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Let Q be a bounded domain inR"', let X: = LP (Q) with 1 <p<oo and Y: = LP' (Q). 
Let r:p: Q x R-?R satisfy Carath6odory conditions and a growth condition of th~;: 
form 

\(p(t,r)\~c(t)[a(t)+\r\]8 for tEQ, rER 

1 0 1 
with aELP(Q) and cEV (Q) where-+- = -, . 

y p p 

Then the Nemytsky operator f defined by <p: 

[f(x)](t):=r:p (t, x(t)) 

1s known [39] to be well-defined and continuous from X to Y. 
Suppose, for the time being, we assume that, 

for a.e. t E Q, r:p (t, ') is strictly increasing. 

(5.1) 

(5.2) 

(5.3) 

Then the inverse function lfl (t, ·) is well-defined; lfl will also satisfy Caratheodory 
conditions and we may define a Nemytsky operator g by [g (y)] (t): = lfl (t, y (t)) 

for suitable y. In this case f will be injective but, unless lfl happens to satisfy ap
propriate growth conditions, meaning that r:p grows rapidly enough, the range of 
f will be dense but not closed, the inverse map f- 1 =g will not be continuous and 
the "inverse substitution" problem 

f(x) = b (5:4) 

will be ill-posed. (An explicit example might be: [f(x)] (t)=[x (t)F' 3 withp = p' ,;2. 
The range off is clearly dense and the inverse operator: y~-+y3 is not continuous.) 
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The inversion (5.4) is, of course, trivial if rp, b are exactly available but otherwise 
our earlier considerations apply. 

REMARK 5.1: Observe, first, that Y cannot be appropriately topologized as Yw 
if the problem is actually nonlinear (i.e., unless rp has the affine form: rp (t, r)= 
= a+rb with a ELP' and b E L'; s= pp'j(p - p'), p~p'> 1) since 
The graph of, given by (5.2), is not closed in Xw X Yw if rp is nonlinear. 

Proof: If rp were not of the form a+rb, then there would be a set Q 0 cQ of po
sitive measure and (rational) constants r, d, e (d, e>O) such that either one has 

[rp(t,r+d)+rp(t,r - d) - 2rp(t,r)] > 5e for tEQ0 

or one has 

[rp(t,r+d)+rp(t,r - d) - 2rp(t,r)]<-5e for tEQ0 

(for definiteness, take: >5e) . There would then be a subset Q* cQ0 of positive 
measure 211* and (rational) constants CJ., {J, y such that for each t E Q* . 

CJ.~rp (t, r +d)<CJ.+e, {J~rp (t, r - d)<fJ+e, y - e~rp (t, r ) <y. 

By the definition of D0 => D*, one has (CJ.+{J - 2y)>e. Now there exists a se
quence {u1 : j = O, 1, ... }, orthogonal in L 2 (D), with each u1=0 on D~Q* and 
taking only the values ±1 on D* (u0 = 1 on D*) . For j = l, 2, ... , let x1 := r+du1. 

Observe that xr~r in X: = LP (D) (regardless of 1 <p<oo) and that {y1 := f (x1)} 

is bounded in Y so, passing to a subsequence if necessary, y1~y in Y. For j= 1, 2, ... , 
let DJ := {t E D*: u1 (t) = ±1} and note that each DJ has measure 11* since 
< u0 , z. 1 > =0. Thus, 

< 1, y 1 > = J rp ( ·, r) + J rp ( ·, r +d) + J rp ( ·, r - d)~ J rp ( ·, r) + 
f.!' ,p* !:!f nr f.! 

+ j[CJ.- ·y]+ j[fJ-y]=<l,f(r) >+!1*(CJ.;t-fJ-2y) . 
nf ni-

Thus, y:=w - limf(x1)#f(r)= f(w - lim x) and the graph off is not closed in 
~X~ • 

Suppose X, Y, rp are as above (with rp satisfying (5.1), (5.3)) and define a Ne
m:ytsky operator f by (5.2). Approximate f by a sequence of Nemytsky operators 
{fk} defined as in (5.2) using {rpk: QxR--+R} satisfying Caratheodory conditions and 

irpdt,r)-rp(t,r)i~cdt)(adt)+lr[)0k for tED, 

1 e,. 1 
rE R with ak E LP (D) and ck E Vk (D) where-+-=--.. (5.5) 

Yk P P 

It is easy to see that (5.1), (5.5) ensure that each .his well-defined and continu
ous from X to Y. Let b be in the range of fand set x* (t):=lfl (t, b (t)) . Clearly this 
x* is the unique solution of (5.4). For some M> llx* li, set 

ek: = llckll (lladl + Mtk . 
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THEOREM 5.2: Let X. Y, rp,J, {tpk}, {.h}, b, x*' {ek} be as above andlet {bk} be in Y 
with B~~llbk -bll. Then 

ll.h (x)-f(x)ll~ek unifor>nly on DM:={x eX: llxii~M}. (5.6) 

and, if Bk-+0, then {f;,} is graph subconvergent to J (with j;,, f restricted to DM). Let 

xk E Sk:={x EX: ll.h (x) -bdi~Bk +e~}, 
llxdl ~inf {llxll: x E Sk} +<>k. 

(5.7) 

Proof: (5.6) follows immediately from (5.5). Suppose that xk~x with llxkli~M 

and that yk:=.f~ (xk)--->y in Y. Set A:=f(xk) and observe that (5.6) gives Yk--->y. 
Thus, passing to a subsequence if necessary A (t)-+y (t) for a~e. t E Q. By (5.3), 
ljf (t, ·) is continuous so i\ (t)=lfl (t, Yk (t)) --->lfl (t, y (t))= :.X (t); clearly f(x)=y. 
Since {xk} converges weakly to x and pointwise a.e: to .X, one has x=x so f(x)=y 

which proves the graph subconvergence. lf Bk --->0, 8~--->0, then 
y E Bk: = {y E Y: lly _:b,JI~ek +e~} implies !ly-bii~ek+2e~ so Bd {b}. By (5.6), 
one has x* E Sk for each k so Theorem 2.3 applies to give xk -+x*. • 

REMARKS 5.3: We have so far considered rp defined on ~11 of Q XR so the domain 
off is all of X. A freque!ftly occurring variant of this is to have rp defined. on Q x R + 

so the domain of f is 

X+ :=o{x EX: X (t)~O for a.e. t E Q} 

(more generally, D (rp): ={(t, r)E QxR: r1 (t)~t~r2 (t)} and D (f):={x E X: 
: (t, x (t)) ED (rp) a.e.}) and the proof above can· easily be modified to treat this. 

