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The methods of clustering are classified according to explicit or implicit criteria of grouping. 
These criteria are derived from a number of basic, intuitively obvious assumptions. In classifying 
the methods the local or global · nature of criteria and the facility of algorithmisation are consi
dered. A new form of global criterion is proposed which makes it possible to solve the clustering 
problem explicitly both for the optimal number of groups and for their composition. The crite
rion possesses also the essential local properties. Appropriate simple algorithm is outlined. 

1. Introduction 

Mathematics is a tautological system. Hence, it is often conjectured that when 
taking intuitively obvious elementary assumptions and rules of reasoning one 
should reach equally intuitively obvious results. Experience shows that this is not 
true. The main reason is the incapacity of predicting the fiu~off consequences of 
initial assumptions, especially when there are a number of qualitatively similar 
assumptions, among which a choice should be made. This is especially true when 
the results have highly complex and multidimensional nature. 

For simple cases, however, it is possible to formulate assessments concerning 
the outlook of the results. When these assessments can take on a more precise 
and general form, they can be utilised throught the solution of the problem, to
gether with the initial elementary assumptions. Such is, for instance, the correc
tional sense of some constraints in the economic problems formulated as mathe
matical programming tasks. 

The same applies to clustering problems, met in data analysis, taxonomy, clas
sification, pattern recognition, etc. There is a choice of elementary assumptions 
concerning either local distance or similitude of elements in a population, or more 
global in-group homogeneity vs. inter-group diversity criteria. The clustering me
thods in constructing their algorithms base upon these criteria. Over bigger and 
complex populations it is difficult to assess the adequacy of methods applied, since 
the results are then by no means intuitively analysable. When analysing simple 
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examples one can easily see the inherent biasses of the algorithms. In order to get 
rid of these biasses or to make them controllable it is necessary to impose an ex
plicit global criterion. Furthermore, it can be hoped that such a criterion could 
also help in solving the problem of the optimal number of groups, in addition to 
the usually solved problem of group composition. 

2. The problem 

Having n elements indexed i, i E 1={1, .. . , n}, for which mutual "distances" 
("dissimilitudes") du=di;~O, and/or mutual "proximities" ("similarities") wu= 
=wi1 ~0 are defined, to find partition P of the set I into subsets Am, P={Al> ... 

p 

... ,An., ... , Av}, i.e. U A 111 =l, and Am' n An;;, =f/J, m' #m", such that the elements 
m=l 

i belonging to each one of the groups A 111 are more "similar" than those belonging 
to various groups. . 

The problem thus outlined leaves a wide margln for interpretation. Ind~ed, 
particular methods solving this problem operate o,n additional assumptions con
cerning quantitative interpretation of notions of ''distance" (''dissimilitude") and 
"proximity" ("similarity"). 

To illustrate the question of this interpretation assume the points i to be lo
cated in Rr, so that each point is characterized by r quantitative features. Thus, 
for each pair ij one can define a distance du, Euclidean or other, metric or not, 
provided that, as above, du=dii~O. There is, however, for any of these distance 
definitions a whole range of choices with regard to "proximities'~ wu. , . 

Certainly, when a distance du=di,=O then also the corresponding dissimila~ 
rity is equal to zero, and the proximity, or similarity, wu=w1 , reaches its maximum 
over all the pairs of ponts. Furthermore, 

and these two seem to be the only a priori acceptable features of "similarity" and 
"dissimilitude". 

It should also be noted that by starting from the matrices D and W, composed 
of du and w,i, as given, one abstracts from 'the physical sense of a problem, which 
may necessitate a particular distance/proximity measure and thereafter also a par
ticular clustering method. Thus, the considerations herein relate solely to 'these 
problems which, notwithstanding their physical meaning, can be represented via 
the general formulation shown. 

3. The elementary assumptions 

These assumptions do in fact constitute an interpretation of "similarity" or 
"likeness" mentioned in the problem formulation .. 
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A. The elements i, j are more similar than i, k iff dii<d;k· 
B. The elements belonging to groups Am, Am' are more similar than those be

longing to A"" Am'' iff d (m, m')< d (m, m"), where [5], 

c. 

a. d (m, m')= max du 
iEAm 
jEAm' 

b. d (m, m')= min dii 
iEAm 
jEA111 • 

1 
d (m, m')=~~-

Am Am' 
.Z: du, [4], 

iEAm 
jEAm' 

or any other distance-like function of i,j, i E Am, j E Am'• e.g. 

d. 

