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5. Nemytsky Operators

Let 2 be a bounded domain in R™, let X:=L" (Q) with 1 <p<co and ¥:=L" (Q).
Let ¢: QX R-R satisfy Carathéodory conditions and a growth condition of the
form

e, r)<c@)la@+Ir]? for teQ reR
1 (5.1)

1 @0
with ae L¥ (Q) and ce L’ (Q) where-; +;=;7_

Then the Nemytsky operator f defined by ¢:
[f)I@):=0 (@, x(1)) (5.2)

is known [39] to be well-defined and continuous from X to Y.
Suppose, for the time being, we assume that,

for ae. teQ, p(t, ) is strictly increasing . (5.3)

Then the inverse function w (¢, -) is well-defined; w will also satisfy Carathéodory
conditions and we may define a Nemytsky operator g by [g¢ ()] (1):=w (t, ¥ (1)
for suitable y. In this case f will be injective but, unless y happens to satisfy ap-
propriate growth conditions, meaning that ¢ grows rapidly enough, the range of
S will be dense but not closed, the inverse map f~!=g will not be continuous and
the “inverse substitution” problem

S@)=b - (5.4)

will be ill-posed. (An explicit example might be: [f(x)] (f)=[x (£)]*/® with p=p'=2.
The range of fis clearly dense and the inverse operator: y—y? is not continuous.)
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The inversion (5.4) is, of course, trivial if @, b are exactly available but otherwise
our earlier considerations apply.

ReMARK 5.1: Observe, first, that Y cannot be appropriately topologized as Y,
if the problem is actually nonlinear (i.e., unless ¢ has the affine form: ¢ (¢, r)=
=qg+rb with ae L”" and belL®; s=pp'/(p—p'), p=p'>1) since

The graph of, given by (5.2), is not closed in X,,x Y,, if ¢ is nonlinear.

Proof: If ¢ were not of the form a+rb, then there would be a set 2,<Q of po-
sitive measure and (rational) constants r, d, ¢ (d, £>0) such that either one has

[, r+d)+o(t,r—d)=2¢(,r)]>5 for (e,
or one has
le(t, r+d)+o(t,r—d)—2¢(t,r)l<—5 for tef,

(for definiteness, take: >5¢). There would then be a subset Q, <€, of positive
measure 2u* and (rational) constants ¢, f, y such that for each e 2,

ap (f,r+d)<e+te, f<op(t, r—d)<B+e p—e<p(t,r)<y.

By the definition of 2,>0,, one has (a+f—2y)>e. Now there exists a se-
quence {u;: j=0,1, ...}, orthogonal in L? (2), with each u;=0 on 2\ 2, and
taking only the values +1 on Q, (4,=1 on Q,). For j=1, 2, ..., let x;:=r+du;.
Observe that x,—r in X:=L" (Q) (regardless of 1<p<oc) and that {y;:=f(x;)}
is bounded in Y so, passing to a subsequence if necessary, y,—~j in Y. For j=1, 2, ...,
let Q7:={teQ,: u;(t)==+1} and note that each QF has measure p, since
<uy, u;>=0. Thus,

<Ly>= [oCn)+ [oCrtd+ [oCr—d)z [o(n)+
af F o

o o+
+ [le=71+ [[B=yl=<1,f)> +u, (x+—-27).
af a7
Thus, f:=w—lim f(x))#f(r)=f(w—lim x;) and the graph of f is not closed in
P v ]
Suppose X, ¥, ¢ are as above (with ¢ satisfying (5.1), (5.3)) and define a Ne-

mytsky operator f by (5.2). Approximate f by a sequence of Nemytsky operators
{fi} defined as in (5.2) using {@,: 2 X R—R} satisfying Carathéodory conditions and

loe (1, 1)~ (&, )< () (@ () +Ir))*  for teQ,
1 6 1
reR with a,e I* (Q) and ¢, L' (Q) where?+?k=?- (5.5)
k

It is easy to see that (5.1), (5.5) ensure that each f; is well-defined and continu-
ous from X to Y. Let b be in the range of f'and set x, (¢):=w (¢, b (¢)). Clearly this
X, is the unique solution of (5.4). For some M>|x,li, set

&:=llcull (lawll +24)% .
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THEOREM 5.2: Let X. Y, ¢, f, {o}, {/i}, b, x,, {&} be as above and let {bk} bein ¥
with &, |\by—bl|. Then

Ifi (x)—f (x)iI<e, uniformly on Dypi={xeX: |x|<M}. (5.6)
and, if &—0, then {f,} is graph subconvergent to f (with f,, f restricted to Dy,). Let

X € Syi={x € X: Ify () —bill<ec+e,},

lIxdi<inf {Jjd}: x € S} +6;. (5.7

Then, if e:c-:-O, g0 and 6,—0+4, one has x;—x,.

Proof: (5.6) follows immediately from (5.5). Suppose that #—% with [[Zl<M
and that p:=f (%)—F in Y. Set §,:=/ (%) and observe that (5.6) gives j,—7.
Thus, passing to a subsequence if necessary J, ()= (¢) for a.e. t€Q. By (5.3),
w (7,7 ) is continuous so X ()=w (1, J, 1) =w (1, ¥ (1))=:%(1); clearly f(X)=F.
Since {x;} converges weakly to X and pointwise a.e. to %, one has =% so f(X)=)
which proves the graph subconvchence. if ,—0, g, —0, then

yeB:={yeY:lly=bll<e. +e,} implies |y—bli<e, +2¢, so B, {b}. By (5.6),
one has x, €S, for each k so Theorem 2.3 applies to give x,—x,. ]

REMARKS 5.3: We have so far considered ¢ defined on all of 2R so the domain
of fis all of X. A frequently occurring variant of this is to have ¢ defined on @ xXR™*
so the domain of f is

Xt i={xeX: x(1)=0 for ae. tcQ}

(more generally, D (¢):={(z,r)e QXR:r, 1)<t<r,(t)} and D(f):={xeX:
:(t, x (1)) e D (p) a.e.}) and the proof above can easily be modified to treat this.