Suppose, next, that q; does not satisfy (5.3) and f is not monotone and' not in
jective. Then an argument silmilar to the proof in Remark 5.1 shows that the graph 
of fwill not be closed in Xw X Y and that {.h} is not graph subconvergent in Xw X Y. 
Nevertheless, (5.3) can be replaced by the weaker condition 

for a. e. t E Q: for each sE R either IJf (t, s) := {r: q; (t, r )=s} is empty or 

it contains a unique r * = : 1f1 (t, s) of minimum absolute value (5.8) 

and still have the final conclusion of Theorem 5.2: that Xk--->X*. 

First note that x* given by x* (t) := !fr (t, b (t)) will clearly be the 'unique mi
nimum norm solution of ( 5.4) -provided it is measurable so x* E X.: We note 
the following. 

LEMMA : Let rp satisfy Caratheodory conditions and (5.8). 
Define If/ (t, s) by (5.8), ~etting 1f1 (t, s):=a (arbitrary, say a=O) when IJf (t, s)=0 

Then If/ ( ·,y ( · )) is measurable for every measurable y ( · ). 

Proof: For measurable u, ·v, let uOv:=xsu+(I-xs)v where S:={t: lvl~lul} 
so uOv is measurable. Now1f1=1f1+0lfl- where lfl+ (t,s):= inf{r~O: q;(t,r)=s}, 
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lfl- (t, s): =sup {r~ 0, rp (t, r )=s} (setting these 0 if the sets are empty). Suppose 
y ( ·) is measurable. For any (positive) 0(, using the Caratheodory conditions for rp, 

{t:lfl+(t,y(t))<O(}=n U {t:lrp(t,r ) -y(t)l< l fn}. 
n rEQ 

O<> r<a 

Thus 1f1 + ( ·, y) is measurable and, similarly, If/_ ( ·, y) is measurable. • 
To show that {x"}, given by (5.7), etc., converges to x* requires a modification 

of the proof of Theorem 2.3 to show that the particular nature of { x"} implies that 
if (a subsequence of) it converges weakly to some x, then f(x)=b. We consider 
only the case in which rp, rpk are defined on Q x R+ so f, h are defined on x+ and 
all the functions xk, x*, etc., are nonnegative. 

Assume we have xk(i)->x. We modify the notation so as to continue to write 
simply {xk} as we select this and further subsequences. Let Jk:=f" (x"} and yk:= 

=f(xk). As with Theorem 5.2, A-+b and we may assume the convergence is also 
pointwise a.e. Define xk by xk (t) :=If/+ (t, Yk (t)) so also f (x/J=Yk· Since rp (t, ·) 

is continuous (for a. e. t E Q), we have 1f1 + (t, ·) lower semicontinuous (if((>: R+ -+R 
is continuous, t,t(s):=min{r:l{l(r)=s}, sk-+s, r":=t,t(~"), f:=liminfr", then, 
for a subsequence, rk(i)-+f, sk(i)=c$ (rk(i))-+cp (f) and cp (i')=s so t,t (s)~f). Thus, 
as Yk (t)-+b (t) one has 

x* (t):=liminfxk(t)?:IJI+ (t,b(t))=x* (t). (5.9) 

Note that (5.9) implies x (t)?=x* (t)?=x* (t) a.e. However, as with Theorem 5.2, 
(5.7) implies that 

llxll~lim inf llxnll~lim inf llx"ll~x* +lim ak=llx*ll 

so x (t)=x* (t) a.e. The remainder of the proof that xk-+x* is as in the tJroof of 
Theorem 2.3. • 

The case in which rp, rp" are defined on all of Q x R can be treated similarly if 
one assumes that, for a.e. t E Q, 

r [rp (t, r)- rp (t, 0] has fixed sign for rE R (5.10) 

(as well as (5.8)). One can then proceed, analogously to the above, after dissecting 
Q according to the sign of x* (t). 

One can also treat multivariate Nemytsky operators (rp: QxR~t -+Rv) under 
appropriate hypotheses but the conditions and treatment become much more com
plicated unless, generalizing (5.3), one were to require, e.g., that for a.e. t E Q, 

the map rp (t, · ): R~t-+R~t (v=J.L) should be strictly monotone so rp (t , ·) would 
have a continuous inverse. 

6. Recovery of a Diffused Signal 

Turning now to a more concrete application, consider (thermal) diffusion in 
a rod (O~s~ I) with diffusion coefficient D so 

u =(Du.). t>O, O<s<l. (6.1) 
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For present purposes, we refer to the end s= O as the near or accessible end and 
to s= 1 as the far or inaccessible end. It is assumed that the value at the far end 
fluctuates with time: 

u (t, 1) = x (t) t?;O (6.2) 

and we consider this unknown fluctuation x ( · ) as a signal. Assume that the near 
end is insulated. 

Ux (t, 0)=0 t?;O, (6.3) 

but that it is possible to observe the transmitted signal: 

b (t):=u (t, 0) t?;O (6.4) 

which has been diffusively propagated along the rod. The problem is to recover 
the original signal x (for O:;;;t:;;;T) from the observed b (also for O:;;;t:;;;T). We treat 
this in somewhat less detail than in Section 5 as a more complete exposition has 
appeared in [65]. Compare with the treatments in [55], [7], obtaining u on O:;;;s:;;; 
:;;;s0 < 1 from b, given a priori bounds on x. 