1 

. ~ .. 

where Xm= -=-- }; x1, x1={xn, ... , x1r} being the vector characterising point 
Am iEAm 

and Am - number of elements in Am. Medians or centroids can also be used , [5]. 
C. The elements i, j are similar iff d,i :( 8, where: 

a. 8 is arbitrarily chosen, [1, 6, 16], 
b. 8 is a function of d,i , i,jE I, e.g. ,· [1], 

2 . 
s= I (l-1) . .J: du=d 

l, J E[. 
i<j 

D. The elements i, j are more similar than i, k iff O;j<O;kJ where for V (i,j, k), 
i,j, k E I, o11:( sup (o1k, a1k), and Jii can be obtained .from diJ through a simple 
algorithm given in [4] or in [7]. 

E. The elements belonging to the same groups Am are similar, while those be
longing to various groups are dissimilar, [4), iff 

F. The elements belonging to a group Am are similar, while those belonging 
and not belonging to it are dissimilar, [9, 10], iff 

W ,(A'")= .2 w (d11) > .2 w (diJ)=w (Am) 
i EAm i E Am 
j E Am if/= Am 

where w (du) is a function of "similarity" or "linkage" decreasing in R~. 

4. Construction of a procedure 

The initial assumptions formulated here are for the most part intuitively accep
table, if not obvious- with exception perthaps of assumption D, which refers to 
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the notion of ultrametric [4]. Having these assumptions, being in fact local simila
rity/dissimilarity criteria, one can proceed to construction of groupings Am E P. 

Qualification of locality refers to the fact , that the criteria cited base upon 
"likeness" . or "dissimilitude" between individual elements i, j or groups A,., Am'. 
No criterion cited before bases upon functions of "likeness" or "dissimilitudes" 
defined for greater aggregates. 

The groupings can be constructed directly on the basis of assumptions A.B. 
The method is very simple and, again, intuitively obvious. At each step two ele
ments or groupings are merged for which appropriate d is minimal. Or those are 
separated for which appropriated is maximal- see [2, 3] for some such algorithms . 
This way a hierarchy H is obtained. 

A hierarchy H is a subset of the power set 21, such that 

1° /EH, 

2° ViE/, {i} E /l, i=At , 

3° VA~,A~,EHifA~nA~,#0 then either A~cA~, , for p:r:;.p', or 
A~, eA~, for p'?;p, where A;,, E PP and A~, E PP'. 

In case of the direct pair-wise application of A, B there 1s additionally 

4o \fpPP=pp-1+1 

where, therefore, PP is a partition of I containing A;,,, m= 1, ... , p. 

Obviously, it follows directly from the above definition that for each Afn EH 
there exists a partition P3 A;,, , PcH. Condition 4° stipulates a series {PP};=l of 
partitions, {PP};= I =H, P 1 ={l}, pn=l. 

Thus, for given I and D, for each of the local criteria B. a different hierarchy 
H (B) is obtained. The methods, related to assumptions B. are referred to as "com
plete linkage" (B.a), "single linkage" (B.b), "average linkage" (B.c) and Ward tech
nique (B.d). Their generalisation was proposed in [11] and broadened in [17] to 
include the Ward technique. Originally the Ward technique proceeded by joining 
these groups, for which the increase of 

S=}; (x;-XmY (x;-Xm) 
ieAP 

"' 
resulting from joining was minimal. By denoting the above value of "error sum 
of squares" as Sm, analogous for A~, as Sm'' the one for A:;, u A;,,, as Smm'' and the 
one from B.d. as Smfm' it can be shown that 

Hence, the original Ward approach is equivalent to sequential hierarchical grouping 
V;ith B.d. 

