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A comprehensive study of appro:x;imaticin algdrithrris fOr solving various ill-pos~d problems 
is presented in the paper. Results concerning t<;>rtvergence of the proposed methods are given with 
proofs. 

Part I offer~ an exposition of the general framework. The mdn approximation results and 
a discussion of approaches most frequently itsed for ·solving the. p_roblems under consideratio;t 
(penalty functions and minimization, reguliuizationj are presented. 'In particular algorithms for 
ill-posed problems with only discrete Iaiowledge of data resulting from measurements, using so 
called generalized interpolation, are discus.sed. 
, Part II is devoted to some applications .. f.\pproximatiort algorithms for equations involving 
Nemytsky oper~tors are discussed. Re~Ults c~ricerl)ip.g constructive _approaches to solving inverse 
problems for parabolic equations (recovery of' a "diffused signal) as well as to solving more genera) 
identification problems for distributed syste~s are ~resented. 

l. Introduction 

In his discussion of partial differential equations [27], Hadamard called a problem 

f(x)=b wher? f: X:::>D~Y, bEY (1.1) 

well-posed if, for each bin Y, there would exist a unique solution x* in D for (1.1) 
depending continuously on b in a suitable domain D c Y- i.e., if f were to have 
a continuous inverse g: Y:::>JJ~x This may be generalized (this, essentially, is 
the context of the theory of pseudoinverses. and normal solvability; see, e.g., [49], 
[53]) to let g: R (f)~ X be a suitable continuou~ right inverse of J, permitting con
sideration of possible nonsurjectivity 0f f Omt with the range.: off closed in Y) and 
nonuniqueness (e.g., adjoining an aQxjliary criterion to select a unique solution: 
say, selecting the one of minimum X-norJB)· Conversely, ~e now wish to consider 
tll-posed problems, meaning problems for which there can be no continuous right 

. inverse g; the usual sympt~m of this is that the range off is not closed in Y. 
____ ·_ ' ,. ' . < • · ~ 
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In praciice, problems of the form (1.1) arise in circumstances for which the 
data (b and the map f) are available only as approximations- through calculation, 
theoretical analysis or measurement. If one considers the approximating problems 

(1.2) 

then the "solutions" xk :=gk (bk) provide a sequence of approximants to x* =g (/J). 
It is easily seen that, for well-posed pr6blenis,' the properties of stabilitY," (gk eq~i
continuous) and consistency (f(gk (b)) ~b) imply· convergence : (bk:Jb iihpli:es x~ip. 
=gk (bk)~x*). Conversely, one expects (e.g., note the Lax Equivalence Theorem 
[43]) that, for consistent approximation schemes {gk}, convergence is equivalent 

to stability and implies continuity of g . (wel~-posedness). 
The prevailing attitude follo}ying , [27_], , W.iiS that ill-posed problems did not 

occur for properly mode~ed ql'.testit:>ns .of; physical interest- fortunately, as the 
inevitable imprecisions of formulation, measurement and finitary computation 
would preclude any possibility of useful inference otherwise. It happens, however, 
t)lat numerous ill-posed problems, are, indeed, of practical interest,and, fortunately, 
·that useful computation is, in fact, possible in. that case -through requiring-more 
than the usual care in formulation and execution: (1.2) cannot be safely used<as 
an approximation scheme nor(see Theorem·?. I below) c;;in'the"stinid:}r.d projection 
method, of minimizing llfk (x)-bkil over a sequence of ~ubsp~~es {X~<}· The most 

.. l' ; • ,1 . .. ' 

widely (and most successfully} used computational approach to the . solution of 
ill-posed problems has been the method of regularization;' due originally to Tik
honov '([69];· etc.). There is' a 'considerable and growing body of research (largely 
in the Russian literature; in particular see [47])into the 'the'or~Jical properties and 
various applications of (variants of) this method. · · , . · ·· . · 

A number of classes of ill-posed problems have been extensively studied, in
cluding: 

; (1.3) 

(a) determination of Sturm-Liouville operators from. spectral data; see, e.g., , [35] 
and the deep results of [23], . . 

(b) inverse problems (determination of functions, such as coefficients, defining 
a differential equation from various observations of solutions); . see; e.g., Se~
tion 7, below, and further references there, 

(c) nonstandard Cauchy problems (as, for example, the backwards heat equation); 
see, e.g., (33], [41], (38] and Section 6 below, 

(d) integral geometry (de_termining a function from integral averages over a sui
table family of sets); see, e.g., [34] [42], 

(e) integral equations of the first kind (including numerical inversion of various 
integral transforms); see, e.g., [56], 

(f) continuation (analytical continuation and "field problems", estimating, say, 
a pressure field in hydrology or an electrostatic field globally from local obser
vations), 

etc. 
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For most of these problems the principal thrusts of the body of theoretical analysis 
have been toward establishing uniqueness and toward demonstrating a form of 
well-posedness in a restricted context, showing that the solution depended conti
nuously on b if it were a priori known to lie in a sufficiently restricted set (say, by 
the assumption of bounds for some suitable norm- see, e.g., [33], [55] and. note 
also, (5], Theorem 1 of [61]; compare Theorem 2.5, below). Of these classes (1.3), 
the class of inverse problems (1.3.b), in particular, has been the subject of exten
sive investigation (we specifically cite the considerable work by J. R. Cannon and 
by G. Chavent). It is worth noting that much of the investigation in this area, espe
cially that which has appeared in the system theoretic and engineering literature, 
suffers from a profound defect (compare Theorem 7.1, below): it investigates the 
theoretical properties and the feasibility and convergence of computational schemes 
as applied to the problem after expressing the unknown function in terms of (an 
approximating) parametric representation without considering the sensitivity of 
the computation to the effect of approximation at this stage of the total formulation. 