Suppose, next, that ¢ does not satisfy (5.3) and f is not monotone and not in-
jective. Then an argument silmilar to the proof in Remark 5.1 shows that the graph
of fwill not be closed in X, Y and that {f;} is not graph subconvergent in X, x Y.
Nevertheless, (5.3} can be replaced by the wezker condition

for a.e. t€ Q: for each s € R either ‘P(t; s):={r: ¢ (¢, r)=s}isempty or
it contains a unique v, ="y (t,8) of minimum absolute value (5.8)

and still have the final conclusion of Theorem 5.2: that x,—x,.

First note that x, given by x, (f):=y (£, b (¢)) will clearly be the unique mi-
nimum norm solution of (5.4) — provided it is measurable so x, € X.. We note
the following.

LemMA : Let ¢ satisfy Carathéodory conditions and (5.8).
Define w (t,s) by (5.8), setting y (1, 8):=a (arbitrary, say a=0) when ¥ (t,s)= Q}
Then w (-,y (*)) is measurable for every measurable y (-).

Proof: For measurable u, v, let uOv:=ysu+(l—xs)v where S:={¢: |v|>ul}
so uOwv is measurable. Now y=w , Oy _ where v, (¢,5):=inf {r=>0: ¢ (¢, r)=s},
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w- (¢, 8):=sup {r<0, ¢ (¢,r)=s} (setting these 0 if the sets are empty). Suppose
¥ () is measurable. For any (positive) o, using the Carathéodory conditions for ¢,
Ly Ly )<= U {r:le@r)—y@)l<l/n}.

;3 Oéigtn
Thus w, (-, ) is measurable and, similarly, w_ (-, y) is measurable. B

To show that {x,}, given by (5.7), etc., converges to x, requires a modification
of the proof of Theorem 2.3 to show that the particular nature of {x,} implies that
if (a subsequence of) it converges weakly to some %, then f(£)=h. We consider
only the case in which ¢, ¢, are defined on 2 x R* so f, f; are defined on X* and
all the functions x;, x,, etc., are nonnegative.

Assume we have x; (;,—%. We modify the notation so as to continue to write
simply {x.} as we select this and further subsequences. Let y,:=f; (x;} and j:=
=f(x). As with Theorem 5.2, §,—b and we may assume the convergence is also
pointwise a.e. Define £, by £, (£):=w, (¢, J, (1)) so also f (£)=y. Since ¢ (¢, )
is continuous (for a.e. £ € £2), we have . (¢, ) lower semicontinuous (if §: R*->R
is continuous, ¥ (s):=min {r: (N=s}, si—s, r:=y (5), F:=liminfr, then,
for a subsequence, ry)—=F, Siiy=¢ (ry @) =@ (F) and ¢ (F)=s so ¥ (s)<F). Thus,
as y, (t)—b (¢) one has

£ (O):=liminf £, )=y, (¢, b (t))=x, (2). (5.9
Note that (5.9) implies £ (£)=%£, (f)=>x, (f) a.e. However, as with Theorem 5.2,
(5.7) implies that
[8|<lim inf ||£,]|<lim inf | i< x, +1im d=][lx, ||

so £ (t)=x, (¢t) a.e. The remainder of the proof that x,—x, is as in the proof of
Theorem 2.3. i)

The case in which ¢, ¢, are defined on all of QxR can be treated similarly if
one assumes that, for a.e. t€ Q,

rle(t,r)—e (t,0] has fixed sign for re R (5.10)
(as well as (5.8)). One can then proceed, analogously to the above, after dissecting

Q according to the sign of x, ().

One can also treat multivariate Nemytsky operators (p: QX R* —R") under
appropriate hypotheses but the conditions and treatment become much more com-
plicated unless, generalizing (5.3), one were to require, e.g., that for a.e. teQ,
the map ¢ (f,*): R*—R* (v=y) should be strictly monotone so ¢ (¢, +) would
have a continuous inverse.

6. Recovery of a Diffused Signal

Turning now to a more concrete application, consider (thermal) diffusion in
a rod (0<s<1) with diffusion coefficient D so

u =(Duy), >0, 0<s<l. (6.1)
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For present purposes, we refer to the end s=0 as the near or accessible end and
to s=1 as the far or inaccessible end. It is assumed that the value at the far end
fluctuates with time:

u(t, )=x(t) =0 (6.2)

and we consider this unknown fluctuation x (- ) as a signal. Assume that the near
end is insulated.
u, (¢,00=0 =0, (6.3)

but that it is possible to observe the transmitted signal:
b(D):=u(t,0) >0 (6.4)

which has been diffusively propagated along the rod. The problem is to recover
the original signal x (for 0<¢<T) from the observed b (also for 0<¢<T). We treat
this in somewhat less detail than in Section 5 as a more complete exposition has
appeared in [65]. Compare with the treatments in [55], [7], obtaining u on 0<s<
<so<1 from b, given a priori bounds on x.

Before discussing any specific computational approaches to the problem, we
first verify the condition (2.5). Actually we will show that exact knowledge of the
observable b (- ) uniquely determines the solution u of the Cauchy problem (6.1),
(6.3), (6.4).