Before discussing any specific computational approaches to the problem, we 
first verify the condition (2.5). Actually we will show that exact knowledge of the 
observable b ( ·) uniquely determines the solution u of the Cauchy problem (6.1), 
(6.3), (6.4). 

THEOREM 6.1: Suppose the diffusion coefficient D= D (s, w) satisfies 

(i) 0<d1 :;;;D (s, w):;;;d2 on [0,1] xR and 
(ii) D, extended as an even function of s, is analytic on ( -1,1) xR. (

6
·
5
) 

Then the Cauchy problem (6.1), (6.3), (6.4) has at most one :,olution u on [0, T] X [0, 1]. 

Proof: Let w on [O,T] x [ - 1,1] be u reflected as an even function of s. Then w 
1s a weak solution of the equation 

(6.6) 

So, by "interior regularity", w is analytic in sE ( -1,1) for each fixed t E (O,T] and 
coo on (O,T] x (-1,1) (in particular, this means that b: = u(·,O) = :w(·,O) must 
be coo. Repeated differentiation of the differential equation u1 =(Du.), and use 
of the facts that w. ( ·,0) = 0 (as w is even) and that w ( ·,O)=b now enable one to 
determine the coefficients of the power series expansion of w (t, ·) around s= O, 
for each fixed t E (O,T], in terms of derivatives of b at t and the coefficients of the 
power series expansion of D around ~=0, w=b (t). Thus, w is uniquely determined 
by b, Don {t} x (-1,1) and so on (O,T]x( - 1,1) as t varies. Taking traces, x and 
w. are also uniquely determined and u is unique on [O,T] x [0,1]. • 

REMARKS 6.2: The argument above could clearly be applied if (6.1) were replaced 
by the more general equation 

U 1=(D ( ·,u) u.).- f(s, u, u.) (6.7) 
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under appropriate analyticity hypotheses. If one were to know a priori that u takes 
values in an interval JcR (e.g., if x, u0 are known to be ]-valued and the maximum 
principle can be applied), then (6.5) need hold only for wE J. This is of particular 
relevance for nonlinear diffusion problems in which u represents a concentration 
whence, on physical grounds, it is known that u~O (J :=R+). The argument above 
can also be used in connection with the two dimensional heat equation ut=Au 
in an annulus with radial symmetry, in which case inversion (r+-+R2fr) would re
place reflection (s+-+-s) in defining "extension as an even function" . In the linear 
case one might consider the Cauchy problem 

Ut=(Dus)s-cu+f, U ( ·,O)=b, Us ( ·,O)=b, (6.8) 

with D a., in (6.5) and c also even and analytic on ( -1,1) since a reduction to the 
case f=O, b1 =0 is obtainable by subtracting the solution of 

Ut=(Dus)s-cu+f, Us( ·,O)=bb U ( ·,1)=0, u (0, · )=0. (6.9) 

Such a reduction is not possible in the nonlinear case but the necessity that 
b1 =0 came from use of the "reflection trick" whose only purpose was to establish 
analyticity in s at s=O for u (t, · ). If, instead of a Cauchy problem one considers 
an extrapolation problem (cf. [29]): u satisfying (6.1) on (O,T] X (ct., y) with obser
vations available of u (0, · ), u (", et.), u (- ,/3) and with u (", y) desired (et.< f3 < y), 
then u is analytic across s=/3 (now in the interior) so uniqueness for the standard 
problem on (O,T] x (ct. ,/3) extends to (O,T] x (IX, y) whence, taking the trace, one has 
uniqueness ofx:=u ( ·,y). 

For the linear problem (6.1)-(6.4) one may consider this as defining a 
map (x, u0 )Hb. For simplicity we assume 

u0 :=u (0, · )=0 on [0,1] 

• linear 

(6.10) 

and seek only to invert f: xHb. For "reasonable" spaces X, Y, this problem will 
be ill-posed since, as noted above, we have b always c oo for "arbitrary" x, making 
f compact. 

APPROACH 6.3: Consider, first, X:=L 2 (O,T) weighted by D (1) and Y :=L2 (O,T) 
weighted by D (0). Use the method of generalized interpolation. Given any total 
sequence {yJ of functions in Y*=Y, solve the problems (j=l, 2, ... ): 

-vt=(Dv5)., V (T, · )=0, Vs ( ·,O)=yk, v ( ·,1)=0 

to obtain {vj} and set 

Given b, compute 

T 

ai,J :=(u;, ui) := J D (1) u; ui. 
0 

T 

/]1 :=(b,yi):= f D(O)by1 j=1,2, . ., 
0 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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. and for k = 1, 2, .. . , solve the system 

to obtain an approximant 

k 

J;ai,i~i=f3; i=l, ... ,k 
j~l 

k 

xk:=}; ~iui 
j ~ l 

57 

(6.15) 

(6.16) 

to x. It is easy to verify that f: XHb is continuous from X to Y and that (6.11), 

(6:12) gives YiHui=f* Yi so the construction (6.11)-(6.16) of xk is just that of The
orem 4.2 which now proves convergence, xk-+x*. Suppose one would take {(uk, wk)} 
to be the eigenvalues and (normalized) eigenvectors of j~ f (so Yi=fu)wi for j = 

k 

=1, 2, ... ). Then ((aU)) is the identity matrix and (6.16) gives xk= );fii ui as the 
j ~l 

truncation of the orthonormal expansion of x. Further, ( 4.12) gives 

(6.17) 

if xk is computed as above but using an approximant bk rather than b in computing 
(6.14). 

APPROACH 6.4: An alternative, and frequently useful, viewpoint for a problem 
such as this is to consider (6.1), (6.2), (6.3), (6.10) as a controlproblem: determine 
a control x which is optimal in the sense of minimizing some suitable cost criterion 

J which forces the output y:=u ( ·,0) (corresponding to use of x in (6.2)) to match 
the observed b. As above, we consider this in the context of approximating b by 
b= bk (bk-+b) and, now, also of approximating the map f by maps fk defined by 
constructing a convergent sequence of discretizations for (6.1) using, e.g., the me
thod of lines. 