There are two principal viewpoints from which to consider the computational 
aspects of (1.1). First one may assume that one has given a specific (perhaps appro
ximate) form J of the map f: X=>D-+ Y and a specific observation b approximating 
b together with a priori information as to a subset i5cD within which to seek the 
solution and estimates of the "goodness of approximation" of J to f and of b to b 
(these estimates may be explicit bounds or may be parameters of a statistical error 
distribution). One then seeks to obtain (by some feasible computational procedure) 
the best possible (or maximum likelihood) "estimate" x on the basis of the avail
able data and also a bound (or confidence regions) for the "goodness of approxi
mation" of the computed x to the desired true solution x*. This may also be re
versed to determine the accuracy and "complexity" of measurement and compu
tation required in order to attain a specified goodness of approximation of x to x*. 
Second, one may take a formulation such as the above and embed it as one of a se
quence of increasingly more accurate (and more complex) approximations defining 
a computation scheme. One then asks whether the sequence of computed appro
ximations {xk} converges to x* and seeks to obtain also a rate of converrence (asymp
totic error bounds). The second of these (i.e., the asymptotic analysis) is the viewpoint 
adopted in this paper. The focus of our present concern is with the convergence 
to x* of the computed sequence ~xk}, without regard for any optimality properties 
of individual approximants (but note Remark 4.7). (Note that, in the case of de
terministic error bounds, the "best estimate", in a min-max sense, for the problem 
with approximate data will just be the "center" of the set S of x in X consistent 
with the available information. In most cases S will be unbounded so no "best 
estimate" exists; even if Sk is bounded for the sequentially embedded viewpoint, 
the sequence of approximants { .Xk} compJ.ted by letting each xk be the "best esti
mate" for the k-th approximating problem, need not converge to x). 

DEFINITIONS: An approximation scheme for (1.1) consists of a sequence of maps 
fk: X=> Dk-+ Y with {fro} converging to fin some appropriate sense and a sequence 

3 
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of sets Bkc Y with Bk t {b}. Such an approximation scheme is regular if Sk: = 
= {x E DkcX:h (x) eBk} is nonempty for each (large) k and if there exists some 
convergent sequence {xk} with each xk· in Sk. A solution algorithm consists of a se
quence of (computationally feasible=finitarily realizable) algoritluns 

(1.4) 

i.e., each (Jk is defined for suitable classes of computationally definable maps J and 
subsets .B~ Y and produces an element .X in X. A 'Problem of the form (1.1) is ap

proximation solvable if there exists a solution algorithm {qk} such that, for each f 
of a specified class and each b in the range of f, the computed sequence xk: = 
=qk (fk, Bk) converges to the desired solution x* of (1.1) for any regular appro
ximation scheme { (h, Bk)}. 

This notion of approximation solvability is weaker than that of [52] but this 
seems necessitated by the applicability to ill-po~ed problems. 

A preliminary version of the material of Sections 2 and 3 has been made availa
ble (1975 in preprint form [59]). Section 2 is concerned with the correct notion of 
convergence of {/k} to fin defining an approximation scheme, as above, and exhi
biting a general form of solution algorithm with which one can demonstrate ap
proximation solvability . for a wide class of ill-posed problems. The argument for 
convergence is essentially that initially developed in [13], which provided the au
thor's original introduction to ill-posed problems. The particular scheme employed 
in [13] and discussed more abstractly (with a far simpler convergence proof in the. 
linear, Hilbert space case) in [58] is the method of "generalized interpolation" 
developed in Section 4, below; a preliminary form of portions of that section was 
presented in [50]. The general form of the solution algorithm in Section 2 is that 
of a sequence of constrained optimization problems so that the method of regula
rization does not appear directly in this form. Computationally, these approxi
mating problems are reformulated in Section 3, for reduction to algorithmic form, 
by the use of Lagrange multipliers or penalty functions (although directly appli
cable to well-posed problems, it is worth noting [54] in this context) and this re
formation provides the connection with the regularization approach. 

As a complement to the rather abstract treatment of these first sections, Part II 
further develops and explicates these ideas in the context of application to some 
more concrete problems. A more detailed and further developed presentation of 
the material of Section 6 appeared elsewhere [65]. A preliminary version of Exam
ples 7.2, 7.3 (along with other material) was presented in [62] and a more exten
sive development of this approach to problems of system identification for di
stributed parameter systems is in preparation for appearance elsewhere. 

I would like to thank the late William Chewning for initiating the work which 
led to this investigation. That problem [13] is rather unusual in that a well-'()osed 
but computationally inaccessible problem was replaced by a computationally fea
sible ill-posed problem: abstractly, A, Bare compact linear operators with R (B)c 

eR (A), making the map: zH(minimum norm solution x of 

Ax+Bz=O, (1.5) 
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i.e., solution of (1.5) in N (A).L) continuous, but it is convenient to solve, instead, 
the ill-posed problem 

Ax=b (b: =-Bz), xEN(A)·L. (1.6) 

Thanks are 2lso due to the ARO for its support and to numerous individuals -
most significantly to J. R. Cannon, G. Chavent, W. C. Chewning, C. Groetsch, 
M. Z. Nashed and G. Wahba- for the stimulus provided by their work, their 
correspondence and numerous conversations. 

2. Approximation Theorems . 
We assume henceforth that X is a Efimov-Steckin space [19], i.e., a reflexive 

Banach space for which one has 

(2.1) 

This holds, for example, in any uniformly convex (=uniformly rotund) Banach 
space [16] such as any Hilbert space or, e.g., W 1

• v with 1 <p <oo. We use Xw to 
denote the space X taken with its weak topology. 

DEFINITIONS: Given a sequence of sets {Sk}, an associated sequence is any {sk} 
with sk E Sk for each k . A sequence of sets {Sk} will be called subconvergent to S 
if, for every convergent associated subsequence, the limit is in S, i.e., if 

(2.2) 

A sequence of mappings {fk: X=> Dk ~ Y} will be called graph subconvergent to 
f: X=>D~Y in Xwx Y if the sequence of graphs Fk: ={(x,,h (x)): x eDk} is sub
convergent in Xwx Y to F: = {(x,f(x)): xeD}, i.e., if 

xkUleDkUl' xkUl~x, .huJ(xku))~:YkuJ~Y imply xeD and y=f(x). (2.3) 

In connection with the definition of approximation scheme given in Section 1, we 
take graph subconvergence in Xw X Y as the appropriate notion of converge!lce' 
of {.h} to f 

R EMARKS 2.1: If {.h} is a constant sequence (fk=f for each k) , then (2.3) corre
sponds to the assertion that f has a closed graph in Xw X Y. If/,, fare continuous 
linear maps (Y also a Banach space), then (2.3) is implied by the strong convergence 
of {!;} .to f*. If {Dk} is subconvergent to D and {.h} converges to f uniformly on 
bounded sets, then {fk} is graph subconvergent to f If/,, f may be multivalued 
(i.e., relations rather than mappings), then the notion of graph subconvergence 
clearly still applies. 11 

Suppose, now, we consider a (possibly ill-posed) problem 

f(x)=b (2.4) 
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or, more generally (permitting F to be a relation as in the case of evaluating an 
unbounded operation: F: ={(x, y): x =Ly} with L unbounded and possibly not 
injective ), 

(x,b)EF. (2.4') 

If (2.4') does not uniquely determine x, then we impose the further condition that 
xis to have minimum norm among all solutions of (2.4'). We make the assumption 
that: 

The equation (2.4) (or (2.4')) has a unique solution x* of minimum norm. (2.5) 

REMARKS 2.2: The condition (2.5) includes the assumption that the right hand 
side of the problem is known to be in the range off so that existence is not at issue. 
Note that (2.5) involves only the "true" limit problem (2.4) or (2.4') and does not 
involve the approximating maps {/,}. In considering (2.4), some sufficient condi
tions for the uniqueness of x* are: uniqueness for (2.4) itself; f is continuous and 
linear (so the solution set of (2.4) is a closed subspace of X); f: x~Y=X* is de
micontinuous and maximal monotone (so the solution set of (2.4) is closed and 
convex). Note that if the desired solution of (2.4) is known to be isolated, then 
uniqueness may be obtained by redefining f, replacing it by its restriction to a sui
table neighborhood of the solution. 