THEOREM 6.1: Suppose the diffusion coefficient D=D (s, w) satisfies

(i) O0<d,<D(s,w)<d, on [0,1]XR and
(ii) D, extended as an even function of s, is analytic on (—1,1) X R.

6.5)

Then the Cauchy problem (6.1), (6.3), (6.4) has at most one solution u on [0, T]1x [0, 1].

Proof: Let w on [0,7]x[—1,1] be u reflected as an even function of 5. Then w
is a weak solution of the equation

W;E(D ( ‘,W) ws)s (66)

So, by “interior regularity”, w is analytic in s € (—1,1) for each fixed 7 € (0,7] and
C® on (0,71x(—1,1) (in particular, this means that b:=u(-,0)=: w(-,0) must
be C®. Repeated differentiation of the differential equation u,=(Duy), and use
of the facts that w, (-,0)=0 (as w is even) and that w (:,0)=b now enable one to
determine the coefficients of the power series expansion of w(f,-) around s=0,
for each fixed ¢ € (0,T], in terms of derivatives of & at ¢ and the coefficients of the
power series expansion of D around s=0, =5 (¢). Thus, w is uniquely determined
by b, D on {t} x(—1,1) and so on (0,7]x(—1,1) as t varies. Taking traces, x and
w; are also uniquely determined and u is unique on [0,7]x[0,1]. B

REMARKS 6.2: The argument above could clearly be applied if (6.1) were replaced
by the more general equation

=D (,u) ug)s—f (5, , tt5) 6.7)
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under appropriate analyticity hypotheses. If one were to know a priori that u takes
values in an interval J<R (e.g., if x, u, are known to be J-valued and the maximum
principle can be applied), then (6.5) need hold only for @ €J. This is of particular
relevance for nonlinear diffusion problems in which # represents a concentration
whence, on physical grounds, it is known that =0 (J:=R™). The argument above
can also be used in connection with the two dimensional heat equation u,=Au
in an annulus with radial symmetry, in which case inversion (r<>R?/r) would re-
place reflection (s«<»—s) in defining “extension as an even function”. In the linear
case one might consider the Cauchy problem

ul=(Dux)s'_Cu +f; u ( .90)=b9 Ug ( '90)=ba (68)

with D a» in (6.5) and ¢ also even and analytic on (—1,1) since a reduction to the
case f=0, b;=0 is obtainable by subtracting the solution of

u,=(Dus)s—cu+f, Uy ( ':0)=b1: u ( 'sl)=03 u (05 ) )=0 (69)

Such a reduction is not possible in the nonlinear case but the necessity that
b, =0 came from use of the “reflection trick™ whose only purpose was to establish
analyticity in s at s=0 for u (¢, ). If, instead of a Cauchy problem one considers
an extrapolation problem (cf. [29]): u satisfying (6.1) on (0,77 % (=,y) with obser- -
vations available of u(0,-), u(-), u(-f) and with u (-, ) desired (z<f<7y),
then u is analytic across s=/ (now in the interior) so uniqueness for the standard
problem on (0,7] % («.f) extends to (0,7] < (x,y) whence, taking the trace, one has
uniqueness of x:=u (-,7). 2]

For the linear problem (6.1)-(6.4) one may consider this as defining a linear
map (x, ug)—b. For simplicity we assume

Uug:=u(0,-)=0 on [0,1] - (6.10)

and seek only to invert f: xr—»b. For “reasonable” spaces X, Y, this problem will
be ill-posed since, as noted above, we have b always C* for “arbitrary” x, making
f compact.

AppPrOACH 6.3: Consider, first, X:=L? (0,7) weighted by D (1) and Y:=L? (0,T)
weighted by D (0). Use the method of generalized interpolation. Given any total
sequence {y;} of functions in Y*=Y, solve the problems (j=1, 2, ...):

o =Dvg);, v(T,-)=0, o,( 0=y, o2(.1)=0 (6.11)
to obtain {o'} and set '
uy=v] (1), (6.12)
T
a®:=(u;, u,->:=fD(1)ui u;. (6.13)
0

Given b, compute

! i=b,yyi=[DO) by, j=1,2,.. 6.14)
' (1]
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cand for k=1, 2, ..., solve the system

k
Dai=p  i=1,..k (6.15)
J=1
to obtain an approximant

k

J=1
to x. It is easy to verify that f: x—b is continuous from X to ¥ and that (6.11),
(6.12) gives y i—u;=f, ¥; so the construction (6.11)-(6.16) of x, is just that of The-
orem 4.2 which now proves convergence, x;—X,. Suppose one would take {(u, @)}
to be the eigenvalues and (normalized) eigenvectors of f, f (so y;=fu,/w; for j=

k

=1,2,...). Then ((¢")) is the identity matrix and (6.16) gives x;= Y’ u; as the

J=1
truncation of the orthonormal expansion of x. Further, (4.12) gives

le—ZdP <l —sp {uyy oo 1P +10— Bl /e, (6.17)

if %, is computed as above but using an approximant b, rather than b in computing
(6.14).

APPROACH 6.4: An alternative, and frequently useful, viewpoint for a problem
such as this is to consider (6.1), (6.2), (6.3), (6.10) as a control problem: determine
a control £ which is optimal in the sense of minimizing some suitable cost eriterion
J which forces the output y:=u (-,0) (corresponding to use of £ in (6.2)) to match
the observed b. As above, we consider this in the context of approximating b by
b=b, (b,—b) and, now, also of approximating the map f by maps f; defined by
constructing a convergent sequence of discretizations for (6.1) using, e.g., the me-
thod of lines.