The construction of such discretizations for (6.1), whether in the linear or in 
the nonlinear case, is a standard problem in numerical analysis. For purposes of 
exposition we assume X can be taken to be a sufficiently high order Sobolev space 
H• [O,T] (actually, for suitable consistency with (6.10), take X to be the space of 
functions in H• ( - =, T] vanishing on R-) to ensure that solutions are smooth 
enough for application of, e.g., Theorem 7.1 of [17] for data x in X: =H• -• (O,T) 
and \\-ith continuous dependence of the solution u (with respect to suitable norms) 
on x in X. In the linear case the choice of v poses no problems, at least if D is 
smooth up to the boundary s= 1; in the nonlinear case additional care and restric
tions on D are required to ensure the continuous dependence. For example, note 
that for the "standard" heat equation U 1=U55 and discretization of iJ1 jiJs1 using 
Galerkin's method with piecewise cubic splines it is adequate to take v= 2 so X= 

=H1 [0,T].) In such a situation the maps h will converge to the continuous map 
f: Xw-+Y: = U(O,T) uniformly on bounded sets so {.h} is graph subconvergent 
to fin Xwx Y. 
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Discretization of (6.1) by the method of lines produces a system of ordinary 
differential equations. Suppose we apply to this the penalty function approach of 
Section 3 (e.g., (3.6) with p=p'=2). Then Theorem 3.1 guarantees convergence 
to the true input x of the sequence { xd of approximants. Here, each xk is defined 
as the optimal control for the ODE system giving fk with optimality defined as mi
nimization of the quadratic cost criterion 

T 

Jk (x = llxllx +},k [bk (t) - uk (t, 0)] dt ) 2 J - 2 (6.18) 
0 

where Uk is the approximate solution of (6.1), (6.2), (6.3), (6.10) computed using 
the k-th discretization (i.e., Uk ( ·,O) = fk (x)). In the linear case the computation 
of xk is then a standard problem in optimal control theory (cf., e.g., [4]). (The usual 
algorithm involves solution of a matrix Riccati equation and applying the result 
to bk. There exists, however, a computationally more efficient "Chandrasekhar" 
algorithm (see, e.g., [10]) which may apply.) 

APPROACH 6.5: For the nonlinear case it is somewhat more difficult to obtain 
continuity for the map: 
x~u ( ·,0): nv [O,T]--+£2 (O,T) used in the approaches above. An interesting variant 
is to introduce a new map 

f: u~(u ( ·,0), [u1 -(D (u) u.).]) (6.19) 

taking functions on Q: = [O,T] X [0, 1] into pairs of functions (on [O,T], on Q). In 
terms of this map we now seek a solution u of 

f(u) = (b, 0), (6.20) 

after which we can take the trace on [O,T] x {1} to recover x: = u(·,1). Note that 
while Theorem 6.1 does not give (2.5') for this f, it does give uniqueness for right 
hand sides of the form (b,O) - which is all that is required for the problem at hand. 

To specify f as a map: X-+Y, one must adjoin to (6.19) a specification of the 
spaces X, Y. Take, for example, 

(6.21) 

or, alternatively, with 2<p<oo take 

(6.21 ') 

Either of (6.21), (6.21 ') gives continuity (indeed, compactness) off from Xw 
to Y (a fortiori, to Yw). Use of (6.21) gives x E H 3 12 [O,T] on taking the trace and 
use of (6.21') gives XE W 2 -lfP,P [O,T]cH312 [O,T] . Define approximantsfk tofby 

fk: u~ (u ( ·,0), [u1 - (D (u) u.).]) (6.19') 

where, for each k and each rE [O,T], u (t, ·)is the H 2 [0,1]-orthogonal projection 
of u (t, ·) on the space Spk of piecewise cubic splines with nodes {j/k: j = O, ... , k}. 
As with the previous approach, we have Y-convergence of {h} to /uniformly on 
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bounded sets and so graph subconvergence of {h} to f Given a sequence {bk} of 
approximants to b one can then use estimates for {llbk-bll} and the convergence 
rate information for the discretization used in (6.19') as applied to the solution u* 
of (6.20) (i.e., one can make use of the known smoothness of solutions of (6.21)) . 
to construct sets Bk t {(b,O)} in Y so fk (u~.) e Bk for each k. Then Theorem 2.3 can 
be used to give a convergent sequence of approximants { ud to u* and so to the 
desired input. Note that the minimization of the H 2 (Q)-norm required by (2.8) 
for determining each uk guarantees, by the form of (6.19') that uk will be in H 2 ([O,T] ~ 
-+Spk) so the computation can be done there. As in the previous approach, this 
can usefully be regarded as a control problem. In the nonlinear case, however, 
there is no such simple computational algorithm as noted there; the computational 
aspect will be discussed at greater length in [65]. If one were to use a suitable full 
space-time discretization of ut=(D (u) u.)., rather than the method of lines, then 
the entire minimization computation would take place in a finite-dimensional space 
as a nonlinear programming problem. 

7. System Identification for Distributed Problems 

Distributed parameter system theory is a particularly fertile source of ill-posed 
problems of practical significance. Problems of the determination . of an inhomo
geneity ( = "forcing term", either in the equation or boundary conditions) may be 
referred to in system theoretic language as signal recovery, as in the preceding sec
tion (related ill-posed problems arise in integral geometry [42], as in X-ray to
mography, or in the "sharpening" of fuzzy images [8], [28]). Problems of the de
termination of coefficients (again, either in the equation or boundary conditions; 
this may also include geometric considerations such as determination of the "af
fected" region Q) are "classically" referred to as inverse problems but in system 
theoretic language are called system identification (see, e.g., [2], [23], [11], [24]). 