In terms of the above, a regular approximation scheme for, say, (2.4) vvith, 
f: X=>D~ Y and b in Y satisfying (2.5) wiil be a sequence {(/,, Bk)} such that 
_h: X=>D1,~Y with (2.3) holding, Bk=> Y with each associated sequence converging 
to b; the sets 

(2.6) 

(or 

(2.6') 

if one considers (2.4')) are nonempty for large k and some associated sequence 
{xk} for {Sk} converges to x*. 

Often this last condition is verified by showing that there is a sequence { xk} 
associated with {Dk} converging (rapidly enough) to x* and taking {Bk} shrinking 
slowly enough to {b} to have .h (xk) in Bk. Note that for purposes of computation 
it is often important that the domain of each approximating map be (essentially) 
finite dimensional. Suppose {(/,, Bk)} is a given regular approximation sequence 
for which this may not be the case but suppose that there exists Dkc Dk such that 
each xk in Dk is (asymptotically) approximable by xk in Dk (i.e., llxk-xdl~O so 
.xk~x* implies xk~x,J and such that Dk is in the range of a parametrizing map 
nk: Rm(k)=>Rk~x so that the computation on Dk can be replaced, after composing 
J;, with nk, by computation constricted to the finite-dimensional domain Rk. Let 
h be the restriction of .h to Dk and note that if the regularity condition (xk E Sk, 
xk~x*) was verified as suggested, the corresponding condition (perhaps after re-
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placing Bk by a slightly enlarged Bk) can similarly be verified to show that {(};.,, Bk)} 
is also a regular approximation scheme. 

Alternatively, note that tbe solution algorithms proposed below are variational 
in nature so that, even if Dk is not finite dimensional in any sense, one may know 
in advance (from properties of the minimization problem) that the approximant 
to be determined in Dk actually must lie in a subset DkcDk (e.g., a spline space; 
compare [44)). If this Dk is as above, then it is clear that, even though fk remains 
defined on the larger domain Db computation can be done on Dk and so on Rm (k). • 

We now propose the following solution algorithm 1ak}. Suppose a sequence 
,)k--J-0+ is given. For any j: X:::::>D--JoY and BeY set-

S(/, B): ={x E D: /(x) E B}, v (/,B): =inf {l!xll: x E s (/,'E)} 

(with v=oo ifS(/, B) is empty). Then ~k (/,B) is defined by taking 

~k (/,B) E {x E S (/,B): llxiJ:(v (/,B) +Jk}; (2.7) 

the definition of ~k (/,B) involves making an arbitrary selection from the set on 
the right of (2.7). Thus, xk: =~k (f;" B«) is defined as being a solution of the ap
proximating problem for (2.4): 

(2.8) 

having close to minimum norm. 

THEOREM 2.3: Let X satisfy (2.1), let Y be a Hausdor.ff space and let f: X:::::>D--JoY 
and b satisfy (2.5). Then (2.4) (more generally, (2.4')) is approximation solvable through 
the application of the solution algorithm {ad defined by (2.7) to an arbitrary regular 
approximation scheme {(j;,, Bk)}. I.e., if we-set xk: =~k (j;,, Bk) so xk E Dk is a solution 
of (2.8) having close to minimum norm, then 

(2.9) 

Proof: By assumption, there is some (fixed) sequence .Xk --JoX* associated with 
{Sk}· Thus, setting vk: = v (J;,, Bk): =inf {llxll : x E Sk}, we have vi,:::;H.XkH--Jo llx*ll 
so {llxkl!:(vk +Jk} is bounded. Any subsequence of {xk} contains a weakly conver
gent subsubsequence xk(i)~x. Now h!i) (xkU))=: YkU) E Bk(j) since xk(j) E sk (j)• 

By assumption, Yk U) --Job so the graph subconvergence of {fk} to f implies that x E D 
and f(x)=b, i.e., that xis a solution of (2.4). On the other hand, lim sup ltxdl:(lim 
sup (vk+c\):::;Iim (II.Xkii+Jk)=Hx*ll so llxll:(lim sup Jlxkulll:(llx*IJ. By (2.5) this means 
x=x* so xk (i)~x*. Since this holds for a subsubsequence of every subsequence of 
{xk}, we have xk~x*. Since Jlx* ll:(lim inf llxkll:::;lim sup llxkiJ:(IIx*ll' we have llxdl
---+llx*ll so, by (2.1), we also have Xk --Jo X*. • 

REMA.~K 2.4: If it were not known that the right hand side b of (2.4) were in the 
range off, then the solution algorithm {~k}- solving (2.8) for a solution of (ap
proximately) minimum norm for each k- can still be applied provided (2.8) does 
indeed have solutions for large k. If the sequence {xk} is bounded then, as is easily 
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seen from the proof above, a subsequence converges to a solution of (2.4). Thus, 
if (2.4) were to have no solutions (b not in R (f)), the sequence {xk} obtained from 
the algorithm would have llxdl-+oo. This could be turned around to give an exis
tence theorem: if one could somehow show that (2.8) has a bounded sequence of 
solutions { xk} with II.X&,::; M, then it would follow that b is in the range off and 
(2.4) has a solution x with II.XII:::; M. • 

The theorem above gives convergence of the approximating sequence {xk} but 
no indication of the rate of convergence nor any estimate on the approximation 
error for any given k. It should be clear that this lack of an error bound is inevitable. 
Suppose, for simplicity, we were to have h = flinear for each k . If the Bk were to 
contain balls of radius Bk--+0 and if one could obtain bounds A--+0 on IJxk - x*ll' 
then this would imply continuity of a right inverse of f and thus contradict the 
assumed ill-posedness of the problem. On the other hand we shall see that a rate 
of convergence= asymptotic error bound may exist if some additional structure 
(compactness) is introduced. Compare the considerations of [5]. 