The construction of such discretizations for (6.1), whether in the linear or in
the nonlinear case, is a standard problem in numerical analysis. For purposes of
exposition we assume X can be taken to be a sufficiently high order Sobolev space
H" [0,T] (actually, for suitable consistency with (6.10), take X to be the space of
functions in HY (—oco, T] vanishing on R~) to ensure that solutions are smooth
enough for application of, e.g., Theorem 7.1 of [17] for data x in X:=H"~*(0,T)
and with continuous dependence of the solution u (with respect to suitable norms)
on x in X. In the linear case the choice of v poses no problems, at least if D is
smooth up to the boundary s=1; in the nonlinear case additional care and restric-
tions on D are required to ensure the continuous dependence. For example, note
that for the “standard” heat equation u,=u, and discretization of &%/ds? using
Galerkin’s method with piecewise cubic splines it is adequate to take v=2 so X=
=H?[0,T].) In such a situation the maps f; will converge to the continuous map
f: X,—=Y:=L?*0,T) uniformly on bounded sets so {f;} is graph subconvergent
to fin X,X7Y.
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Discretization of (6.1) by the method of lines produces a system of ordinary
differential equations. Suppose we apply to this the penalty function approach of
Section 3 (e.g., (3.6) with p=p'=2). Then Theorem 3.1 guarantees convergence
to the true input x of the sequence {x,} of approximants. Here, each x; is defined
as the optimal control for the ODE system giving f; with optimality defined as mi-
nimization of the gquadratic cost criterion

T

i ()=Ixli2 +4 [ 1B (6)— Uy (2, 02 dit (6.13)

where U is the approximate solution of (6.1), (6.2), (6.3), (6.10) computed using
the k-th discretization (i.e., Uy (-,0)=f; (x)). In the linear case the computation
of x; is then a standard problem in optimal control theory (cf., e.g., [4]). (The usual
algorithm involves solution of a matrix Riccati equation and applying the result
to b,. There exists, however, a computationally more efficient “Chandrasekhar”
algorithm (see, e.g., [10]) which may apply.)

APPROACH 6.5: For the nonlinear case it is somewhat more difficult to obtain
continuity for the map:

x—u (+,0): H" [0,T]—=L? (0,T) used in the approaches above. An interesting variant
is to introduce a new map

Sru—(u (0), [u—(D () uy),]) (6.19)
taking functions on Q:=[0,T]x[0,1] into pairs of functions (on [0,T], on Q). In
terms of this map we now seek a solution u of

S w)=(5,0), (6.20)

after which we can take the trace on [0,7]% {1} to recover x:=u(-,1). Note that
while Theorem 6.1 does not give (2.5°) for this f, it does give uniqueness for right
hand sides of the form (b,0) — which is all that is required for the problem at hand.

To specify f as a map: X— ¥, one must adjoin to (6.19) a specification of the
spaces X, Y. Take, for example,

X:=H2(Q), Y:=Y, XY;:=L2(0,T)XH* (Q) (6.21)
or, alternatively, with 2<p<co take
Xa=W*E(Q), Y:=I*0.T)XL*(0). (6.21")

Either of (6.21), (6.21") gives continuity (indeed, compactness) of f from X,
to Y (a fortiori, to Y,,). Use of (6.21) gives x € H3/? [0,T] on taking the trace and
use of (6.21") gives x e W2~ VPP [0, T]< H3? [0,T]. Define approximants f, to f by

Sz u— (u (,0), [#@—(D (@) ,)]) (6.199)
where, for each k and each 7€ [0,7], ii (¢, ) is the H? [0,1]— orthogonal projection
of u (2,-) on the space Sp* of piecewise cubic splines with nodes {j/k: j=0, ..., k}.
As with the previous approach, we have Y—convergence of { f;} to f uniformly on
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bounded sets and so graph subconvergence of {£;} to f. Given a sequence {b,} of
approximants to b one can then use estimates for {||b;—5|} and the convergence
rate information for the discretization used in (6.19") as applied to the solution u,
of (6.20) (i.e., one can make use of the known smoothness of solutions of (6.21))
to construct sets By | {(6,0)} in ¥ so f; (u,) € B, for each k. Then Theorem 2.3 can
be used to give a convergent sequence of approximants {u.} to u, and so to the
desired input. Note that the minimization of the H? (Q)—norm required by (2.8)
for determining each u;, guarantees, by the form of (6.19") that u, will be in #2 ([0,T]—
—Sp*) so the computation can be done there. As in the previous approach, this
can usefully be regarded as a control problem. In the nonlinear case, however,
there is no such simple computational algorithm as noted there; the computational
aspect will be discussed at greater length in [65]. If one were to use a suitable full
space-time discretization of u,=(D (u) u,),, rather than the method of lines, then
the entire minimization computation would take place in a finite-dimensional space
as a nonlinear programming problem.

7. System Identification for Distributed Problems

Distributed parameter system theory is a particularly fertile source of ill-posed
problems of practical significance. Problems of the determination of an inhomeo-
geneity (= “forcing term”, either in the equation or boundary conditions) may be
referred to in system theoretic language as signal recovery, as in the preceding sec-
tion (related ill-posed problems arise in integral geometry [42], as in X—ray to-
mography, or in the “sharpening” of fuzzy images [8], [28]). Problems of the de-
termination of coefficients (again, either in the equation or boundary conditions;
this may also include geometric considerations such as determination of the *“af-
fected” region Q) are “classically” referred to as inverse problems but in system
theoretic language are called system identification (see, e.g., [2], [23], [11], [24]).