Still another hierarchy can be obtained for a given set of elements and "distan
ces" when using the ultrametric ()ii' as defined in assumption D. In fact, the or
dering of ()ii, when obtained already from d;J> yields directly a hierarchy. 
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The methods mentioned are numerically very simple, what constitutes their 
main merit. They do not provide, however, any measure for determining the "best" 
p among pEN [1, ... , n], for {PP}~. In setting up a hierarchy these methods utilise 
the wholly local criteria and therefore do not make it possible to compare their PP's 
for any p. Thus, in spite of the obvious biasses of some of these methods in terms 
of "propensities" to form e.g. bigger or smaller groups, the only intuitively tan
gible comparisons could be made for simple, unrealistically small examples. Furt
hermore, many of the sequential hierarchic grouping methods cannot be easily 
used as classifying devices, i.e. when after a {PP}~ had been found, to locate an 
n+l-st element of / 1=/u {n+l}, and so on. 

A. step away from locality, with preservation of intuitiveness, although at a loss 
of numerical efficiency, is introduced via methods based upon assumptions C. 
These methods may utilise, in addition to C.a, b, other particular assumptions 
·in order to operationally define appropriate algorithms. The most "conservative" 
assumption following literally C.a would be that a group Am can be considered 
as such iff 

(C') 

i.e. all points in an Am are similar and no point similar to them belongs to an other 
group. Groups formed that way can be called a-homogeneous. Application of 
the criterion of a-homogeneity has the advantage of clear intuitive meaning for 
the global solution, and it also yields such unique global solution, a partition P (e), 
composed of p (e) groups. There is, on the other hand, the additional important 
burden of computations. Moreover, the criterion is rational for points i E I in a me
tric space, while dil may not have anything to do with formal distances. The same 
can be said of absolute homogeneity, i.e. the criterion E. 

In practice both C.a with C' and E are rarely used for reasons mentioned above. 
Homogeneity, as defined above, introduces certain globality into construction of P 
since in order to obtain this unique global solution all du have to be examined 
at each step of the iterative procedure. The requirements of C' and E can again 
be relaxed if an ultrametric Ju is introduced to C' and E instead of dii. 

Still, intuitive simplicity and obviousness of assumptions C causes a number 
of applications based upon them to appear. To operationalise these assumptions 
in the effective algorithms additional assumptions are introduced. Thus, in the 
FARRELL and FARRELL-mod [1] methods it is attempted to locate the spheres 
Am of a given predefined radius, so that 

Vie[ 3Am3 i, 

cross-sections Am n Am,, m=!=m', are possibly "small" in terms of An Am' and 
the centres of Am approximate local gravity centres. 

Another simple and intuitive method thus derived is the "percolation method" 
[16], which defines for each i a set V (i, e), 

V(i, e)={jElldu~s} (C" .1) 
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and then a density coefficient v (i, e), e.g. 

v (i, e)= V (i, e) (C".2) 

The procedure there of chooses sequentially the maximal v (i, e) and formes the 
A111 E P out of the non-grouped i' s corresponding to these v (i, e). Again, special 
assumptions are necessary for classification of boundary points. 

Variable e is also utilised in the method proposed by Slater [14]. This method 
analyses du which are not necessarily symmetric. It postulates, however, that these 
values be doubly standardised, i.e. row and column sums be equalised. Thus de
fined distance matrix serves to develop the hierarchy by sequentially analysing links 
whose values are higher .than the e, decreasing from d~ax to zero. This way con
secutive grouping patterns appear, analogously to "single linkage" or "nearest 
neighour" procedure. Soundness of individual groups appearing in the hierarchy 
is checked via special additional techniques. 

The gravity method [1] starts from the assumption C.b, and groups the non
-grouped i's which fulfill it. Special classificatory assumptions for i's to be added 
to existing A~ s are based upon either variance or arithmetic average statistics. 

The local criterion F does not yield by itself a unique partition P, but rather 
a family of groups A~ which can be used to form a hierarchy of partitions PP. Ad
ditional criterion, i.e. that a group Am contains similar elements, [9, 10], iff 

Vam~Am, W (am)>w (Am) (F') 

is used to operationalise a method called minimally interconnected subnetworks 
technique. The criterion F' can hardly be referred to as intuitive. It yields, however, 
very good computational properties. A hierarchy Hw={PP}~ obtained via this 
method, is much "flatter" than the "full" hierarchies obtained from assumptions B, 
i.e. q<n. The method has, in fact, a "bias" towards "greater" groups (see Appen
dix 1). 