A standard approach to system identification (cf., e.g., [20]) is least squares 
estimation via history matching: determine the coefficients so as to minimize a cost . 
criterion for the deviation of the resulting predictions (assuming the initial state 
is known or estimable) from the observations. We diagram this, "quoting" Figure 1 
of [12], as follows: 

Pro cos 1--=ac=t=ua,_,t ~--..J 
state y 

x= unknown 
Distributed) Parameter 

C _ Observation 
- Operator 

Model 

Fig. 1 
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For computational purposes in distributed problems this is used in a formula
tion involving a suitable (iipproximating) parametric representation for the un
known x (e.g., a discretization or spline approximation or a truncated series ex

. pansion). One then calculates, in a finite dimensional setting, the parameter values 
which minimize the resulting "cost". The term "lumpedparameter system theory" 
may be taken to indicate the (implicit) use of such a formulation. 

Thus the original operator equation 

f(x)=b (7.2) 

is replaced by the variational problem (nonlinear least squares fit): 

1 - -
minimize J(x):=2ilf(x)-bll 2 over xEX:={x(A): AEA} (7.3) 

which is treated computationally by minimizing J (?.): =1 ( x (A)) over A. Here A 
is a (finite-dimensional) parameter space associated with the parametric represen
tation ).Hx (?.), b is the observational data and xHf(x) is the mapping defined 
using the direct problem (i.e., the model) specified by x to predict the observations. 
(It is often fruitful to view the determination of x- or adaptation of the model -
as an optimal control problem.) Much of the analytical effort is then devoted to 
showing that, for the resulting approximate problem, the map },Hf (x (A.)) is \:Yell
-defined and suitably smooth on A and that (7.3) has a unique solution which can 
be obtained by a feasible computational procedure. 

Often the results of simulation "experiments" or comparisons with real data 
are presented to suggest the merits of the procedure. In line with our present con
siderations we view this as embedded in a computational scheme in which the above 
is taken as one of a family of parametrizations of increasing dimensionality. If, 
as is typical, },H.X (),) is linear, then X is a subspace and may be taken to parame
trize itself so we consider X=Xk where {Xk} is an increasing sequence of subspaces 
becoming dense in X so that the desired solution x* is potentially approximable 
with arbitrary accuracy. We then ask whether the sequence {xk} of approximations 
obtained by (7.3) using Xk for X and bi< for b (with bk--+b) converges to x*. (For 
well~posed problems this approach (parametric reduction with least squares fit) 
converges and is an effective tool of numerical analysis; see, e.g., [3].) An analysis 
in the linear case [64] shows that in general one cannot expect convergence from 
this procedure applied to ill-posed problems (but note [56]). More precisely, one 
has the following from [64]. 

THEOREM 7.1: Let X, Y be Hilbert spaces and A: X---+ Y linear, injective and com
pact. Let b be in the range of A so b=Ax*. For bk in Y and subspaces Xk of X, de
termine xk in xk by 

1 
minimize Jdx):=2!1Ax-bdi 2 over Xk. (7.4) 

then, given any {Xk} becoming dense in X there exist {bd in Y with bk--+b but {xd 
divergent (one can 'force llxkll--+oo or {xk} bounded but Xk+?x*). Even using exact 
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data (bk=b for each k), there is a sequence {Xd as above for which {xk} is unbounded 

(provided b is not a finite linear combination of eigenvectors of AA*. • 

Note that the method of generalized interpolation is superficially similar but 
with quite different results (cf., Theorems 4.2, 4.5). In that case one assumes that 
each Xk is in the range of A* (i.e., Xk=A* Yk) and, instead of (7.4), xk satisfies 

(7.5) 

where Pk is the orthoprojection onto Yk · An alternate comparison is that (4.5) means 

(7.5') 

(this means Jk (xk)=O in (7.5), which is certainly the minimum) while (7.4) means 

(7.4 ') 

where pk is the orthoprojection onto xk. 
It should be emphasized that it is not the method of least squares which is causing 

the trouble asserted in Theorem 7.1 but its use in conjunction with parametric 
reduction. It is the use of approximating subspaces that are unrelated to the ope
rator and the "cost criterion" which can introduce pathology: it can be shown 
that if each Xk is the span of eigenvectors of A* A, then the sequence of appro
ximants computed using the exact right hand side (each bk=b) in (7.5) converges 
to x*. Note that it is possible, in defining Jk for (7.5), to modify the cost criterion 
to be a new quadratic form such that the redefined adjoint A* becomes such that 
Xk is (approximately) the span of eigenvectors of A* A (compare this with Galer
kin's method in [58]). In that case we would again expect convergence. 

Typically, the most difficult aspect of inverse problems (i.e., of coefficient de
termination) is demonstrating uniqueness. Theorem 2.3 only requires uniqueness 
of a minimum norm solution but this weaker requirement seems not to make things 
much easier for this class of problems. It does, however, seem likely, that in many 
such problems, it is only in such a weakened sense (and perhaps also with the ad
vantage of an a priori restriction of the domain of f based on some knowledge 
of the desired solution) that one would actually have uniqueness. 

EXAMPLES 7.2: Consider, first, the determination of the single parameter x ER+ in 

Ur=XUss for O<t<T, O<s<n, 

u ( ·,O)=u ( ·,n)=O on [O,T], u0 :=u (0, ·) E £2 (O,n) 
(7.6) 

from observation of y given by 

y ( · ):= -xus ( ·,0) on (O,T]. (7/Z) 

Note that although u0 is not given, if x were specified it would follow frqm [44] 
that u (t, ·) is determined (indeed, well-posedly using £2 topologies) by that and 
y ( ·) for every t>O so that uniqueness for x is equivalent to uniqueness for the 
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augmented unknown (x, u0 ) ER+ XL 2 (O,n). Suppose (x* , u0*) were a solution 
of (7.6), (7.7) (i.e., solving the direct problem (7.6) with x* for x and u0* for u (0, · ), 
the y defined by (7.7) m1;1tches the observations). Then 

y (t)=}; (- x* kck) e-"'· k
2

t where u0* =}; ck sinks. (7.8) 
k k 

Now, set 

k 

and observe that (7.6), (7.7) with x for x and u0 for u (0, ·) gives 

y (t)=}; ( -x2k · 2ck) e-;< 2k)•t 
k 

(7.9) 