A standard approach to system identification (cf., e.g., [20]) is least squares
estimation via history matching: determine the coefficients so as to minimize a cost ,
criterion for the deviation of the resulting predictions (assuming the initial state
is known or estimable) from the observations. We diagram this, “quoting’ Figure 1
of [12], as follows:

Perturbation

actual _ Observation Ce
state 7 G Operator ¥

st o]

%= unknown [ | Model i Computed _;_rc_l f{x):= Cyy
Distributed| Parameter state y, il | (71

Fig. 1
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For computational purposes in distributed problems this is used in a formula-
tion involving a suitable (approximating) parametric representation for the un-
known x (e.g., a discretization or spline approximation or a truncated series ex-
pansion). One then calculates, in a finite dimensional setting, the parameter values
which minimize the resulting “cost”. The term “‘lumped parameter system theory”
may be taken to indicate the (implicit) use of such a formulation.

Thus the original operator equation

Sf(x)=b (7.2)

is replaced by the variational problem (nonlinear least squares fit):
1 ” -
minimize J (x):=— || f(x)=bII* over xe X:={X(2): Led} (7.3)

which is treated computationally by minimizing J (2):=J (% (1)) over A. Here A4
is a (finite-dimensional) parameter space associated with the parametric represen-
tation A—X (4), b is the observational data and x+>f(x) is the mapping defined
using the direct problem (i.e., the model) specified by x to predict the observations.
(It is often fruitful to view the determination of x — or adaptation of the model —
as an optimal control problem.) Much of the analytical effort is then devoted to
showing that, for the resulting approximate problem, the map A—f (& (1)) is well-
-defined and suitably smooth on /4 and that (7.3) has a unique solution which can
be obtained by a feasible computational procedure.

Often the results of simulation “experiments™ or comparisons with real data
are presented to suggest the merits of the procedure. In line with our present con-
siderations we view this as embedded in a computational scheme in which the above
is taken as one of a family of parametrizations of increasing dimensionality. If,
as is typical, A—3% (2) is linear, then X is a subspace and may be taken to parame-
trize itself so we consider X=X, where {X,} is an increasing sequence of subspaces
becoming dense in X so that the desired solution x, is potentially approximable
with arbitrary accuracy. We then ask whether the sequence {x,} of approximations
obtained by (7.3) using X for X and b; for b (with b,—b) converges to x,. (For
well-posed problems this approach (parametric reduction with least squares fit)
converges and is an effective tool of numerical analysis; see, e.g., [3].) An analysis
in the linear case [64] shows that in general ome cannot expect convergence from
this procedure applied to ill-posed problems (but note [56]). More precisely, one
has the following from [64].

TueOREM 7.1: Let X, Y be Hilbert spaces and A: X—Y linear, injective and com-
pact. Let b be in the range of A so b=Ax,. For b, in Y and subspaces X, of X, de-
termine x; in X, by

1
minimize J (x):=Elle—b,-¢1!2 over X. (7.4)

then, given any {X,} becoming dense in X there exist {b,} in Y with b,—b but {x,}
divergent (one can force |x||->co or {x,} bounded but x,+x,). Even using exact
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data (b,=b for each k), there is a sequence {X,} as above for which {x,} is unbounded
(provided b is not a finite linear combination of eigenvectors of AA*, B

Note that the method of generalized interpolation is superficially similar but
with quite different results (cf., Theorems 4.2, 4.5). In that case one assumes that
each X, is in the range of 4* (i.e., X,=A* Y,) and, instead of (7.4), x, satisfies

] e,
minimize J, (x):= 3 1P (Ax—=b|? over X, (7.5)

where B, is the orthoprojection onto Y;. An alternate comparison is that (4.5) means
| xeX, BPiAx=Pb, .5

(this means J; (x,)=0 in (7.5), which is certainly the minimum) while (7.4) means
X, €Xy, Po A* Axy=P, A* b (7.49)

where P, is the orthoprojection onto Xj.

It should be emphasized that it is not the method of least squares which is causing
the trouble asserted in Theorem 7.1 but its use in conjunction with parametric
reduction. It is the use of approximating subspaces that are unrelated to the ope-
rator and the ““cost criterion” which can introduce pathology: it can be shown
that if each X is the span of eigenvectors of 4* A4, then the sequence of appro-
ximants computed using the exact right hand side (each b,=b) in (7.5) converges
to x,. Note that it is possible, in defining J, for (7.5), to modify the cost criterion
to be a new quadratic form such that the redefined adjoint A* becomes such that
Xy is (approximately) the span of eigenvectors of 4* A (compare this with Galer-
kin’s method in [58]). In that case we would again expect convergence.

Typically, the most difficult aspect of inverse problems (i.e., of coefficient de-
termination) is demonstrating uniqueness. Theorem 2.3 only requires uniqueness
of a minimum norm solution but this weaker requirement seems not to make things
much easier for this class of problems. It does, however, seem likely, that in many
such problems, it is enly in such a weakened sense (and perhaps also with the ad-
vantage of an a priori restriction of the domain of f based on some knowledge
of the desired solution) that one would actually have uniqueness.

