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A new approach to the pole assignment in linear systems is proposed which is based on uni-
tary or orthogonal transformation of the closed loop system matrix to its Schur canonical form.
The method has a number of advantages over the other known methods. In particular it does not
require the computation of the characteristic polynomial of the open loop system matrix or the
transformation to phase-variable canonical form.

+  There is an analogy between the method proposed and the OR-method for finding the Schur
canonical form of a matrix. The new approach can be the basis for development of a numerically
stable algorithm for pole assignment.

1. Introduction

The problem of pole assignment (PA) in linear time-invariant systems is com-
pletely solved from theoretical point of view [1]. However in many cases its nu-
merical solution is unsatisfactory especially for high order systems. This may be
a result of the illconditioning of the problem and/or the numerical instability of
the methods used for this purpose. Unfortunately there are no investigations up
to this moment concerned with the conditioning of the PA problem and the nu-
merical properties of the existing methods have not been considered in detail. Mo-
reover, it can be observed that most of these methods are numerically unstable.
For example the methods based on preliminary transformation of the system in
Luenberger canonical form are unstable since in general the Frobenius form of
a matrix can not be obtained by stable similarity transformations [2].

In the present paper a new approach to PA in linear systems is proposed. 1t is
based on the well known fact that an arbitrary matrix can be reduced to Schur
canonical form using unitary or orthogonal similarity transformations [2]. The
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latter are extremally favorable from computational point of view since they do
not increase the norm of the matrix.

According to the new approach the gain matrix is determined so that the
Schur form of the closed loop system matrix (CSM) has a desired spectrum. The
method for PA is realized by two algorithms. In the first of them unitary trans-
formations are implemented in order to reduce the CSM into complex upper trian-
gular form (complex Schur canonical form) whose diagonal elements are the de-
sired poles. In the second one the CSM is reduced into real upper quasitriangular
form (real Schur canonical form) by orthogonal transformations.

Further on the following abbreviations are used: FI" — the space of nxm —
matrices over F(Fy=F", F,=F,, F;=F), where F is the field of real (F=R) or
complex (F=C) numbers; AT (4%) —~the transposed (conjugate transposed) ma-
trix A; S (n)=C — the set of all collections of :n pair-wise conjugate complex num-
bers sy, ..., 8; spect(4d)=S (n) —the spectrum of A e R); |4l and ||A4|, — the
spectral and Euclidean norms of 4; GL (n, F)<F:, U(n)<C} and O (n)<R! —
the groups of nonsingular, unitary and orthogonal matrices resp.

2. Statement of the Problem

Consider the completely controllable time-invariant single-input system .
X (t)=Ax (t)+bu (1), : (1)

where x ()€ R", u(f)eR and AcR",beR". ;

Denote L=[A, b) e LS (n), where LS (n)=R]xR" is the set of matrix pairs
[4, b) with A4 cyclic and b a generator for R" relative to A4, and let s={s;, ..., 5,} €
€ S (n). Then the PA problem for system (1) is defined in the following way: Find
a gain matrix k=k (s) € R, such that the control law u (#)=kx (¢) preassignes the
spectrum of CSM, spect(4.)=s, A.=A+bk. Note that in the single-input case
the matrix k (s) is uniquely determined for each s.

Denote by A, (p)=(p—s51) ... @—8)=p"— (51 +... +8) p" 1 4. +(=1)%, ... 5,=
=p"+d,_, (s) p"~ ' +... +d, (s) the desired characteristic polynomial of A.. Then
the relation det(pl,—A4.)=h,(p) for determining k=*k (s) is equivalent to the li-
near algebraic equation

kD (L)=d (s)—d (5) @
where s,=spect (4) and d(s)=[d, () !... do—y (5)] € R,. The matrix D (L)€ R} in
(2) is uniquely determined and is nonsingular iff the pair L is completely controllable.

It follows from eqn. (2) that the accuracy of the computation of k is determined
by the condition number ¢ (L)=cond D (L)=||D(L)}|||D~* (L) of the matrix
D (L). Further on we shall refer to ¢ (L) as the condition number of the PA pro-
blem for the concrete realization L of (1).
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Note that the matrix D (L) may be very ill-conditioned even if the controllability
matrix C(L)=[b4b; ... .A"~* b] is well-conditioned.