Condition similar to F' serves in [15] to define so called nodal regions-groups, 
i.e. such that have weaker links (smaller distances) to other regions than the ele
ments being the nodes of the groups. Because of specific formulation this problem 
is approached similarly as in [14]. 

5. Objective functions 

The method described heretofore were referred to as local and this feature was 
said to be partly offset by the intuitively obvious nature of most of the assumptions 
serving to set up the appropriate proceduJie. This qualification of locality should 
be again commented upon. Since it is a partition P (or a hierarchy H) that is being 
sought, the qualifications of locality or globality should in fact refer to a capacity 
ofsearch in the space of P's (or H's). From this point of view the methods men
tioned could not even be called local insofar as they do not offer any possibility 
of comparison and choice among various P's (H's). They just determine one P 
(or one H), and those which determine an H usually do not provide any possibility 
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of choosing a PP out of {PP}~ =H. Certainly, each of these latter methods can be 
complemented with measures of the- relative!- group stability, as it was done 
by Slater or Tremolieres. Thus, through the methodological back door some pos
sibility of comparison is introduced. 

Obviously, the possibility of comparison can only be realised through simul
taneous explicit accounting for all groupings entering a P. Hence, an overall ob
jective function or its proxy should be constructed. 

Another comment refers to the nature of the iterative numerical processes le
ading to establishment of solution. As we have seen on the example of assumptions 
B and C the essential change in the character of the solution (H or P) does not 
necessarily entail a change in: the nature of the iterative process (although it may). 
Thus, in assessing a method more attention should be paid to uniqueness and com
parativeness of final results rather than to the course of the procedure. 

A number of objective functions have been proposed for solving the grouping 
problem. Some of them are presented below. 

C. Partition PP is better · than partition PP* iff, [5, 8], 
p 1 p 1 

}; ;t }; dfj<}; l* }; dfj 
m=l m i,jEAm m=l m i , jEA! 

i< J i<j 

H. Partition pv is better than partition pv* iff, [5], 
p 2 p 2 

2: A (A -1) }; dfj<}; A* (A*-l) 
m= l m m i,jEAm m=l m m 

i< J 

I. Partition pv is better than partition pv* iff, [5], 

max ( max du) < max ( max du) 
m i, j EAm m i,jEA* 

m 

K. Partition pv is better than partition PP* iff 
p p 

}; d(m, m;)> }; d(m, m')* 
m, m'=l m,m'=l 

m<m' m< m' 

where d (m, m'), d (m, m')* are inter-group distances defined in any of the ways 
given in assumption B, for partitions PP and PP*, respectively. 

L. Partition pP is better than partition PP* iff, [12], 

where Jcf is a set of eligible centres (usually J=l), and 

}; xu= l \fi 
jEJ 

2: Xjj=p 

JE.f 

Xu~Xjj \fi,j 

Xu E {0, 1} \fi, j 
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which indicates a 0-1 programming problem. lt is being solved via subgradient 
method applied to the relaxed Lagrangian form of the initial problem. · 

M. Partition PP is better than partition p p* iff, [5], 

p p 1 
where S~= }; d 2 (m, m'), and s;=}; --=-- }; dfi 

m, m' = l m = 1 A m i, j EAm 
m< m' i< J 

N. Partition PP is better than partition PP* iff, [4], 

w (U, PP)< w (U*' pp*) 

where LP is a set {1, ... , !P}cf of the "representants" of groups A1 , ... , Am, such 
that lmcAm (in particular, lm=1), and the function W can be defined by 

p 

W (L, P)= }; }; }; dii 
m = 1 i El m j E Am 

All the objective functions presented provide a comparison of "goodness'~ 
of partitions PP, i.e. partitions of I into a given number of groups p. This is caused 
by the fact that the functions G through N display similar characteristics as pro
cedures built upon assumptions B through F, i.e. they refer to only one side of 
the initial problem, either internal homogeneity of groups or their external dissi
militude. The same applies to M since the quotient proposed amplifies the one
-sided effect rather than balances the two effects. Thus, the values of these objec
tive functions for optimal PP are monotone with regard to p. 