ExampLes 7.2: Consider, first, the determination of the single parameter x € R* in

u=xu, for 0<t<T, O<s<m, 1.6
u(0)=u(-,m)=0 on [0,T], uy:=u(0,-)eL*(0,m) '

from observation of y given by
y()i=—xu, (00 on (0,7]. (7.7)

Note that although u, is not given, if x were specified it would follow from [44]
that u (¢, +) is determined (indeed, well-posedly using L? topologies) by that and
y(+) for every t>0 so that uniqueness for x is equivalent to uniqueness for the




62 T. 1. SEIDMAN

augmented unknown (x, #,) € R* xL? (0,m). Suppose (x,, u,,) were a solution
of (7.6), (7.7) (i.e., solving the direct problem (7.6) with x,, for x and u,, for u (0, -),
the y defined by (7.7) matches the observations). Then

Y (O= D (=x, ke e ¥t where uoy= )¢, sin ks. (7.8)
k k

Now, set
R:=x,/4, fig:= Y 2¢sin2ks (7.9)
* 2

and observe that (7.6), (7.7) with x for x and &, for u (0,-) gives

Y (@)= 3 (~ 22k 26,) e~ X20" (7.8")
k

which exactly matches (7.8) so that (£, #i,) would equally well be a solution of (7.6),
(7.7) and the solution could not be unique. Depending on the norm chosen for
X:=RxL? (0, n), there might or might not be a unique solution of minimum
norm. Indeed, (relying on the equivalence of x and (x, u,) as unknowns) one might
plausibly topologize X by x € R alone and then there would be a sequence of so-
lutions attaining arbitrarily small positive norm. One would have to assume, for
example, that it is known that the appropriate eigenfunction expansion of u, is
not too lacunary (enough modes are excited) to permit reliable interpretation of
the observed y as (7.8) rather than (7.8’).

Next, consider the problem of determining the (distributed) unknown coeffi-
cient x=x(*) in
w=u,—xu=:L.u on R*x(,n=),
(1.9
g (0)=u, (-, 1)=0 on R*, ug:=u(0,-)el? (0, n)

from observation of y given by
y(@)=u(,00 on (0,71]. (7.10)

As above (now using results of [57]) the determinations of x in L® (0, n) and of
(x, up) in L= (0, m) < L? (0, %) are equivalent. Suppose (x,, #,,) is a solution of
(7.9), (7.10) and that {(—4;, e;)} are the eigenpairs of L, . ie,

e —x,et=—Met on (0,7, & (0)=¢'(r)=0 (7.11)

for each k. Then

y(0)= D cce; O)e ™ where uopu= Y'cie}. (7.12)
k

k
Now set

2(s)i=x, (n—5), & ):=€(s), =1y,
o (9):= D6 & with é:=[e; O)fef ()] i (7.13)

k
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Clearly {(—Z%, &)} are the eigenpairs of L;. It follows from Lemma 1 of [57] that
{ey (n)} is bounded away from 0, so, if x, is such that {¢; (0)} is bounded, as is
entirely likely, then wu,, in L* (0, =) will automatically imply that #, is also in
L2 (0, 7). In any case, given x,, there will always be nontrivial u,, in L? (0, 7) (de-
fine by (7.9), (7.10) the observable y to be considered) for which #,, defined by
(7.13), also happens to be in L? (0, ). Using (%, #,) in (7.9), (7.10) gives

y ()= Y & & (0) e (7.12%)

k
which, from (7.13), just matches (7.12), precluding uniqueness. This example is
closely related to the need, in [23], for presentation, in general, of two spectra (as-
sociated with distinct boundary conditions) to determine the unknown coefficient
x (+) uniquely. =

ExaMpLE 7.3: Consider a distributed system whose evolution is governed by
a partial differential equation of the form:

u=V-xo Vu—x,u on (0,T)xQ,

(7.14)
u=0 on (0.T7)xdQ. u(0,- )=u, '

with observations of the form:

du
yi=Xoo- on O,11%rI. (7.15)
The bounded domain Q in R™ is given, as also is the observable portion of the
boundary, I'céQ. It is desired to determine the pair of coefficients x:=(x,, x;)
from the observation j. The initial state u, is not given but estimation of u, or
of u is of no direct interest here.

Our principal assumption is that the coefficient pair x, can be restricted, on
the basis of a priori knowledge, to a subset D< X for which one has the following:

(a) X:=X,x X, is topologized at least as strongly as in C**1 () x C" ()
with v=1, -

(b) D is compact in X,

(c) there is a unique x, in D consistent with (7.14), (7.15) and the (7.16)
observed ¥, : ;

(d) 2, I" and D are such that the hypotheses of Theorem 5.2 of [63]
are satisfied for each xin D.

‘The condition (7.16b) could, of course, be verified by assuming that the uncer-
tainty in x requires only specification of finitely many parameters in some suitable
representation (note that here we are assuming that the desired solution x, is such
that this is exact). On the other hand, one continues to consider a true distributed
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parameter x if the compactness of D results from « priori knowledge of extra
smoothness of x, with a bound on, say, some higher-order Sobolev norm. The
“difficult” assumption, as noted earlier, is (7.16c). From the Examples 7.2 it is
clear that this means that specification of D must involve considerable a priori
knowledge about the unknown coefficients.

~ Introduce a state space U of suitably smooth functions on £ vanishing on 0Q
for which the operators L, (x € D) determined by

L.o9:=V-x,Voe—x;v on g (7.17)

are infinitesimal generators of C, semigroups S (-;X) on U. Then (7.14), (7.15)
become

y(t):=B(x)S(t; x) uy (7.18)

where B (x) denotes the observation map (from U to functions on I') given by (7.15).

Since u, is not given we note that (7.16d) implies existence of an “estimator”
E (1: x) for which u, y satisfying (7.14), (7.15) give

E(;x)y()=u(-) >0

(note that E requires no knowledge of u,) with {E (r; x): xe D} bounded uni-
formly in operator norm: L? ([0,71x I')—» H* (Q) for arbitrarily large K restricted
only by the selection of v in (7.16a)); see [63]. Taking w:=E (1; x) y and sufficiently
large K that the embedding of H* (Q)—U is compact, we have a priori that w=

=u(7,-) is in a fixed compact set U, = U determined by 7 and D. We now replace
(7.18) by

y(@)=BxX)St—1;x)w 1<t<T (7.189

which again is equivalent to (7.14), (7.15).