To consider the notion of a rate of convergence for the algorithm, we must 
view it as applying to the problem (2.4) determined for each b in the range R (f). 
Thus, we assume we are given X satisfying (2.1) and f: X:::::> D--+ Y satisfying: 

for each b in the range off there is a unique minimum norm solution x* = x* (b) 
of (2.4). (2.5') 

Let {fk: X::::>Dk-+Y} satisfy (2.3) and set 

(2.10) 

where Bk (b) c [b +B2]. (This notation assumes, for simplicity, that Y is a linear 
space) with B2 --+{0} in the sense that Yk E B2 for each k implies Y~>--+0. We assume that 
for each b E R (f) and each k we have Sk (b) non-empty and set vk (b) ~ = inf {llxll: 
x E Sdb)}. Given a sequence Ok--+0 +, set 

S~ (b): ={X E Sk (b): IJxil:(vk (b) +od, 

lfldb): = {llx - x* (b) ll :x e S~(b)}. 
(2.11) 

The content of Theorem 2.3, then, is that lflk (b)--+0. Having a (uniform) rate of 
convergence would mean that lf/k--+0 where 

lflk: = sup {lfldb): bE R (f)}. (2.12) 

THEOREM 2.5: Let X, Y, f, {fk}, {Bk (b)} be as above so (2.1), (2.5') are satisfied 
and (2.10) defines nonempty Sk (b) for b E R (f). Given bk--+0+, define lflk (b) by (2.11). 
SupposeD*: ={x* (b): bE R (f)} is compact and f is continuous on D*. Then lflk--+0, 
so (2.8) gives an approximation xk to x* (b) with the error bound 

(2.13) 

Proof: Suppose lflk~o. Then there would be a p>O and a sequence b~< in R (f) 
such that (selecting a subsequence if necessary): lf/k (bk)?:- f1 and xZ: =x* (bk)-+x* = 
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=x* (b*)' using the compactness · of D*. Since lfldbk)~ Jl., there also exists x" in 
S~ (b") such that llx"-x:II>Ji./2>0. Since f is continuous at x*, we have b"= 
=f(x:)--+f(x*) =b* so there are neighborhoods U" such that j(x:)eb*+U" 
with U"--+{0} in Y. Setting B; ;. =b* + U"+B~, 'We clearly have B" (b")cB; so 

s;: ={x E Dk;h (x) E BZ}:=JSdb"), 

v:: =inf {llxll: X E s:}~vk (bk). 

As in the proof of Theorem 2.3, we have vZ --+llx* 11 . Now each x" is in S~ (b") so 

llx"ll~v" (b") +<>"~ llxZII +<5"--+llx* 11 

so 

o~ llx"ll-vZ =: c>Z -tO+ . 

Applying Theorem 2.3 with b*, B:, JZ for b, Bk> Jk, we see that xk E s:': = {x E s:; 
: llxll~vZ +JZ} implies x"--+x* (b*)=x*. Since also xZ --+x*, this contradicts the 
assumption that llx"- x; 11 ~ Ji./2. . • 

REMARKS 2.6: The condition that D* be compact is an automatic consequence 
of an assumed compactness of D wb.en f is injective so D* = D. In general, even 
with D compact D* need not be closed and we note a simple finite-dimensional 
example (X=R 2

, Y=R 3
) for which all the other hypotheses of Theorem 2.4 are 

satisfied but D* is not closed and lfl~<-ro: let .lie= f be given on D: = [0, 3] X [0, 1] by 

f(~, rJ): =(~ [2-~]+, [~ -2] fj, [~ -2]+) 

(()(.+ means: a if a~ 0, 0 if()(.~ 0). One verifies easily that D* = ([0, 1] u [2, 3]) X [0, 1 ]. 
Also, for any sequences J"--+0+, e~ -~0+, let B" (b): ={yE R3

: lly-bll~e"} and 
the hypotheses of Theorem 2.4 (other than closure of D*) are satisfied. In this case 
one has lflk bounded below by 1 so lfJkff0. B 

The notion of "graph subconvergence" considered here is entirely different 
from the notion of graph convergence for closed linear maps between Banach spaces 
(defined by the Hausdorff metric between the Xx Y- norm unit spheres of the 
graphs) in [36], IV, 4. It is much closer to Stumm~l's notion (see, e.g., [66]) of a "dis
cretely closed" sequence and is still more in the spirit of [67]' although developed 
independently: cf. [13], [59]). Indeed, the similarity of "fiavor" to Tanana's paper 
is even more marked if one notes that the compactness of D in Theorem 2.4 is 
plausibly the result of a "regularity condition" imposed in the form of assuming 
that the desired solution is actually not only in D=D (f)c'X but is in the range 
of a compact embedding E: RC-+X. (We refer to R as the regularity space, e.g., 
E: R= 9 1<-~x =L2 • See, e.g. , [1] for the use of this approach for similar error bounds 
in the context of well-posed problems.) Given an a priori bound M on the R-norni 
of X*' we restrict f to the compact dol:nain cl { x =Eu : lluiiR ~M}, assuming it is 
already defined there. If/were homogeneous ofsonie degree- e.g., iffwet;e linear
one might factor . M out of the estimate, relating the convergence rate to that for 
the case M = 1. Results related to Theorem 2.4 appear in '[30]; for a more detailed 
treatment of the linear case, see Lemma 4.4 below. 
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3. Penalty Functions and Mi1,1imization: Regularization 

The. algorithm of Theorem 2.3 requires specifying approximating sets Bk-?{b} 
and finding a solu~ion of (approximately) minimum norm for the problem: 

h (x) EBk, (3.1) 

Equivalently, we have the minimization problem: 

minimize llxll, x E S": ={x E D" : h (x) E Bk} (3.1 ') 

• and this viewpoint suggests the possible use of a penalty function approach to the 
constraint: x E Sk. 

Especially if the problem is presented in the approximate form 

h (x) = bk (3.2) 

(with j,-?j, say in the sense of (2.3), and b"-?b), then we are likely to have available 
an estimate of the magnitude of the error 

(3.3) 

where x* is the true solution of the problem: f(x) = b (the form of (3.3) assumes Y 
is also a Banach space but we will generalize that in Theorem 3.1, below). We may 
treat (3.3) as a definition of Bk so (3.3) takes the equivalent form 

X* EBk: ={x ED": IJj,(x)-bdJ~ek} · (3.3') 

Comparing with (3.1'), this suggests including a penalty function A."llfk (x)-bdl 
with a suitable choice of (large) Ilk in constructing the minimization problem: 

(3.4) 

(Alternatively, one might arrive at this by observing that, if 0 is not in S"' a mini" 
mum for (3.1') would occur on the boundary of S". Presumably, for Bk as in (3.3'), 
this is where 

(3.5) 

which may then be used as the constraint instead of the inequality (3.3). A Lagrange 
multiplier treatment gives the function [llxll +Ilk (11 f" (x) -bdl-e")] for global mini
mization and, since -Ilk ek is constant in minimizing with respect to x, this is equi
valent to (3.4).) 