The number ¢ (L) is inherent for the problem considered and its value is crucial
for the computation only of k in the presence of uncertain data and round-off errors.
At the same time spect (4,) may be very sensitive in variations of k. This imposes
even more accuracy requirements on the numerical algorithms for PA.

In each method for solving the PA problem the matrix D (L) is obtained in
a specific way which in turn may deteriorate the solution. For example the method
based on transformation of L into phase-variable canonical form corresponds to
the factorization D (L)=C(L)M(s,) where M (s)=[m,)eR:, m=m;=
=d;y ;- (54) (dy=1, d;=0 for iZzn+1) and det M (s)=1 [3]. However it is well
known [4] that the computation of C (L) may be associated with great errors which
leads to the numerical instability of this method.

Analogous difficulties arise also in the other methods for PA. Thus the deve-
lopment of numerically stable P4 methods turns out to be an important and ur-
gent problem in the synthesis of linear systems. :

The method proposed in this paper is based on successive determination of
the matrices Ve U(n), Fe C, and k satisfying the relation

VH (A+bk) V=F, 3)
where
sifhl e
gl il -
0 799

and f;e Ci-!(i=2, ..., n) are unknown vectors.
A modification of the method using orthogonal transformations is also developed.

A preliminary step in both cases is the transformation of L into the form L=
=[A4, b)=[PT AP, PT b), p€ O (n), where b=[ll _;'0:, ... .0]". This may be accom-
plished by one numerically stable Householder transformation.

3. Pole Assignment by Unitary Triangularization

Rewrite equation (3) as
(A +bk) V=VF, )

where V=PT Ve U (1), k=kP € R,, and denote e,=[1:0. ... 0] € R,, E,=[0I,_,] €
€ R:~'. Now equation (4) takes the form

e, (A+bk) V=e, VF,
E, (1 +bk) P=E, VF.
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Since E, b=0 one obtains

k=(o" FP¥—a")/lbl| ©)
and
E, AV=E, VF, (6)
where v'=e, V, al=e, A.

Let the matrix ¥ be partitioned as V'=[v,; ... iv,],v, € C"and set V,=[v;: ... lv,_,]€
€ C_;. Then (6) is equivalent to the system of n vector equations

~ X 5
E.l Avl =En [‘v.l_i i ‘:vil] [‘(_}I; ] =5 En Y1, (7)
fi
En Eﬂl—=ER [Vl 'Ut e ivn] _"‘_'i_ =Eu Vtﬁ +5 En Yis (8)
0
=2, ...,
1t follows from (7), (8) that
Al 4y =0, (9)
Ai‘vi=Wiﬂ! i=2! ey 1 (10)

where A,=E, (A—s,I,), W,=E, V..

Now the vectors v;, f; and the matrix k& can be determined successively by the
following algorithm called UT (Unitary Triangularization):

Step 1. Since rank G;<n—1, G;=A4;, the general solution of (9) is z;=v,=pc,,
where Os¢; € C" is any non-zero solution of (9) and p e C is an arbitrary para-
meter. The condition v¥ v, =1 yields [p|? ¢ ¢, =1, i.e. p=efo ?o (cf ¢,)~ 12, j2=—1.
Choose for simplicity po=0. Then

vy=(cf ¢1)~ ey (11)

Step i (2<i<n). Let the matrix ¥; be determined as a result of steps 1, ..., i—1.
Denote z;=[v]; /{17 € C"*!~*. Then equation (10) together with the orthogonality
condition V{ v,=0 is equivalent to

G, 2,=0 (12)

A=W,

Since rank G;<n+i—2 the linear equation (12) has a solution z;=pc;,, peC,
where 0#c,=[v],: fTo]" € C**'~1 is any fixed solution of (12). Moreover, it fol-
lows from the complete controllability of L that v,,50 (see the Appendix). Now
the condition o} v,=1 yields |p|*2] vio=1, i.e. p=ehP° (o] v;0)~ /2.