In practice one must work with computational approximations to the gover-
ning partial differential equations (7.14). Introduce a sequence of (increasingly
accurate) discretizations and let {S; (-; x)} be the semigroups associated with these
discretized versions of (7.14). Each family of semigroups {S; (*; x): x € D} “lives”
on a finite-dimensional space U, which may be taken to be embedded in the ori-
ginal state space U with corresponding projections Py: U—U,, uniformly bounded

and converging strongly to the identity. Consistency of the discretizations means
that

S, (t; x) Py i»S (t; )&t e U, xeD. (7.19)

(If one discretizes in “time” as well, then additional minor modifications are re-
quired but this causes no extra difficulty). Note that U,,, the closure of {P, »:
w e U, k=1, 2, ...}, will also be compact since {P;} is equicontinuous and conver-
gent and U, is compact. Discretization will similarly involve approximating B (x)

by B, (x) and again consistency means equicontinuity and pointwise convergence
as k—roo, !
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The original problem of seeking x,. consistent with the observation 7 and (7.14),
(7.15) or, equivalently, (7.18) or (7.18") is now replaced by the sequence of appro-
ximating problems:

1 T
minimize Jy, (x, w):= 7 f [7(t)—B.(s) Sy (t—1; x) w]* dt
z (7.20)

over DX P, U,

The consistency of the discretization means that J, (x,, P, @,)—0 (0, :=u(zr,*)
for the “true” state). Let (x;, o) be approximate solutions of (7.20) as k—oo so
Jk (xks wk) QEK—’D, i‘e'!

Yir=By (x) Si (- —7; x3) 03::"*5’![:,1‘] in L* ([r, TIxT). (7.21)

Since {(x, wy)} is in the compact set D x U,,, any subsequence contains a sub-
subsequence converging to, say, (£, @). By equicontinuity and pointwise conver-
gence, the corresponding subsubsequence of {y,} converges to $:=B (£) § (-—7;0)a
but (7.21) then gives y=Jl;,, 1y so the assumption (7.16¢c) implies X=x,, d=w,.
(Note: specification of j| r, uniquely specifies 7 on (0,7] since Theorem 5.3 of
[63] guarantees the analyticity in ¢ of § for Ret>0.) This shows, in particular,
that x;—x, in X so the approximation scheme (7.20) is convergent.

ExaMmpLE 7.4: A very similar approach can be used for a comparable identification
problem associated with a delay differential equation. Consider an autonomous
linear hereditary system of the form:

Cu@)=xou®)+x u =+ [ x()ult—s)ds+o (),

(7.22)
u(0)=uo, (. 0,0=0
with the observations of the form:
y(@):=Cu(r) on (0,7]. (7.23)

Here u (- ) takes values in R™ so x,, x; and the values of x (-) are in the space
M, of mXm matrices while ¢ is in R*:=(0,00). The unknown is then x:=
=(&, X, X1, x () in some subset D of X=Rx M,, X M,, X X, where X, is a sui-
table space of M,—valued functions on R*. It is the presence of x(-) as an un-
known function in X, which makes this a distributed problem and ill-posed in
the sense under discussion. Note that, even with a reduction to an assumed para-
metric representation, the dynamics of (7.22) involve an infinite-dimensional state
space and so would require analysis of computational approximation; see, e.g.,
[14].

It is assumed that C in (7.23), the input ¢ and the initial data (u,, @) are known.
(Analogously with the discussion in Example 7.3, above, it would also be plausible

3
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to consider @ as unknown or only partly known but with (7.22), (7.23) observable;
i.e., such that knowledge of x would permit determination of the state, including w,
from ¢, ). If one were to have ww=0 (and one also can take u,=0 with no loss
of generality by including a —function in ¢) as well as suitable growth conditions
on x(-), then taking Laplace transforms in (7.22) gives

[£ (0) +Xo +e™%x, — 0] it (6)= (o). (7.24)

If ¢, u were known on all of R* (I'=cc in (7.23) and, say, C=1), one would have
¢, #t and, under reasonable conditions, this would determine [£ (¢)+x,+e™ % x;]
(e.g., in the scalar case one just divides by #). Since [£ (o) +e~ % x;]—0 as o—o0,
X, is then determined. Note that [X (¢) +-e°* x,] is the Laplace-Stieltjes transform
of [x(s)+6 (s—¢&) x,;] so, taking the inverse transform (assuming suitable decay
of x(s) as s—o0), x(-), £ and x, are determined. This analysis is, of course, to-
tally unreasonable in that one would never have T'=co in practice or, presumably,
C=I. On the other hand, as with Examples 7.2, this gives some indication of the
difficulties involved in establishing uniqueness and the nature of the ill-posedness
involved in the determination of x.
As with (7.16), we now assume that the unknown x can a priori be restricted
to a subset DX and that we have the following
(a) X:=RXM,xXM,xX, with X, embeddable in C ([0,00)—M,,),
i.e., Xy—convergence implies uniform convergence on compadct in-
tervals,
(b) D is compact in X,
(c) there is a unigue x, in D consistent with (7.22), (7.23) and the ob- = (7.25)
served 7,

(d) D and o are such that [ x(t+s) w (—s)ds is absolutely and uni-
0
formly convergent for t=0 and all x in D.

It follows from (7.25) that (7.22) defines a solution u (- ;x) for x in D and that y=
=y (-;x):=Cu(-; x) will depend continuously (in sup norm) on x in D for fixed
C, o, uy, .