Note that (3.4) can "equivalently" be replaced by minimization of, say, 

Jlxlli+llkllh (x) -bdlf' (3.6) 

which, if the X-norm is modelled on LP (W'·P) for 1 <p<oo, etc., makes this dif
ferentiable provided h is differentiable. This is particularly advantageous in the 
case of Hilbert space norms (in which case we take p, p' =2 so we have a quadratic 
cost criterion) and linear j,. In that case minimization for (3.6) corresponds, after 
differentiation, to the linear problem: 

[f: h+~;; 1 I] x=fZ b" (3.7) 
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which we recognize as (the regularized form of) the normal equation for (3.2). 
The relation between the appropriate choice of A. = A." and the e=e" defining Bk 
(see, e.g., [45)) gives 

A.'=- [llx'll2 +A.II h x'f]fe<O 

(' denotes dfde) so A. is strictly increasing as e decreases and conversely. Clearly 
A.-+co as e--+0+ (since, actually, (d)' <0) and, if we assume bn is in the closure of 
the range of/,, it is easy to see that llf,, x-bnll=e--+0 as A.-+co in (3.4). 

We note that this is essentially the method of regularization proposed by Tikho
nov ((69], etc.) and extensively studied since (note the monograph (47]). The ori
ginal version took fk = f, b"=b but variants have considered approximations as 
well. The considerable literature which has developed with respect to the method 
of regularization treats such topics as: approximation properties for various norms 
(see, e.g., [21]) and optimality, choice of ).k (see, e.g., [45], (72], [15)), computatio
nal aspects (see, e.g., [26], (40], [25]), etc. 

Observe that in many cases the approximating maps fk will have finite rank. 
One then knows that xk will be in the range of fZ so that (3.5), (3.7) can be consi
dered in a purely finite dimensional setting (in (3.5) we replace b" by i ts projection 
onto the range of ftc). The computational aspects of obtaining xk (minimizing llxll 
subject to (3.5)) and the relation to (3.7) are explored, e.g., in [22]. 

We generalize somewhat the approach leading to (3.7), etc., and consider X 
to be a reflexive Banach space with a specified coercive (i.e. , bounded only on 
bounded sets), weakly lower semicontinuous (wise) functional N: X --+[0, eo] such 
that 

(3.8) 

and consider Y to be a uniform Hausdorff space with its topology determined by 
a family {p 1 , p2 , ••• } ofsemimetrics (with no loss of generality we assume p1 ~Pz~ ... ). 

THEOREM 3.1: Let X, Y, N be as abcrue; suppose f: X::::>D-+Y and b in Y are such 
that (2.4) has a unique solution x* minimizing N; let N (x*) <N* <eo. Let {f"} satisfy 
(2.3) and bk -+b. Assume there is a sequence { x" E D"} such that (replacing { (f"' bk)} 
by a subsequence if necessary) one has 

(3.9) 

so that, taking Bk: ={yE Y: pk [y, b"]~e"}, the sequence {(ftc, Bk)} is a regular ap
proximation scheme for (2.4). Let rp* : (0, eo]--+ (0, eo] be continuous, monotone and 
coercive (r-+co implies rp* (r)-+co) and, for each k, let rp": (O,co]x(O,co]-+[0,co] 
be incre(lsing in each ·variable with 

(a) rk-+r implies 'Pk (rk, ek)-+rp* (r), 

(b) rp*(r)~rpk(r,O)+Yk, (3.10) 
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Set 

Jk (x): = ~k (N (x), pd_h (x), bk]) for x E Dk, 

1:: =inf {Jk (x): x E Dk, N (x)~N*}. 

If xk is an approximate solution of 

minimize Jk (x) over Dk, 

i.e., if xk satisfies 

T. I. SEIDMA.J.'l 

(3.11) 

(3.12) 

(3.12') 

for each k, then xk-+x*. . 
In the discussion, above, of regularization/penalty function method, one · had 

N (x): =llxllx (so (3.8) is just (2.1)) and, for eich k; pdu, v): = llu-vllr and~* (r): = r; 
rpk(r,a): = r+A.ka for (3.4) or rp*(r): = r2

, rpk(r,a):=r2 +A.ka2 for (3.6)-(3.7). 
The inequality (3.12') can be taken to define a solution algorithm {§'k} in much the 
same way as (2.7) defined {q-k}. The content of Theorem 3.1 is, then, that the se
quence of unconstrained minimization problems (3.12) can be used to obtain ap
proximation solvability for a wide class of ill-posed problems by applying this 
solution algorithm to the approximating sequence {(f,., bk)}, i.e., to the regula~ 
approximation scheme {(fk, Bk)} with Bk defined via (3.9) as above. 

Proof: We have 

1: ~Jk (xk): = ~k (N(xk), Pk [fk (xk), bd)~ rpk (N (xk), ek) 
so 

(3.13) 

by (3.10a), the convergence of {xk} to x* and the assumed semicontinuity of N ( · ). 
Next, by (3.12), (3.10c) and the coercivity of N ( · ), we have {xk} bounded and 
Pk [_h (xk), bd-+0. Since P1 ~p2 ~ •• • , 

p,. [f,. (xk), bk] -+0 for each n. 

Thus, since bk-+b, we have h (xk)-+b in Y. Further, each subsequence of {xk} con
tains a weakly convergent subsequence: xkCil-'X. By the weak lower semicontinuity 
of N( · ), · 

rp* (N (x))~ rp* (lim inf N (xk))~lim sup rp* (N (xk))~ 

~lim sup [rpk (N (xk), 0) +yd~ 

~ lim sup [Jk (xk) + y,J ~ 
~lim sup [J: +ok+Y~c]~rp* (N(x*)) 

. (3.14) 

(writing k fork (j)). Thus, N (x)~N (x*). The graph subconvergence of {.h} to f 
in Xw X Y implies f(x)=b since xku>-'x, fku> (xk w)-+b; by the minimizing property 
of X*' this means x=x*. This gives Xk-+X* for the full sequence {xk} since {xk(j)} 
was selected from an arbitrary subsequence. Since (3.14) shows lim rp* (N(xk))= 
= rp* (N (x*)) so lim N (xk) = N (x*)' one has xk -+x* by (3.8). 11 
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REMARKS 3.2: Assuming suitable difterentiability (for this Y should also be a 
linear space), the problem of minimizing the functional Jk over D might be appro
ached by solving 

J~ (x)=O, x E D (3.15) 

where J~ is the Frechet derivative dJk fdx . As with the special case (3.6)-(3.7) in which 
J~ is affine, the problem (3.15) will typically be well-posed. Indeed, if N, pk, rpk are 
such that Jk is strictly convex, as with (3.6), then the map J~: X=>D--"X* will be 
a monotone map and so, under standard hypotheses (cf., e.g., [50]), continuously 
invertible. 