(7.8') 

which exactly matches (7.8) so that (x, u0 ) would equally well be a solution of (7.6), 
(7.7) and the solution could not be unique. Depending on the norm chosen for 
X:=R XL 2 (0, n), there might or might not be a unique solution of minimum 
norm. Indeed, (relying on the equivalence of x and (x, u0 ) as unknowns) one might 
plausibly topologize X by x ER alone and then there would be a sequence of so
lutions attaining arbitrarily small positive norm. One would have to assume, for 
example, that it is known that the appropriate eigenfunction expansion of u0 is 
not too lacunary (enough modes are excited) to permit reliable interpretation of 
the observed y as (7.8) rather than (7.8'). 

Next, consider the problem of determining the (distributed) unknown coeffi
cient x=x ( ·) in 

U5 ( ·,O)=us ( ·, n)=O on R+, u0 :=u (0, ·) EV (0, n) 
(7.9) 

from observation of y given by 

y(t):=u(·,O) on (O,T]. (7.10) 

As above (now using results of [57]) the determinations of x in L oo (0, n) and of 
(x, u0) in L 00 (0, n) XL 2 (0, n) are equivalent. Suppose (x*, u0*) is a solution of 
(7.9), (7.10) and that {(-A.:, e:)} are the eigenpairs of Lx , i.e., 

• 
on (0, n), e:' (O)=e:' (n)=O (7.11) 

for each k. Then 

y (t)= .2; ck e; (0) e- -": t where u0* = .2; ck e;. (7.12) 
k k 

Now set 

x(s) :=x* (n-s), 

• il0 (s):= 2:4 ek with ck:=[e: (0)/e: (n)] ck . (7.13) 

k 
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Clearly {( ·-:--2k> ek)} are the eigenpairs of L;. 1t follows from Lemma 1 of [57] that 
{e;(n)} is bounded away from 0, so, if x* is such that {eZ (0)} is bounded, as is 
entirely likely, then u0* in V (0, n:) will automatically imply that i't0 is also in 
L 2 (0, n:). In any case, given x* there "'ill always be nontrivial u0* in L 2 (0, n) (de
fine by (7.9), (7.10) the observable y to be considered) for which i't0 , defined by 
(7.13), also happens to be in L 2 (0, n). Using (.X, i't0 ) in (7.9), (7.10) gives 

y (t)= .2; ck ek (O) e- ikt 
k 

(7.12') 

which,. from (7.13), just matches (7.12), precluding uniqueness. This example is 
closely related to the need, in [23], for presentation, in general, of two spectra (as
sociated with distinct boundary conditions) to determine the unknown coefficient 
x ( ·) uniquely. • 

ExAMPLE 7.3: Consider a distributed system whose evolution ts governed by 
a partial differential equation of the form: 

U 1=V·x0 Vu-x1 u on (O,T) x Q, 

u=O on (O, T) X 8Q, u (0, · )=u0 

(7.14) 

with observations of the form: 

on (O,T] x r. . (7.15) 

The ,bounded domain Q in R"' is given, as also is the observable portion of the 
boundary, rcoQ. Jt is desired to determine the pair of coefficients x: = (Xo, X1) 
from the observation y. The initial state u0 is not given but estimation of u0 or 
of · u is .of no direct interest here. 

Ourprincipal assumption is that the coefficient pair x* can be restricted, on 
the basis of a priori knowledge, to a subset De X for which one has the following: 

(a) X: =X0 X X 1 is topologized at/east as strongly as in cv+ 1 (Q) X c• (Q) 

with v)' 1, 

(b) D is compact in X, 

(c) there is a unique x* in D consistent with (7.14), (7.15) and the 

observed y, . 
(d) Q, r and D are such that the hypotheses of Theorem 5.2 of [63] 

are satisfied for each x in · D. 

(7.16) 

The condition (7.16b) could, of course, be verified by assuming that the uncer
tainty in x requires only specification of finitely many parameters in some suitable 
representation (note that here we are assuming tha~ the desired solution x* is such 
that this is exact). On the other hand, one continues to consider a true distributed 
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parameter x if the compactness of D results from a pnon knowledge of extra 
smoothness of x* with a bound on, say, some higher-order Sobolev norm. The 
"difficult" assumption, as noted earlier, is (7.16c). From the Examples' 7.2 it is 
clear that this means that specification of D must involve considerable a priori 

knowledge about the unknown coefficients. 

Introduce a state space U of suitably smooth functions on Q vanishing on oQ 

for which the operators Lx (x E D) determined by 

Lx v: =V · x0 Vv- x 1 v on Q (7.17) 

are infinitesimal generators of C0 semigroups S (·;X) on U. Then (7.14), (7.15) 
become 

y (t):=B (x) S (t; x) u0 (7.18) 

where B (x) denotes the observation map (from U to functions on F) given by (7.15). 

Since u0 is not given we note that (7.16d) implies existence of an "estimator" 
E (r: x) for which u, y satisfying (7.14), (7.15) give 

E (-r; x) y ( · )=u (r, ·) r>O 

(note that E requires no knowledge of u0 ) with {E ( r; x): x E D} bounded uni
formly in operator norm: L 2 ([O,T] x F)-HK (Q) for arbitrarily large K restricted 
only by the selection of v in (7.16a)); see [63]. Taking w: = E (r ; x) ji and sufficiently 
large K that the embedding of Hk (Q)<--+ u is compact, we have a priori that w= 
= u (r, ·)is in a fixed compact set U* c U determined by ji and D. We now replace 
(7.18) by 

y(t): = B(x)S(t - r;x)w r~t~T (7.18') 

which again is equivalent to (7.14), (7.15). 