A variety of approximation methods are available for such equations as (7.22);
see, e.g., [68]. If D imposes suitable smoothness and growth conditions on x, then
one will have equicontinuity and convergence for the sequence of discretizations.
Slightly more generally, let {D,} be a sequence of subsets of X (e.g., associated with
approximating parametric representations) and assume one has approximate so-
lutions

w (1; %) defined for teTy, X, €Dy, (7.26)
(s )—u(t; £) as  t—-t, f—»x%eD. )

This assumes that T, is discrete but “becomes dense” in [0,77] and that each £ in D
is a limit of some associated sequence {#£; € D,}; we also require that \_l D, is pre-
. k

compact in X and {D;} subconvergent to D.
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For each k we define the quadratic cost criterion
1 .
Je =5 L (y=Cu (5% for  xeD, (7.27)

where I, is an operation of numerical integration over [0,T] defined in terms of
T

values at te Ty (i.e., L (f)— [ fdt for “smooth” f). We then can consider x, de-
0

fined by the least squares problem:
miinimize Jy (x) over Dy. (7.28)

The precompactness of U D, and subconvergence to D imply existence of a con-
k

vergent subsequence: xy;,—<€D. Clearly (for k=k (j))
1 T
J ()~ f 7 (1) — Cu (6;%)2dt=:J, (£). (7.29)
(4]

By assumption one can find {%, € D;} such that % —x, so J, (F)—=J, (x,)=0;
by minimality 0<J; (x,)<J (%,)—=0 so J, (¥)=0 and % is a solution. By (7.25¢),
this means X¥=x, and xy;—x,. As earlier, we conclude that x,—x,.

If (7.25b) were omitted and (7.25¢) were weakened to require existence of a uni-
que minimum norm solution x,, then approaches along the lines of Section 3 and
4 would still provide convergent approximation methods. One would then have
to assume that X, is, e.g., uniformly convex and gives such smoothness conditions
that the sequence of maps: x—Cuy (-;x): Dy—=L? ([0,T]-R™)=:Y defined by
the discretizations employed should be graph subconvergent to the map:
x—Cu (+;x): D-Y (for the given C, ¢, uy, w). For example, one might replace
(7.27) by

1 2
Ji (x):= 2 llxli% +7k1k (7= Cu (-:x)1?)  for xeD, (7.27%)

where A,—oc at a suitable rate (depending on the rates of convergence of 7, to 7,
of u, to u, uniformly over bounded subsets of D, and I, to the integral). Alterna-
tively, one might replace (7.28) by the generalized interpolation procedure:

minimize ||xlly over {xeD,: |y, (1)—Cu(t:x)|<e, for teT} (7.28")

with ¢,—0 at a suitable rate. B
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Zbiezne metody aproksymacji zagadnien niepoprawnie
postawionych

Praca stanowi obszerne studium aproksymacyjnych metod rozwigzywania rozmaitych zagad-
nien niepoprawnie postawicnych. Wyniki dotyczace zbieznosci proponowanych metod sa przed-
stawicne lacznie z dowodami.

Czesc 1 jest poswiecona zagadnieniom abstrakcyjnym. Zawiera ona zasadnicze rezultaty do-
tyczace zbieznosci proponowanych algorytmoéw aproksymacii, a takze dyskusje przydatnosci roz-
maitych technik (funkcje kary i minimalizacja, regularyzacja). W szczegdlnosci omawiane sa al-
gorytmy rozwigzywania probleméw niepoprawnie postawionych w sytuacji jedynie przyblizonej
znajomosci danych bedacych wynikami pomiarow, wykorzystujace tzw. uogdlniona interpolacje.

Czes¢ I jest poSwiecona rozmaitym zastosowaniom. Omawia sig algorytmy aproksymaciji
réwnan zawierajacych operatory Niemyckiego. Przedstawione sa metody rozwiazywania zagad-
nien cdwrotnych dla rownan roZniczkowych czgstkowych typu parabolicznego (odtwarzanic syg-
nalu wejsciowego) oraz ogélniejszych zagadnieri identyfikacji uktadow o parametrach rozlozonych.
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CXOHH[I[HBCH METOALI ANMPOKCHMANNH HEKOPPEKTHBIX 3a1ad4

B pabGore mpeanaraiorTcs amipoOKCHMMALMOHHBIE ANTOPHTMEBl PEIeHHA PAa3IHYHBIX HEKOPPEKT-
HBIX 3amav. V3ydaercsd CXOJHMOCTh IPEACTABICHHEIX ANTOPHTMOB.

B vacru I uccnenyercs aberpaktias GopMynapoBka 3a71a4. BBOAATCA OCHOBHEBIE AITOPHTMEL,
JIOKA3BIBACTCH MX CXOOHMOCTE M paccMaTphBaeTcd 3((eXTHEHOCTE PasTHYHBIX MOaX070B ((ymHk-
nEsA mrpada ¥ MUHEMH3AIMA, PEryaspu3auns). AHATH3MDYIOTCA ANTOPHTHMEL PEIUEHHS HEKOp-
PEeKTHBIX 3aJia4, CO 3HAHWEM NaHHbIX (Pe3yJbTATOB H3MEPEHHI() AL B JHCKPETHBIX TOYKAX, HC-
IONB3YIONTMEe 000DIIEHHYIO HHTEPIONALHIO,

B wacta II ofcyxparoTcst HEKOTOpPBIE OPMKIAJHbBIE BONPOCHL. PaccMaTpHBaeTcs ammpoKCH-
MalMa YPaBHEHHWIl, comepxkammx omneparopsl Hewmpimkoro. IlpencrapieHs! MeTOOBI PelICHHS
oOpaTHEIX 3a4a4 JuiA mapabonuveckux ypapreHumit u Oonee ofmmx mpobiem WieHTHOHKAUHA
CHCTEM C pacipeae/eHHbIMH TapaMeTpamu.