where
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Choosing p,=0 one obtains

v, =0} Vi0) "1 240, [ =5 vi0)" ' fio- (13)

Final step. After the determination of ¥ and F from (11), (13) the matrix k is
given by (5). Thus the sclution of the PA problem is

k=kP, V=PV. (19)

Note that the solution of the homogeneous equations G; z,=0, j=1, ..., n, can
be accomplished reliably by singular value decomposition (SVD) [5]. Let G;=
=L;[D; O] R} (L;e U(n+j—2), R;€ U(n+j—1)) be the SVD of G;, where D;=
=diag (d;y, -.-» Ajs nsj—2) and d;;>...2d;, 41 ;-,=>0 are the singular values of G;.
Then a particular non-zero solution z;, is the last column of R;.

It can be shown that if s; € R then the vector »; can be chosen also real.

4. Pole Assignment by Orthogonal Triangularization

An analogous algorithm can be derived using orthogonal quasitriangularization
of A..

Note first that if the desired poles s, ..., s, are real then the unitary triangula-
rization in algorithm UT can be replaced directly by an orthogonal one choosing
VeO (n), Fe R, and substituting V7 instead of V¥, etc.

Let us now consider the general case when the desired spectrum of 4, is s=
={al_j0 bl! al +JO bls waay am-.fi) bm: am +j0 bms I'5'21111+1s wany Sn}, where ﬂ'], bls waay arm e
By a1y s S € R} 2m<n.

When only O (n) — transformations are used the matrix F in (3) must be in the
form

(S, i b §
IS SR 3
e : Efzm+1 :
Fe S ';ﬁ‘ eR", (15)
Somerl
s 1 % _
where
' a; =Dy - . 2
S;=| e | R Femlfau i ful € RS 19
SR SR

freR™Y; i=2, .., m; j=1,..,m; r=2m+]1, ..,n and r;#0 are real para-
meters which will be determined later.
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ReMARK. Using O(2)—transformations a real 2 X 2—matrix with complex spectrum
a;—b

can not be reduced to the form [J 30 ] , the latter being attainable in general
39

by GL (2, R)—transformations.
Let the matrix e O (1) be partitioned as

V=[I71 }:-;m Vams1! e E'vn]: 17:=[‘021.—15“3’2:] €Rj, v;ER".
It follows from (4), (15), (16) that

k="' FV'T—a")/|ib] (17)
and
E,AV,=E,V,S8,, (18)
E, AV,=E,Vy 1 F,(+E, V. S;, i=2, ....m, (19)
E, Av,=E, V, f.+5, E, v,, r=2m+1, ..., n, (20)

where vl=e, V, a'=e, 4 and V,=[v,..v;,_]eR}_,.
Having in mind (16) equations (18)-(20) take the form
Ay vy=b; r E, v3, Ayv,=—(by/r)) E, v, : (21)
A0 =Wy for-1+b; 1 Eyvyy, '
A; 92;=W2;_1fzr‘(b,-/rt)E,,ﬂ“_l, i=2, .., m :
Ao, =W, f,, r——2m+l g : (23)

where A,=E,(A—a; L), j=1, ..,m; A,=E,(A—s, 1), r=2m+1,..,n and W=
=E, V;, j=1,..,n

Using (17), (21)~(23) the following algorithm (called OT — Orthogonal Trian-
gularization) for computation of ¥, F and k can be derived:

(22)

Step 1. Set x;=v;, x,=r;v, and rewrite (21) as H, z,=0,

| . [ Ai i—b.E, (24)
where zl=[x'{§x§"TeR2" and H1=['""1"' ..... {‘__]E )

'The linear equation (24) has at Ieast two linearly independent solutions, say [eT i eI)F,
[dF  dT1". Hence x,=pc,+gd,, xy=pc;+gd,, where p,qe R. The conditions
o] T9,=0 and oTv,=1 are equivalent to

P> i ¢ +pg (el dy+d] ¢;)+q* dt d,=0, (25
pref ¢y +2pgel di+q2dT dy=1. (26)