A point which gains in importance with introduction of the objective functions 
is numerical efficiency of algorithms. The merit of most of the procedures based 
upon the local assumptions A through F lied in their simplicity. The same can 
hardly be said on procedures for optimising with regard to G through N. Some 
of these procedures refer to dynamic programming philosophy [8], some other 
utilise special iterative algorithms based upon properties connecting local (with 
respect to Am) and global (with respect to P) optima [4]. The algorithms proposed 
by Diday [4] has essential numerical advantages, especially from the point of view 
of memory requirements. lt necessitates, however, a good initial guess and does 
not safeguard against cycling phenomena. Algorithm similar in its principle to 
the one given in [4] is presented in [18] for the objective function similar to K with 
(x;- X mY (x; - X m) instead of d zi' Dynamic programming, robust in reaching so
lutions is more cumbersome in calculations. 

Thus, in order to solve the grouping problem in its absolute form, i.e. together 
with p, different objective functions have to be developed. This, however, can make 
the computational problems even more difficult. 

Because of that, it seyms, there have been very little efforts aiming at construc
tion of such global objective functions and the corresponding algorithms. An 
example of such function is cited verbally in [6] after Holzinger and Tryon. 
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0. Partition P is better than partition P* iff 

where 

1 11 

Do= p ~ ~ ~ du 

2 Am (n-Am) m= 1 tEAm J E Am' 
m.' >m m=l 

is the inter-group average distance among pairs ij, and 

D1= 11 

2 t ~ du 
2 Am(Am-1) m=l l,f~fm 

m=l 

is the intra-group average distance among pairs ij. 
This global function has been abandoned just because of the computational 

difficulties, resulting from its form, which hardly lends itself to algorithmic sim
plifications. Hence, Fortier and Solomon [6] have tried another approach, consis
ting in construction of the opjective function which in a way utilises the assumpsion 
C. Thus 

P. Partition P is better than partition P* iff 

C (P)>C (P*) 

where C(P)= 2 g1J> and gu= (dii - e) Yu· with Yii= +1 when i andj are in the 
i,jEI 
I<J 

same Am and Yu= - 1 otherwise. 
It can easily be shown that the function C has the basic property that ensures 

existence of a non-trivial maximum over its maximal values for various p, i.e. popt i= 1 
and popt i= n, where 

P0
P

1= {P0111 IC (Pop1)=max (cmax (p)) = max (max C (P11))} 

p p pP 

Fortier and Solomon have not proposed any efficient algorithm, analysed 
a relatively small example (n = 19) and have in fact restricted their considerations 
to the case e=0.5. Further work reported in the paper did not regard elaboration 
of a more efficient algorithm for optimising the function proposed, but rather its 
application for a very specific purpose, related to factor analysis. 

Thus, the present author proposes another form of the global objective function, 
first introduced in [13]. 

Q. Partition P is better than partition P* iff 

Q(P)>Q (P*) 
where 

p 11 

Q(P)= (l-p) 2 ~ wii+P ~ 2 d~1 
m= l i,}EAm m=l IEAm 

1<1 Jf/=Am 

6 
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w11 is a function w (d;1), R~ u {0}--+R~ u {0}, such that 

1° diJ<d;k~w (dii)>w (d;k) 

2° d*=w=l, with bars denoting averages, 
d;1, i.e. elements of the matrix [)*, are obtained from the diJ through 

d·1 n (n-1) d.· d* =-'-= ___ ,J __ 

ij d.. 2 " d-j 

and p E [0, 1]. 

lJ L; 1 
i,jEI 
i<j 

The intuitive sense of this function is obvious- it requires maximisation of 
intra-group "similarities" together with maximisation of inter-group "dissimi
larities". 

We can, for instance, set 

d* max + d* m in_ d;J 

W (d;j) = d* max +d* min -1 

where d* max and d* mia denote maximum and minimum. distances in D*, respectively. 

For the non-trivial case, i.e. when only dmax>J>dmin, the objective function 
P (Q) reaches maximum for some popt E (1, n), provided a certain simple condition 

1 
on p holds. When p=l/2 and w (dii) is defined as above, Q (l)=Q ({!}) =4 n (n-1). 