In practice one must work with computational approximations to the gover
ning partial differential equations (7.14). Introduce a sequence of (increasingly 
accurate) discretizations and let {Sk ( · ; x)} be the semigroups associated with these 
discretized versions of (7.14). Each family of semigroups {Sk ( ·; x): x eD} "lives" 
on a finite-dimensional space Uk which may be taken to be embedded in the ori
ginal state space U with corresponding projections Pk: U- Uk, uniformly bounded 
and converging strongly to the identity. Consistency of the discretizations means 
that 

(7.19) 

(If one discretizes in "time" as well, then additional minor modifications are re
quired but this causes no extra difficulty). Note that U** ' the closure of {Pk w: 
w E U*, k = 1, 2, ... }, will also be compact since {Pk} is equi~ontinuous and conver
gent and U* is compact. Discretization will similarly involve approximating B (x) 
by Bk (x) and again consistency means equicontinuity and pointwise convergence 
as k--+oo. 
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The original problem of seeking x* consistent with the observation y and (7.14), 
(7.15) or, equivalently, (7.18) or (7.18') is now replaced by the sequence of appro
ximating problems: 

1 T 

minimize Jdx, w):=2 J !Y(t) - Bds) S" (t-r; x)wl 2 dt 
< (7.20) 

over D x Pk U* 

The consistency of the discretization means that J" (x*, P" w*)~O (w* := u (r, ·) 
for the " true" state). Let (xk, wk) be approximate solutions of (7.20) as k~oo so 
Jk (x", wk)~ak~o, i.e., 

(7.21) 

Since {(xk, wk)} is in the compact set D x U**, any subsequence contains a sub
subsequence converging to, say, (x, w). By equicontinuity and pointwise conver
gence, the corresponding subsubsequence of {yk} converges to y: = B (x) S ( · - r ;i)w 
but (7.21) then gives .:Y=.YI[<,TJ so the assumption (7.16c) implies i = x*, w=w-.,. 
(Note: specification of .YI[<, TJ uniquely specifies y on (O,T] since Theorem 5.3 of 
[63] guarantees the analyticity in t of y for Re t>O.) This shows, in particular, 
that xk~x* in X so the approximation scheme (7.20) is convergent. 

EXAMPLE 7.4: A very similar approach can be used for a comparable identification 
problem associated with a delay differential equation. Consider an autonomous 
linear hereditary system of the form: 

CJ) 

u (t)=x0 u (t) +x1 u (t-') + J x (s) u (t-s) ds+tp (t), 
0 (7.22) 

with the observations of the form: 

y(t): = Cu(t) on (O,T]. (7.23) 

Here u ( ·) takes values in Rm so x 0 , x1 and the values of x ( ·) are in the space 
Mm of m Xm matrices while ' is in R+ :=(O,oo). The unknown is then x: = 
=(,,x0 ,x1,x(·)) in some subsetD of X=R XMm XMmXX0 where X0 is a sui
table space of Mm"""""" valued functions on R+. It is the presence of x ( ·) as an un
known function in X0 which makes this a distributed problem and ill-posed in 
the sense under discussion. Note that, even with a reduction to an assumed para
metric representation, the dynamics of (7 .22) involve an infinite-dimensional state 
space and so would require analysis of computational approximation; see, e.g., 
[14]. 

It is assumed that C in (7.23), the input rp and the initial data (u0 , w) are known. 
(Analogously with the discussion in Example 7.3, above, it would also be plausible 

5 
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to consider was unknown or only partly known but with (7.22), (7.23) observable; 
i.e., such that knowledge of x would permit determination of the state, including w, 
from rp, Y). If one were to have w=O (and one also can take u0 = 0 with no loss 
of generality by including a o-function in rp) as well as suitable growth conditions 
on x ( · ), then taking Laplace transforms in (7.22) give;; 

(7.24) 

If rp, u were known on all of R+ (T= oo in (7.23) and, say, C=I), one would have 
q>, u and, under reasonable conditions, this would determine [.X (a) +x0 +e-a~ xd 
(e.g,, in the scalar case one just divides by ii). Since [.X (a) +e-a; xt]~o as a~oo, 
x 0 is then determined. Note that [.X (a) +e-a~ xd is the Laplace-Stieltjes transform 
of [x (s)+o (s-~) xd so, taking the inverse transform (assuming suitable decay 
of x (s) as s~oo), x ( · ), ~ and x1 are determined. This analysis is, of course, to
tally unreasonable in that one would never have T= oo in practice or, presumably, 
C= l. On the other hand, as with Examples 7.2, this gives some indication of the 
difficulties involved in establishing uniqueness and the nature of the ill-posedness 
involved in the determination of x . 

As with (7.16), we now assume that the unknown x can a priori be restricted 
to a subset DcX and that we have the following 

(a) X: = R X Mm X Mm X X 0 with X0 embeddable in C([O,oo)~Mm), 
i.e., X0-convergence implies uniform convergence on compact in
tervals, 

(b) D is compact in X, 
(c) there is a unique x* in D consistent with (7.22), (7.23) and the ob- (7.25) 

served y, 
00 

(d) D and w are such that J x (t +s) w ( -s) ds is absolutely and uni-
o 

formly convergent for t~O and all x in D. 

It follows from (7.25) that (7.22) defines a solution u ( · ;x) for x in D and that y= 
=y ( ·; x):=Cu ( ·; x) will depend continuously (in sup norm) on x in D for fixed 
C, rp, u0 , w. 

