppose Q is a convex subset of R 111 satisfying the condition (2). 
Then for the system 

(12) 

to be locally controllable, a necessary and sufficient condition is that: 

a) No eigenvector of the dual matrix A* with nonnegative eigenvalues supports 
to the set BQ at the origin; 

b) No eigenvector of the dual matrix A* is orthogonal to the set BQ. 

Proof. Evidently, it suffices to show that the condition b) of this corollary is equi
valent to the strong controllability of system (11). Indeed, if hE Rn is an eigen
vector of A* such that (h, Bu)=O for all u E Q, then, clearly, (h, Ai Bv)=O for all 
v E V and j?:- 0. Thus, the vector h is orthogonal to the reachable set of the system 
(11) and so the system (11) is not strongly controllable. Conversely, assume that 
the condition b) of Theorem 3 fails. Then the reachable set S of the system (11) 
is a proper subspace of Rn. On the other hand, since S (=sp {BV, ABV, ... }) is 
invariant under the operator A, the orthogona1 complement S 1 is invariant under 
the dual operator A*. Let h E S 1 be (in general, a complex) eigenvector of A*. Then 
(h, x)=O for all x E S. In particular, we get (h, Bu)=O for all u E Q. This contra
diction completes the proof. 

CoROLLARY 6. Suppose that the control set Q is a convex cone in Rm. Then the con
ditions a) and b) of Corollary 5 are necessary and sufficient for the global control
lability of system (12). 

5. Conclusion 

Some criteria for local and global controllability of linear discrete-time systems, 
which have, in general, the Banach spaces for their states and controls spaces have 
been derived. From these results we have obtained, as corollaries, some easily 
verified tests for controllability of finite-dimensional discrete-time systems with 
constrained controls. They include, in particular, the previous results of Evans 
and Murthy. Central to our method is the application of the well-known krein
-Rutman theorem to the controllability problem. An analogous technique has 
been used in [11] and [12] for continous-time systems of the form x=Ax+Bu, 
uEQ. 
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Sterowalnosc liniowych uklad6w dyskretnych w czasie 

z ograniczeniami sterowania w przestrzeni Banacba 

Rozpatruje si~~< pewne zagadnienia sterowalnosci dla. da.nego ukla.du z dyskretnym cza.sem 
opisanego r6wnaniem x, + 1 = Ax, + Bu., gdzie x. E X, u. E U, X i U S'! przestrzeniami Ba.nacha. 
oraz A i B S'! ograniczonymi operatorami liniowymi. W pracy zaklada si~~<, ze Ut E Qc U, gdzie 0 
jest niekoniecznie punktem wewn~~<trznym zbioru Q. Podaje si~~< warunki konieczne i wystarczaj'!ce 
sterowalnosci lokalnej i globalnej, ilustruj'lc je przykladami. Dla ukla.d6w skonczeniewymiaro
wych ~nioski z gl6wnego twierdzenia zawieraj'l pewne dobrze znane wyniki Evansa i Murthy'ego. 
Dow6d gl6wnego rezultatu jest oparty na slynnym twierdzeniu Kreina-Rutrnana o wlasciwosciach 
stoika wypukleg<i niezmienniczego wzgl~~<dem ograniczonego operatora liniowego w przestrzeni 
Banacha. 
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PaCCMaTpRBaiOTCl! HeKOTOpbie BOIIpOCbi yripaBMeMOCTH lJ,IDI lJ,aHHOH CRCTeMbi C lJ,RCKpeTHbiM 

BpeMeHeM, mmcaaaoi1 ypaBHeHHeM xk+t =Axk+Buk, rlJ,e xk EX, uk EH, X H H .liBIDIIOTCl:l npo

crpaacrBaMH Eaaaxa, A H B l:IBIDIIOTCl:l orpaHR'feHHbiMH mmeHI!J>JMH oneparopaMH. 

B pa6ore npe~J,rronaraercl!, '!TO uk E Qc U, r11.e 0 l:IBIDI.ercl:l ne o6l:l3arel1bno Bityrpel{HeJ;i: ro

'IKOH MHOJKecrpa Q. ,!J;aroTCll Heo6XOlJ,HMbie H lJ,OCTaTO'flfbie YCJIOBHl:l JIOKaJibl{OH H rno6al1bHOH 

yrrpaBJilleMOCTH, HJIJIIOCTpHpyli HX Ha npJIMepax. 

,!J;IDI KOI{e'fHOMepl{biX CRCTeM BblBOIJ,bl H3 OCHOBI{OH reopeMbi COlJ,epJKaT HeKOTOpbie XOpOillO 

H3BeCTI{bie pe3yl1bTaTbi 3Bal{Ca H MapTH. ,!J;oKa3aTel1bCTBO OCHOBHOro pe3yl1bl'ara OCHOBano 

Ha R3BeCTHOii reopeMe Kpeii:Ha-Pyl'J\<IaHa o cBoiicl'BaX BblllJKJIOro Koayca, HHBapaamaoro no 

Ol'HOilleHHIO K orpal{Hqel{HOMY JII{HeHHOMY oneparopy B 6aHaXOBOM ItpOCl'pai!CTBe. 
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