6. The algorithm 

First the triangular matrices D* and W are formed according to the averaging 
formula given before. Working of the algorithm which optimises partitions P for 
subsequent values of p can be summarised as follows 

1. k=O; p0 = 1; popt (1)=/ 

2. k=k+l 

max p (A,, Am,) 
Am, Am' E popt (pk- 1) 

4. if I} (pk-1, pk0)=2 Vi then go to 6. 

5. p (Am, Am, lAm, Am, eV (pk - 1, pk0))=p (Li (pk-1, pk0)) Vi; go to 3 
6. pk=pkO, popt (pk)=(Popt (pk-1) + 

_{Am EL (pk-1, pkO) 1\Popt (pk-1)}) U L (pk-1, pkO) 

7. if popt (p'') # {I} then go to 2 

8. end. 

In the above summary presentation we have 

W(A,, Am,) 
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with 

and 

iEAm 
jEAm' 

iEAm 
jEAm' 

L (p, jf)={Am ePopt (p)l3 Am' ePopt (p): Am pAm'} 

where Am pA,,<=;>p (A,, Am' )=p, and 

L (p, p)=i} (p, p) u L 2 (p, p) u £3 (p, j5) u ... 

V (p, p)I\V (p, if)=f/J, iofj 

Am, Am" ELi (p, PJ<=;>-3 {Aml' Am2' ... , Aml(m'' m")}c 

83 

cV (p, p) U {f/J}: Am' PAm11\Amz (m'' m") P Am" 

3Am' E V (p, p), Amt 1 E £i (p, p), i of j, Am' pAm" 

and therefore 

l; W (A,, A,.,) 
Am, Am' E L 1 (p, p) 

m< m' P (V (p, p)) = ---:=:::-----c:-":.___:.:;:_--:-_--;=:-----:---:-
.l; W (Am, Am')+ }; D (Am, Am') 

Arm Am' E L 1 (P~ P) Am, Am' E Li (p, 'P> 
m<m' m<m' 

Thus, the algoritlun displayed shows certain apparent similarity with the one 
of Slater in that it analyses patterns of groupings for various "levels of perception" 
or "linkage" (e i!l case of Slater's, p in the present method's case). There is, howe
ver, an essential difference between the two approaches since values of e refer to 
values of direct local inter-element distances dii or linkages wii while consecutive 
values of p are determined on the basis of p, which take into account the overall 
situation in Qopt (Popt) over a segment in p. 

7. Conclusions 

The method presented in this paper allows finding of partitions of a set of ele
ments into mutually disjoint subsets through explicit optimisation of a global ob
jective function, so that not only the composition of subsets, but also their number 
is being optimised. 

This global objective function displays intuitively acceptable local properties 
as well (see Appendix 2). To comment upon the possibility of finding the optimal 
number of clusters, a sentence from [5], p. 30 can be cited: "This monograph will 
not be concerned with the very difficult problem of determining the number of 
clusters". 

Furthermore, the algoritlun resulting thereof is relatively simple and its com
plexity is comparable to the one of methods basing upon iterative merging of the 
two closest neighbours. 
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APPENDIX 1. BIASSES OF A METHOD 

Consider minimally interconnected subnetworks technique, working according 
to conditions F and F', and described in [9, 10]. 

Al.l. Figure Al.l presents an example of a graph {/, D} which is indivisible 
in terms ofF and F'. Appropriate (partial) conditions of indivisibility for this tech
nique are given in [13]. Obviously, the result illustrated in Fig. Al is highly coun
terintuitive. 



2 2 

for instance, (1) (2) 

4 3 4 3 
(4) 

Fig. Al.l. A case of structure indivisible with the minimally interconnected subnetworks 
techniques. Numbers in brackets denote wil 

Fig. A1.2. Example of probability density function 
for values of w fl 

A. 
f(w ) 
. 1 1------~ 

0 2 w 

f (w) 

b w 

Fig. Al.3. Example of probability density function 
for values of Wt1 

t(w) 

1/2 

0 2 3 w 

Fig. A1.4. Example of probability density function for values of w11 
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Al.2. Figures Al.2-4 show three forms of probability density functions over 
values of wiJ for which probabilities were calculated for any of the pairs i, j, i, j e I 
to fulfill the condition F', i.e. to constitute subsets Am={i,j} entering PE Hw. 