If the existence of a solution x* and of { ik} were not known in advance, one 
might still attempt using (3.12) to obtain an approximating sequence. If the se
quence {Jk} were bounded, then one would still have that fk (xk)--"b and that some 
subsubsequence of any subsequence converges weakly to a solution i . (That this 
is then the best possible result is shown by the following examples: let X be a Hil
bert space with orthonormal sequence {ek}, let Y = R and let f: X=>D: = {O}HO, 
h: X=>Dk: = {ek}HO so xk=ek----'-X* = 0 but X1J+0; next, let X=R = Y and let f: 
:X=>D: = { - 1,0, I}HO, h:X=>Dk: ={( - l)k}HO.) 

The condition in Theorems 2.3 and 3.1 that a sequence such as {id exists is 
trivially necessary- the point of the result is that any sequence {xk} obtained by 
the algorithms (2.7), (3.12) must be like that- but is difficult to verify directly. 
A sufficient set of conditions implying both the existence of {ik} and the graph sub

convergence of h to f is that: 

Y is metriiable, the graph off is closed in Xw X Y, Dk= D and fk--"f 
(3.15) 

uniformly on bounded subsets. 

(Proof: Let ik=x* for each k. Suppose Xk----'-X, yk: =h (xk)--"Y· Then p [f(xk), y]~ 
. ~P (fk (xk),f(xk)] +p [fdxk), Y]--"0. As the graph off is closed, (x, y) is then in 
the graph so y =f(x).) The condition that Dk= D for each k can be relaxed if also 
f is continuous from X to Y. . • 

4. Approximation by GeneraHzed Interpolation 

In many cases the right hand side of the equation 

f(x)= b (4.1) 

(f: X=>D--" Y) is known only through a discrete sequence of measurements. That 
is, one has (approximations to) the values {j3k: =1]k (b)} where {1Jt. 172, ... } is a 
sequence of continuous functionals 1Jk: Y--" R. If the sequence { 17k} separates points 

(i.e., if 1Jk (y) = 1Jk (j)) for all k implies y =y) , then (4.1) is equivalent to the infinite 
system of equations 

1Jk (f(x)) = f3k k = 1, 2, .... (4.1 ') 
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In many situations the measurement functionals l]k will correspond to point 

evaluations: if bE Y is a function b ( · ), then /Ji: =1]] (b) might be b (tJ). Con

sistently with such an interpretation, we might refer to this as a problem of gene

ralized interpolation -interpolating the data fJ(k) by an element of the range of 

f: i.e., b(k)=f(x:) where xZ is the minimum norm element of D consistent with 

the measurement values fJ(k)· This approach is also related to the "collocation
-projection" method of [71]. 

For purposes of computational approximation, we consider the sequence of 

problems: 

17J (f(x))=f31 j=1, ... , k. (4.2) 

Introducing Hk:y~--+(17 1 (y), ... ,17k(y)): y _,.Rk and setting f(k): =Hkof and 

fJ(k): =(/3\ ... , tJk)*, (4.2) takes the form 

f(k) (x)=fJu,>. (4.2') 

Note that for fixed k the problem (4.2)=(4.2') will not in general be ill-posed in 
the sense we have been considering since the codomain of ftk) is finite-dimensional; 

in particular, if.f and each of the {I?J} are linear then the range of f{k) will be closed 
(a subspace of Rk). In the nonlinear case, if f is "smooth" (say, with a continuous 

Frechet derivative), then one might expect f(k) to be normally solvable in the sense 
of Pogozaev [53], etc., so (4.2) would be treatable by established computational 

procedures. 
In the linear case with X, Y Hilbert spaces, this approach to (4.1) was consi

dered in [58]; compare, also, [46] (in which similar ideas are applied to evaluation 
of an unbounded linear operator) and [72]. Much of the remaining material of 
this section was presented in a preliminary form in [60]. 

THEOREM 4.1: Let X be a reflexive Banach space, Y Hausdor.ff, let the graph of 

f: X-::JD-'>Y be closed in Xwx Y and let {11J be a set of continuous functionals on Y 

which separates points of the range off Suppose N is a wise functional on X sa

tisfying (3.8) and that there is a unique solution x* o.f(4.1) minimizing N. Let Jk--"0+ 

and let 

XkESk: ={x ED:(4.2')}, 

N (xk),;;N= +tYn with N:: = inf {N (x): X E Sk}. 
(4.3) 

THEOREM 4.2: Let X be a Hilbert space, Y a topological linear space, f: X -::J D--" Y 

linear and with graph closed in Xx Y and let 17J E Y* be in the domain D* of the ad

joint f*: Y*-::JD*-"X*= X with {17J} separating points of the range off Then for 

any b in the range off there is a unique solution x* of (4.1) having minimum norm 
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and for each k there is a unique solution x; of (4.2') having minimum norm. This 
x: is the orthogonal projection Pk x* of x* (indeed, x; =Pk x for any solz.tion x of 
(4.1)) onto the subspace Xk: = sp {!* 1]1, ... ,f* 1Jk} and can be computed by writing 

k 

x: = .2,; ~j f* 1'/j (4.4) 
j= 1 

and obtaining the coefficients ~(k): = (~\ ... , ~k)* by solving 

Ak ~(kl = fJ(kJ, 

Ak: == ((ai ' 1))~. 1 = 1 , a'· 1 : = <f* 1];,/* 1]1>. 
(4.5) 

Proofs: Theorem 4.1 follows immediately from Theorem 2.3 withfk=fand Bk : = 
= {yE Y: 1]1 (y)=fJ1 for j = l , ... , k} for k=1, 2, .... It is easy to see that (modulo 
the replacement of (2.1) by (3.8)) the hypotheses of Theorem 2.3 are satisfied. The
orem 4.2 was proved in [58]; see also [13]. Ill 

For the rest of this section we assume that, as in Theorem 4.2 we take X to be 
a Hilbert space, Ya topological linear space and {7J1 , 7] 2 , ... } to be a total sequence 
in Y*. 