The solution of (25), (26) is
g=+(w? ] ¢ +2wc] dy +d] d)~11? (27)

p=wq, (28)
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where _ ; .
w=(—c] dy—d] ¢, + ((c{ dy+d7i ¢,)*—4cl ¢, dT dz)”z)/@c{ ;) (29)
The parameter r, is determined from v} v,=r]2 x] x,=1, i.e. |
ri=+qW?cj cs+2wcl dy+dl dy)'/3. (30)

Step i (2<i<m). Set Xp;—1=0ai_y, X3;=TiVa;. V2i-1=fa-1, Vui=T:f2 and
ewrite (22) together with the orthogonality conditions ¥V}, ; [v;;_, v,;]=0 asr

H,; z;=0, 31
where z;=[x], ;| X3; i Vi1 YT € R*"+3=2 and
i A[ _bl En E_Wzi—-l; 0 ¥
; bE, | A i 0 =Wy
A it S LT e gantat-e
VZi‘l - 0 X
___________ E_..--.-,---- 0
0 | Vi

The homogeneous equation (31) has at least two linearly independent solutions,
say [el1ich gy iq )", [dY,_,idY; kY,  h3]¥, where one of the vectors
Cai—1> @r;—1 and ¢, d,; is non-zero (see the Appendix). Hence x,;_;=pcs;_, +
+qdyi_ 1, X2=pCri+qdyy, Vai-1=PG2i-1+qh2i_1, V20=DPZ2:+qhy;, where the
parameters p, g € R are determined from the conditions v, _; v5;=0, v}, _; v5;_y=1,
i.e. one can use (27)-(29) where the indices 1, 2 are replaced by 2i—1, 2i. Finally
r; is obtained from o), v,,=r; > x], X,;=1 via (30) after appropriate index sub-
stitution.

Steps 2m+1, ...,n for determining ;4 15 <oy Uns Som+1s -o» fu are carried out as
steps 2m+1, ..., n of algorithm UT. Now the solution of the P4 problem is given
by (14) in view of (17).

5. Numerical Example

1 =2 1
Consider the pair L=[4,b)eLS(3), A=|1 0 1|, b=|0| and let
0 2 -1 0
11 -2
the desired spectrum of 4. be s={—2, —1—j,, —1+4jo}. Then D (L)=|0 1 1},
00 2

the condition of the PA problem is ¢ (L)=||D (L) || ||.D~* (L) ||=7.0748561 and the
exact solution is k=[—4: —3 ! —4.5]. We shall implement UT and OT—algorithms
using machine arithmetics with relative precision eps=10-7. Let V, F, k and §
be the computed values of V, F, k and s. Then the following estimates of the round-
-off errors can be introduced: Dy=lls—sll/llsll D=l k—Ekll/ll kll, De=I Rl/ll4cl
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(R=(A +bk) V—VF), D,=||Fll/ldN.—1|, D =|V¥ V=L, where s stands for
[sy:5,:53]7 € C3. Obviously D, and D, are the most important criteria for the ac-
curacy of computations while the other D—s give some information about the
computational process.

Using the UT—algorithm the following values have been computed

"—0.7745966 |—0.1299431 10.4850712
+0.2581988j, | +0.2848747j, '
e | 0.8046482 : 0.4850712
T —0.2581988j, |—0.2249016j, !
0.5163977 {—0.4498033 |0.7276068
| —0.0399821j, | 3
T-1.0 | 3.0389657 | 4.5401295
~Jo z | +1.7847387),
F=| 00 '—~1.0 . 1.6073089
+jo ' +1.9061029j,
00 0.0 1—2.0 ¥

f = [ 39999995 1—3.0000014 |—4.4999991
T U | —12.7epsjo  +6.6epsj,  +4.7 epsjo

‘The matrix & is obtained from k omitting the imaginery terms:
k=[—3.9999995 —3.0000014 —4.4999991], and
§={—1.9999984, —1.0000005— 1.0000004,, — 1.0000005 -+ 1.0000004j,}
The corresponding results obtained via the OT—algorithm are

—0.8501254  0.2049204 0.4850708
P=| 0.0665982 —0.8719350 0.4850712
0.5223515  0.4446764 0.7276072

—1.0 —3.3384992  5.0528174
F=| 02995357 —1.0 —2.1174881
6.0 0.0 -2.0

k=[—3.9999965 —2.9999993 —4.5000015]
§={—2.0000018, —0.9999973 —1.0000047j,, —0.9999973+1.0000047/}.