These probabilities are, in case of n= 4 (see [13]): 
for / 1 (w): P 1 =0.3, 
for / 2 (w):P2 =0.095, 
for / 3 (w): P 3 = 0.0094. 

Since for n=3 the probability equals 1 for any form of the density function, 
the above values indicate clearly the bias of the technique towards "greater" sets 
to enter P. 

'J7he above comments do not apply solely to the technique considered. They 
could be extended to any of the "local" methods, having implicit biasses built into 
the appropriate procedures. 

APPENDIX 2. SOME PROPERTIES OF Q (P) 

Suppose there is popt (p*) known for given JJ, i.e. also Qopt (p*). For each set 
Lcpopt (p*) of subsets A, E popt (p*) a function can be defined 

Am, Am' EL 
m< m' 

Am, Am' EL 
m<m' 

linear in p. Assuming that p is being decreased from p* we are interested in con
dition L1QL (p)~O . It is equivalent to 

}; W (Am, Am') 
Am, Am' EL 

m< m' 
p~----==-----2: W (Am, Am') + }; JJ (Am, A,,) 

Am, Am' E L Am, Am' E L 
m<m' m<m' 

Obviously, the value of j5 reaches its maximum for L consisting of pairs Am, 
Am'• for which 

j5 ({Am, Am'}, p*)= max j5 (L, p*) 
£c:popt (p•) 

For maximal value of j5 there occurs a merger of Am, Am' so that popt (j5max) 
differs from popt (p*) by this merger. The case of multiple pairs corresponding 
to Pmax is dealt with by introduction of the set L (p*, Pmax), as defined in the text. 

Intuicja i formalizacja w zagadnieniach grupowania: lokalne 
i globalne kryteria grupowania 

Dekenuje sit< klasyfikacji meted grupewania wedlug tege, czy kryterium grupewania jest 
jawne, czy niejawne. Kryteria te etrzymuje sit< z pewnych pedstawewych; oczywistych intuicyjnie 
zalei:eii. Przy klasyfikacji meted rezpatruje sit< lekalnq lub glebalnq naturt< kryteri6w i moi:Iiwesc 
algerytmizacji. 
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Zaproponowano pewnll, nowll, postac kryterium globalnego umozliwi~ll,cego jawne rozwil!
zanie zagadnienia grupowania zar6wno dla optymalnej liczby grup, jak dla ich skladu . .Kryterium 
charakteryzuje si~ tak:i:e istotnymi wlasciwosciami lokalnymi. Podano prosty przyklad. 

liHTy~HH 11 l}lopMaJiu3a~n o oonpocax rpynnupooaumr: 
JIOKaJibHLie n r Jio6aJibHbie KpHTepiiD rpy~~~~~~pooanun 

llpOBOp;il'l'CH KJiaCCH«i>mca~Hl{ MCTO,[(OB rpyiillllpOBaHHH COrJiacao TOMY J{BJIHCTCJI JIH KpHTCpHii 

rpYIJl1HpOBaHIHI JIBHbiM HJIH /KC HCJIBHbiM. 3TH KpHTepHH I!OJiy'!aiOTCJI H3 HCKOTOpb!X OC!lOBHbiX, 

HHTJHTHBilO O'!CBH,[(ilb!X IIpe,[(IIOCbiJIOK. llpH KJiaCCH«i>HKa~HH MCTO,!J;OB paCCMaTpHBaCTCH JIOKaJib

HaJI HJIH fJI06aJib!laH I!pHpop;a KpHTCpHCB H B03MO~OCTH aJifOpHTMH3a~HH. 

flpep;JiaraeTCJI HCKOTOpbill: ilOBbill BH,[( fJI06aJibHOfO .KpHTCpHli, II03BQJIJ{IOJ.I(Cf0 J!BHO pemaTb 

3a,[(a'IH rp)'l:!ImpOBallHll ICaK ,[(JIH OHTHMaJibilOfO '!HCJia rpynn, TaK li ,ll;JIJI 1lX COCTaBa. KpHTCpHii 

xapaiCTCpH3YCTCSI TaiCIKC Cyl.I(CCTBCHHbiMH JIOKaJibHbiMH CBOllCTBaMH. llpHBC,[(CI! I!pOCTOll I!pHMep. 