REMARK 4.3: For f: X::;, D-> Y nonlinear but Frechet differentiable, suppose N; 

in (4.3) is a minimum, taken on uniquely in Sk at x;. Then, generalizing (4.4), (4.5), 
there is a representation 

k 

x:=}; ~i B* YfJ> B: =f' (xn), (4.4') 
j=1 

Ak ~(k) = fJ(kJ, 

Ak: =((a!· 1))7, i= 1 , a!· 1 = <B* 1];, B* 1]1>. 
(4.5') 

To obtain this we apply the method of Lagrange multipliers to the problem 
of minimizing l!xll subject to the constraint ( 4.2). Thus, define F on D X Rk by 

1 k 

Fdx,~): =211x11 2
-}; ~1 [<1]1,/(x)>-/31]. 

J= 1 

Differentiating with respect to x gives (4.4') and substituting that in (4.2) then gives 
(4.5'). (The nature of the system (4.4'), (4.5') suggests an iterative approach in 
which an approximant to x; is used for evaluating f' to obtain B, Ak approximately 
and then the approximate system solved to obtain a new -possibly better -
approximant to xZ .) 11 

We now assume further, for the rest of this section, that f: X-> Y is linear so 
the setting is that of Theorem 4.2. In this context we can give more detail for the 
"rate of convergence" considerations of Theorem 2.5. As noted there, this is related 
in spirit to the results of [67], [48] which consider optimality with respect to cer
tain assumed information. Again it is ·convenient to introduce a "regularity space" 
R which we now assume is also a Hilbert space densely embedded in X with compact 
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embedding map E: RC-+ X (thus, for x in the range of E, so x = Er with r E R, we 

identify x with r so RcX) and we now also introduce the eigenvectors {rl> r2 , • •• }, 

taken orthonormal in R, and corresponding eigenvalues {Pi> p2 , ••• }, taken as or~ 
dered with p 1 ~ p2 ~ ••• > 0, of the compact positive operator E* E on R. Note that 

for x = ~ ~k rk in Re X, 
k 

llxll~ = }; l ~k l 2 , llxll~ == }; Pk l ~kl 2 • 
k k 

Theorem 4.2 implies that the error of approximation of the desired solution 

x* by x: is given by 

(4.6) 

In Theorem 4.2 we took Xk: = sp {f* 1Ju .. . ,f* 1Jk}, which will generally be k~di~ 

mensional. As an indication of the rate of convergence (compare [21]) we introduce, 
for finite dimensional subspaces SeX, 

If/M (S): = sup {Hx - SII: x ER, llxllR~M} (4.7) 

and have the following. 

LEMMA 4.4: For k: = dimS and any n 

n 

MVh+l~lfiM(S)=M!f11(S)~M[Pn+1 + }; llri - Sll 2
]

112 . (4.8) 
j = 1 

Proof: Clearly lfiM= Mif/ 1 by homogeneity and the inequality lf/1 (S)
2 ~Pn+ 1 fol~ 

lows a standard variational characterization of the eigenvalues (cf., e.g., [18], p. 908). 
n 

For any xeR with llxiiR~l, write x=J; ~1 r1 (so~ I~P~l), set .X: = _I ~Jr1 
j j j= 1 

and let x be the projection P* .X of .X on S. Then 
oo n 

ilx - X*II~IIx-:-.XII+ II.X-xll~[}; PJ 1~1 1 2] 1_12 +}; l~1 lllri -P* r1ll 
j=n+1 j = l 

n 

which gives llx - SII 2 ~[Pn+ 1 + ~ llr1 -SII2
] by the Cauchy inequality. • 

j=l 

The optimal convergence rate UJk: =inf {lf/ 1 (S): dim S = k}} is thus given by 

ljh= V Pk+ 1 , which is attainable i{rl> r2 , .•• } is in the range off* so {1JJ> ... } can be 
taken to give f* 1JJ= r1 so Xk = sp {r1 , ... , rk}· Note that this optimal rate depends 
only on the regularity condition and not at all on f- with the irrelevance of the 
ill-posedness of ( 4.1) due to the omission, thus far in this section, of any conside~ 
ration of the effects of imprecision in the data. The number ![In is just the n-width 
of R as embedded in X byE; see [31], [32] for discussion and asymptotic estimates 
in some specific cases with X = L 2 (Q), QcJRm. We now consider the computation 
of (4.4), (4.5) when b, f may be only approximately available. 
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THEOREM 4.5: Let X, Y be Hilbert spaces, let f,!: X -t Y be continuous lif)ear maps, 
let b be in the range off with x* the minimum norm solution of fx = b and let {17 1 , ••• 

... , 17n} be in Y* with {!* 1]1 , ... ,J* 17k} linearly independent. Define , 

H: y -tRk: YH(<1Jl> y), ... , <17k, y) )*' (4.9) 

A: =(<~;, i))~.J=1' A= ((&i, i))7, j""1' 

~i, j: = <f* 1];,/* 1'/), &i,j: = <l* 1J;,f* 'IJ>' 
(4.10) 

and assume llf - 111 small enough to ensure existence of .A- 1
• For any Pin Rk define 

.X in X by 
k 

.X: = }; ~J l* 1JJ where ~: = (~\ ... , ~k)* =A- 1 P, (4.11) 
j=1 

i.e.; by taking 

.X is the unique minimum norm solution of: Hfx= P. (4.11') 

Then 

llx* - ill2 ~(11x* -Xoll +IIP- PIIIIx*ID2 +(IIJ- 1 11 [ll f:lb - PII + 
+IIHIIIIf-JIIIix* IIW (4.12) 

where P and P are the operators of orthogonal projection onto X0 : = sp {f* 17 11 ... 

.. :.f* 1Jk} and X: = sp {]* 1J 1 , ... ,]* 1Jk}, respectively, and J is the restriction of H] 
to X. One has estimates for liP - Pll and 11]- 1 11 in terms of IIHII, llfll, llfO" 1 11 and Ill - fll 
with IIP- PII -tO and ll]- 1 11-tllfQ" 1 II (/0 is the restriction of Hf to X 0 ) as 111- f ll--tO. 