A variety of approximation methods are available for such equations as (7.22); 
see, e.g., [68]. If D imposes suitable smoothness and growth conditions on x, then 
one will have equicontinuity and convergence for the sequence of discretizations. 
Slightly more generally, let {Dk} be a sequence of subsets of X (e.g., associated with 
approximating parametric representations) and assume one has approximate so
lutions 

uk (t; xk) defined for t E Tb xk E Dk, 

uk (tk; xk)~u (t; .X) as tk~t, .xk~.x ED 0 

(7.26) 

This assumes that Tk is discrete but "becomes dense" in [O,T] and that each .X in D 

is a limit of some associated sequence { xk E Dk}; we also require that U Dk is pre-
. k 

compact in X and {Dk} subconvergent to D. 
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For each k we define the quadratic cost criterion 

(7.27) 

where I" is an operation of numerical integration over [O,T] defined in terms of 
T 

values at t E Tk (i.e., I"(/)--+ J J dt for "smooth" J). We then can consider xk de
o 

fined by the least squares problem: 

minimize Jk (x) over Dk. (7.28) 

The precompactness of U D" and subconvergence to D imply existence of a con

" vergent subsequence: xkUJ-+x ED. Clearly (for k=k (j)) 

} T 

Jk (xk) -+ 2 J I.Y (t)- Cu (t;x)!Zdt=: J* (x). (7.29) 
0 

By assumption one can find {.X" ED"} such that x"-+x* so J" (x")-+J* (x*)=O; 
by minimality O~Jk (x")~J" (:X")--+0 so J* (x) = O and x is a solution. By (7.25c), 
this means x=x* and x"Ul-+x*. As earlier, we conclude that x"-+x*. 

If (7.25b) were omitted and (7.25c) were weakened to require existence. of a uni
que minimum norm solution x,:,, then approaches along the lines of Section 3 and 
4 would still provide convergent approximation methods. One would then have 
to assume that X 0 is, e.g. , uniformly convex and gives such smoothness conditions 
that the sequence of maps: X~----'>Cuk(·;x):Dk-+L2 ([0,T]-+Rm')=:Y defined by 
the discretizations employed should be graph subconvergent to the map: 
x~----'>Cu ( ·;x): D-+Y (for the given C, ((J, u0 , w). For example, one might replace 
(7.27) by 

(7.27') 

where A"-+= at a suitable rate (depending on the rates of convergence of y" to y, 
of u" to u, uniformly over bounded subsets of D, and I" to the integral). Alterna
tively, one might replace (7.28) by the generalized interpolation procedure: 

minimize llxllx over {x E D": IYk (t) - Cudt; x)l ~ek for t ET"} (7.28') 

with ek--+0 at a suitable rate. • 
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Zbiezne nietody aproksymacji zagadnien niepoprawnie 
postawionych 

Praca stanowi obszerne studium aproksymacyjnych metod rozwil'!zywania rozmaitych zagad· 
nien niepoprawnie postawionych .. Wyniki dotyczl'!ce zbiei:nosci proponowanych meted S1! przed
stawione l1tcznie z dowodami. 

Cz~;sc I jest poswi~cona zagadnieniom abstrakcyjnym. Zawiera ona zasadnicze rezultaty do
tyczl!ce zbiei:nosci proponowanych algorytm6w aproksymacji, a taki:e dyskusj~; przydatno5ci roz~ 
maitych technik (funkcje kaFy i minimali2'.acja, regularyzacja). W szczeg6lnosci omawiane Sl! al
gorytmy rozwi11zywania problem6w niepoprawnie postawionych w sytuacji jedynie przyblii:onej 
znajomosci danych b~;dl'!cych wynikami pomiar6w, wykorzystuj11ce tzw. uog6lnion1! interpolacj~;. 

Cz~sc II jest poswi~;cona rozmaitym za~t.osowaniom. OII).awia si~ algorytmy aproksymacji 
r6wnan zawierajl!cych operatory Niemyckiego. Przedstawione s~ metody rozwil'!zywania zagad
nien odwrotnych dla r6wnan r6i:niczkowych CZ1!Stkowych typu paraboliczneg~ (odtwarzanie syg~ 
nalu wejsciowego) oraz og6lniejszych zagadnieil i dentyfikacji uklad6w o parametra,ch rozloi:onych. 
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Cxo)J.su~ecH MeTO)J.LI annpoKCHMa~HH ue~~:oppeKTHbiX 3a)J.a'l 

B pa6oTe rrpe;~~naraiOTClf arrnpoKCHMai.(HOHHbre anropHTMbi pemeRHlf pa3HH'ffibiX HeKoppeKT

HbiX 3a;Qa'!. M3yqaeTCli CXO)J,HMOCTb rrpep;cTaBJieHHbiX anropHTMOB. 

B lJaCni I HCCJie.DYeTClf a6cTpaKTHalf <i>opMyliHpOBKa 3ap;alJ. BBOMTClf OCHOBHbie anropHTMbi, 

,IJ;OKa3biBaeTClf HX CXO)J,HMOCTb H paCCMaTpHBaeTCH J<i><i>eKTHBHOCTb pa3JIH'ffibiX IIO,!l;XO)J;OB (<i>YHK-

1.\Hll mTpa<l>a n MHHHMH3ai.(HH, peryl1lipH3ai.\Hlf). AHaJIH3HpyiOTClf anropHTHMbi pemeHHll a:eiCop

peiCTHbiX: 3a,IJ;a'l, CO 3HaH:HeM p;aHHbiX (pe3yllbTaTOB H3MepeHJlli) liHillb B ,!ll!CKpeTHbiX TO'!KaX, Hc

IIOJib3YIOII.\He o6o6meHHyiO HHTepiiOllliJ.(HIO. 

B '!aCTH II o6cyJKp;aiOTCli HeKOTOpbre rrpHKJia;QI{bre Bonpocbr. PaccMaTpHBaeTcll annpoKCH

Mai.(Hll ypaBHemlli, co;~~ep:lKali.(HX onepaTOpbr HeMbri.(Koro. Ilpep;cTaBneHbi MeTO,IJ;bi pemeH:HJI 

o6paTIIbiX: 3a.IJ;a'l ;Qllli napa6oJIH'leCKHX ypaBHeH:HH: H 6onee o6IJ.(HX rrpo6neM H)J;eHTmpHKai.(HH 

cacTeM c pacrrpep;eJiei(I{biMH rrapaMeTpaMH. 