The table shows the accuracy estimates for both algorithms:

D/eps
Algorithm | Dileps

ur 7 | 3 4 | 1 | 12 |
or 20 | 6 § | 2 | m |

Dy feps | Dgfleps | D4feps | Dyfeps
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6. Conclusions

1. A new method for PA is proposed which is realized by the algorithms UT
and OT based on unitary and orthogonal transformation of CSM A.=A4+bK
to Schur canonical form.

2. The UT—algorithm requires usage of complex arithmetics which leads to
certain increase of the computation time. On the other hand this increase is com-
pensated by the fact that UT—algorithm involves the solution of linear homoge-
neous algebraic equations of order up to 2n—1. Moreover, it treats the complex
and real poles of A, in an unified manner.

3. The OT—algorithm makes possible the implementation of real arithmetics
only. However it requires the solution of linear homogeneous equations of order
up to 2n+2m—2. The solution is less accurate in comparison with the UT—algo-
rithm as a result of solving scalar quadratic equations.

4. The method presented has a number of advantages over the other known
methods. It requires neither computation of the characteristic polynomial of A
nor transformation to phase-variable canonical form — both operations being
numerically unstable.

5. There is an interesting analogy between the method proposed and the Q R—me-
thod [2] for transformation of a non-symmetric matrix into a (quasi) triangular
form. In the QR—method a sequence of unitary (orthogonal) similarity transfor-
mations is implemented on the original matrix such that the final matrix is (quasi)
triangular. In the method presented a somehow opposite problem is solved: Given
the diagonal blocks of the (quasi) triangular matrix find a part of 4, and thus the
gain matrix k. It is well known that the OQR—method is numerically stable and
now is the most reliable way to solve the eigenvalue problem for non-symmetric
matrices. Although the method proposed may not be characterized in such a de-
finitive manner it is reasonable to think that it can be the basis for development
of numerically stable algorithm for PA.

6. The approach presented can be extended directly to linear multi-input sys-
tems. In this case the freedom in the gain matrix can be used in order to satisfy

additional requirements imposed on the closed loop system.

APPENDIX

ProrosiTION 1. Let [A4, b) e LS (n). Then at each step i of algorithm UT every
non-zero solution z,=[v7:f7]7 of the homogeneous equation G;z;=0 has the
property v;#0.

Proof. Denote v, =[x, u7]", x;€ C,u; € C*~ ' and E, A=[h: H]; he R"~*, He R"_},
where [H, h) e LS (n—1). Now equations (9), (10) take the form

Xy h+Hu,=s, u; (32)
Xi h+Hui=Sg U; +f1; 1251 +'"+ﬁ—1!i i1, f=2, R (33)
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where fi=[f};' ... fi—1.:]7- We shall prove that
rank fu, | ... u]=i {4 1 (34)

for i=1, ..., n—1. In fact, (34) is valid i=1 since in the opposite case (u;=0) (32)
yields x; A=0=x,=0 (in view of h13£0) and v, =0—a contradiction with z,; =7, #0.
Suppose now that 2<i<n—1 is the first integer for which (34) does not hold. Then
there exist i—1 complex numbers a;,, ..., ¢; ;—; such that

U=y Uy toee T lypiq Uy (35)
Substituting (35) in (33) one gets by_,; fi+b;_.; Uy +...+b,—-;,,-_1 u;_ =0, where

bi =X — @ X1 — =iy X1,
. . L) ) (36)
bi_1,;=ai;(8;—5)—Fri-1+ i1 fijer+eFauiog froio1,  j=1, .01,

It can be observed that &, ,.,;#0 since b;,_;,,=0 together with (36), (35) yields
=@y U3+ -1 91 Which is impossible in view of o¥ v;=0, j=1, ...,i—1.
Hence at least one of the coefficients b;_,,; is non-zero; for instance b;_4,;_; #0.
Therefore