Proof: The assumption that {f* 17 1 , ... ,J* 1Jk} is independent means that X0 is 
n-dimensional and the Gramian A is invertible. An easy computation verifies that 
A=fof~ =Hf(Hf)* and, similarly, that A = ]f* = H](H])*. Thus, 

IIA- 1 II = IIf0" 1 11 2
, IIA- 1 11 = 11]- 1 11 2

, 

I lA - All = IIH (ff* - ff*) H*ll ~ IIHII2IIf - Jii (llfll + llliD 
(4.13) 

so fo is invertible and A (hence also j) will be invertible for llf- 111 small enough 
to make IIA- All, as estimated by ( 4.13), less than I lA - 1 11 - 1

• Henceforth we assume 
Ill- fll small enough that 11111~211!11 and IIA - All~ 1/2IIA- 1 11, i.e., using (4.1 3), assume 

Ill- !11~ 11!11 min {1, 1/611HII2 IIf0" 1 11}. (4.14) 

Then IIA- 1 11~2IIA - 1 II and 

11/- 1 11~211/o 1 1!, IIA- 1 - A- 1 11~211A- 1 11 2 I IA - All. (4.15) 

Again an easy computation verifies that 

P = (Hf)*A- 1 (Hf), P=(Hf)*A- 1 (Hf), 

from which IIP-Pll can be suitably estimated using (4.13), (4.15): 

IIP-PII~[311fa 1 11 +611fo 1 11 4 IIHII] IIHIIIIl-fll. (4.16) 
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One easily sees that (4.11) and (4.11') are equivalent so x=J- 1 [3. Now set 
P: =Hfx* and .X: =Px*. Note that 

Jx=H/Px*=Hfx*=: p so x =J - 1 p. 
As P is the orthogonal projection onto X and x, .X E X, one has 

!lx* -:XII2 =1lx* - xll2 +II.X -xll2
:( 

:((llx* -Px*ll +IIP-PIIIIx*ID2 +11/- 1 (/l - [3)11 2 

which just gives (4.12) since Hb-fJ=H(f-f) x*. 11 
Now let {171> 172 , ••• } be a total sequence in Y, let k-+f (in operator norm) and 

let bk-+b. For each k we can apply Theorem 4.5 with /: = fk, fj: =Hk bk> Xk 
the range of (Hkf)*, Xk the range of (Hk/)* and fo the restriction of fto Xk (let 
vk: =11/0 1 11; we assume h satisfies (4.14) for each k). For comparison with Theorem 
2.5, let/, h be restricted to D=DM: ={x ERe X: llxJIR:(M} and define lflk by (2.12). 
Define If/M (Xk) by (4.7), assume llxii:(JixiiR for x ERe X and substitute the esti
mates (4.15), (4.16) into (4.12). One then obtains 

lf/k:(M [(lf/1 (Xk) +3 (vk +2v:IIHkli)IIHdi llfk-/11)2 + 

+4vfJIHkll 2(llh-Ill +llbk-bii/M)2
]

112
• 

(4.17) 

As k increases lf/1 (Xk)--+0 and vk-+oo, reflecting the ill-posedness of the problem. 
Then (4.17) shows that lf/k--+0 if bk-+b and h-+f rapidly enough. Note that one 
might be able to apply Theorem 2.5 in the context of Remark 4.3 but no suitable 
generalization is available for the more explicit estimate ( 4.17). 

Clearly, just as Lemma 4.4 gives information about lf/1 (Xk) one would like 
information about the best one one might hope for as to {vk}· 

LEMMA 4.6: Let X, Y be Hilbert spaces and f: X --+ Y compact and linear. Let fs 
be the restriction off to the (finite-dimensional) subspace Se X. Let {uJ be the eigen
vecwrs (taken orthonormal) and let {wJ be the corresponding eigenvalues of the 
positive operator f* J, ordered so w 1 ;?:w2 ;?: ... >0. Then 

min {11/;- 1 11: dim S=k}=w; 112 

with the minimum attained for S:=sp {u1 , •.. , uk}. 

(4.18) 

Proof: For dim S=k there is always a nontrivial solution x8 E S of the system: 
00 

(ubx)=O for j=l, ... ,k-1. Then Xs=2; ~1 u1 and, setting y: =fxs=fs x 8 , 
J=k 

00 00 

IIY II 2 =(xsJ* fxs)=}; wJ I ~1 1 2 :(wk}; 1~1 1 2 =Wk llxsli 2 :(Wkllf.S 1 ii 2 11Yil 2 

J=k j=k 

so llf.S 1 1l 2 :?: 1/wk for any k-dimensional S. Taking S: = sp {ut. .. . , uk}, one has, 
k 

for any x=}; ~1 u1 E S, y=fx=fs x, 
J=1 

n k 

IIYII 2=}; wJ 1~1 i 2 :?=Wk}; i~1 i 2 =Wk 11/8 1 Yll 2 

J=l 1=1 
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so 11/; 1 11 2 ~ 1/wk for this S (and only for this S among k-dimensional subspaces 
provided wk+ 1 =I wk). • 

REMARK 4. 7: If one were just given a single approximant b to b (for simplicity we 
assume f=f available exactly) and the information 

(4.19) 

then one might wish to select k and {'7v ... , 1Jk} so that (4.12) would give an optimal 
estimate for the error llx-x*ll. If possible, one would like If! M (Xk) and vk to attain 
simultaneo~sly the minima given by Lemmas 4.4 and 4.6 which would reduce (4.12) 
to 

(4.20) 

(this assumes {17 1 , . . • , '7k} taken orthonormal so IIHdl = 1), perilllttmg an optimal 
choice of k in terms of e, M- although the information on {pk, wk} typically 
available is likely, at best, to make this choice and the associated estimate ( 4.20) 
primarily asymptotic. For If/ M (Xk) and vk to be simultaneously minimizable one 
must have 

sp {rt. ... , rk} = sp {u1 , •.. , uk}crange off* 

so that one can take {'7~> ... , '7k} (orthonormal) so that 

Xk: = sp {/* 171 , ••• ,f* '7k} = sp {r~> ... , rk}=sp {u1 , ••• , uk}. 

(4.21) 

Even if (4.21) does not hold, so (4.20) does not hold exactly, it is often possible 
(especially on renorming the regularity space R with an equivalent Hilbert space 
norm which modifies the sequence {pJ) to have an estimate of the form (4.20) hol
ding asymptotically. Then the choice of k (in terms of the rate of convergence to 
b of a sequence of approximants) can again be made asymptotically optimal. 

This use of ( 4.12) is complementary to the comment following ( 4.17). In each 
case, however, the use of (4.12) to bound the approximation error llx* - .XII reflects 
the balance of the considerations involved in bounding the projection error llx* + 
- Px* 11 and the sensitivity to the uncertainty in approximating b, f by b, .f. This 
is especially clear in using (4.20) to make an optimal choice of k. 
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