Uiy =gy B+t o F @i U, (37
Wh.eflé i yj=—=bi_1ylbi_vsioxs J=1, v i=25 @_gyi_3=—b;_1,;/bi_1,;—,. Seting

(37) in (33) and having in mind (35) one obtains

w=a;; h+ay,;,1 Hh+...4+a;;-y H7"  h4a; uy +...+a;,;_ 1 u;_4,
38)
Uy =d;; h+-u+a1,i__2 Hi_zh, (
where '
: g‘?l +...+ﬂ12,¢_1 20, . J=1, il (39)

Now (38) and (32) yield
(xl _Sl a“) h+(a]1‘_'31 alz) Hh"‘-.. :
F(@1i-3—51 @15i-2) H"? hta;;_, H-1 h=0. (40)
Sincerank [h'.... H'=! h]=iit follows from (40) ay,;_2=0, @1,;—3=5; Aysi_2, c-r) Ag1=
=8 G5, X1=5; dy,, 1.8. @y, =0ay,=...=d;,;_,=0 which contradicts (39). Hence
(34) is valid for each i=1, ..., n—1, and v;#0, i=1, ..., n—1. Suppose finally that

v,=0. Then (33) implies [u; ... u,_,]f,=0 and f,=0 which is impossible since
z,=[o" | fT1T+#0. Proposition 1 is proved.

PROPOSITION 2. Let [, b) € LS (). Then at each step i of algorithm OT every
non-zero solution z,=[x],_,xZ,1y%._; 37,17 of the homogeneous equation H; z;=0
has the property x,;_;#0, x,;#0.

The proof is similar to this of Proposition 1 and is omitted.
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Podejscie Schura do zagadnienia rozmieszczenia biegunéw

W pracy zaproponowano nowe podejicie do zagadnienia rozmieszczenia biegunow w ukla-
dach liniowych. Jest ono oparte na unitarnej lub ortogonalnej transformacji macierzy ukladu
zamknigtego do postaci kanonicznej Schura. Metoda ma szereg zalet w stosunku do innych znanych
metod. W szczegblnosei nie wymaga ona obliczania wielomianu charakterystycznego macierzy
ukiadu otwartego lub przeksztalcenia na posta¢ kanoniczna zmiennych fazowych.

Istnieje pewna analogia miedzy zaproponowana metoda i1 metoda QR znajdowania postaci
kanonicznej Schura macierzy. To nowe podejscie moze by¢ podstawa opracowania stabilnego nu-
merycznie algorytmu rozmieszczenia biegunow.

Hozixoa Hlypa xk Bonpocy pacmpe/ie/ieHHs [O/IOCOB

B pabore mpeanaraercs HOBBIH DOIX0/ K BOLNPOCY pacmpefeNeHus MOMOCOB B JINHCHHBIX CHC~
Temax. OH OCHOBaH HA YHHTAPHOM MJIH GPTOTOHAILHOM IpeolpaioBaHHd MATDHL! 3aMKHYTOMR
cucreMbl B kanouuueckui Bum Iypa. Merton ofnamaer pAgoM NPeHMYLIECTB 10 CPaBHEHHIO
C IpYTHMHE M3BECTHBIMH MeToAaMu. B 4acTHOCTH OH He TpebyeT BEMHCIEHNUA XapaKTePHCTHYECKOTO
MHOTOY/IEHA MATPHUBI PA3OMKHYTOH CHCTEMEI MW OPeoGpa3oBaHMA B KaHOHWIECKHIl By daso-
BBHIX IEPEMEHHBIX.

CymmecTByeT HEKOTOpas AHAIOTHA MEXIy TpeiaraeMeiM MerofoM u Merogom QR Haxo-
SKOCHUS, MATPHULL B kaHoHwdeckoM Buae llypa. DToT HOBLIL Hoaxon Moxer ObITh OCHOBOIN ISt
pa3paBoTKH YHCIEHHO YCTONYHBOTO AICOPHTMA PACHPENENCHEs IOFOCOR.







