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The paper concerns the method of minimal sets (minimally interconnected subnetworks) ior
partitioning a given graph of similarity. The case of large scale graphs is considered. Some tools
for improving the efficiency of the algorithm given in [4] are proposed. First, some new proper-
ties of minimal sets are formulated and proved. Then, a notion of concentrate, being some subset
of vertices with appropriate edge weights, is introduced. Some properties of concentrates are de-
rived. A numerical comparisen of the algorithm without and with the mechanisms developed is
shown.

1. Introduction

An important part of many systems analytic approaches, both in theory and
practice, is the analysis of relations, connections, similarities, etc. between elements
of systems under consideration. A convenient tool for representing such dependences
is a weighted graph, whose vertices represent the system’s elements and edges —
the dependences between these elements. Then, many problems of analysis and
synthesis may be formulated as some partitioning of that graph, called in the se-
quel the graph of similarity.

Among various methods of graph partitioning, a revelant role is played by the
methods of minimally interconnected subnetworks [called also minimally inter-
connected groups, minimally interconnected (sub) sets, or — briefly — minimal
groups or minimal (sub) sets]. Further on, we will use the term minimal set, for
brevity.

Roughly speaking, a minimal set of a weighted graph is a collection of vertices,
such that the sum of weights between them is greater than the sum of weights be-
tween them and other vertices. Thus, the vertices in a minimal set are connected
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stronger with themselves than with the “outer world”. The notion of minimal set
and basic properties were formulated first by Luccio and Sami [6]. Then, they
were considerably developed by Kacprzyk and Stariczak [2, 4], Nieminen [7], Nowicki
and Stanczak [8] and Stanczak [10]. The method was successfully applied for,
e.g. struciuring a set of enterprises [1], designing a computer network [3, 10], struc-
turing a data base [9], and designing a telephone netweork [3].

In general, the method of minimal sets performs the graph decomposition in
a quite efficient way. However, as all the combinaterial procedures, it looses its
performance as the size of the problems becomes large. Moreover, its efficiency
for large scale problems depends to a considerable extent on how officiently we
may determine the first minimal set. This is particularly true for practical problems
in which there are many edges with more or less equal weights, large differences
in weights, etc.

The above difficulties have motivated this work. Its general goal is to propose
some approximate approach incorporating an interaction with the designer and
to provide the efficient algorithm proposed in [4, 8] with some mechanisms for
alleviating the mentioned specifics of large practical problems.

We begin with a brief recalling of some factors previously given which are re-
levant for our considerations. Then, we formulate and prove some new properties.
In the paper’s main part, the notion of condensate is introduced. It is, roughly
speaking, a product of restructuring the given weighted graph, mainly by merging
appropriate vertices and redefining appropriate weights. Important properties of
condensates are formulated and proved.

It should be stressed that the determination of condensates is a somewhat sub-
jective matter which is closely related to the specific problem under consideration.
Thus, the “principles”, or -better to say- “rules of thumb” may be quite different
for, e.g. computer networks, telephone networks, etc. The key factor is here the
designer’s experience and knowledge of problem’s specific features. The approach
proposed should, therefore, be meant as the one which incorporates both the “scien-
ce” and the “art”. At the expense of loosing some “formalization” or “strict opti-
mality”, we gain, however, a considerable efficiency increase, which — for large
practical problems- may even be by two orders of magnitude.

As an example, the derivation of a condensate for some given weighted graph
is shown. The efficiency of the tool proposed is discussed.

2. Preliminaries

We consider a given complete undirected graph G=(X, E) without leeps and
multiple edges, where X is its vertex set, and E={{x, y}: x, y € X, x#y} is its edge
set, i.e. we assume an edge to be an unordered pair of vertices. We assign a non-
negative weight w (x, ) to each edge {x, y}. Then we obtain an ordered pair (G, w) *
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-{@G, w) is said to be the graph of similarity. Let 4 and B be nonempty and dis-
joint subsets of X. We denote

fA4,B= Y Yw(xy) (1)

x€d yeB
We assume that, by definition, f (4, 0)=0 for each 4A<X.
In the later proofs we will often use the following preperties of f:

f(4,B)=0,
f(4, B)=f(B, 4),
if 4, B, C, D= X are pairwise disjoint, then
f(4v B, Cu D)=f(4, C)+f(4, D) +f(B, C)+f(B, D),
and, in particular,

f(4, C)=f(4u B, C)—f (5, C)

DerINITION. Let S be a subset of X. If the following inequality

F (R, X—R)>f(S, X-5) @

holds for each nonempty proper subset R of S, then S is said to be a minimally
interconnected set or, simply, a minimal set.

The following properties of minimal sets play an important role in the sequel.

LEMMA 1 [4). The necessary and sufficient condition for S to be a minimal set is

SR, S=R)>f(R, X-15) (3
Sfor every nonempty proper subset R of S.

CorOLLARY 1 [2]. If S is a minimal set, then the inequality
SR, X-R)>0 “

is satisfied for each nonempty proper subset R of S.
From Lemma 1 and using the identical proof technique as in the above corol-

lary we obtain the next property.
COROLLARY 2. Let R, S be as in Corollary 1. Then the relation

f(R,S—R)>0 (5
must hold.

TueoREM 1 [4]. Let I and J be nonempty sets of indices, {Z;:iel} —a family
of pairwise disjoint minimal sets. Let J<I, |J|=2. We denote

Sr=UZ, ©)

ieJ
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If S, is not a minimal set for each J, J# I, then Sy is minimal, if and only if the fol-
lowing condition is satisfied

S8, X—8S)<min{f(Z, X—-2Z):iel} @)

The following corollary is an immediate consequence of Theorem 1.

COROLLARY 3. The set S, S<X, |S|>1, is a minimal set, if and only if S is the smal-
lest set, such that for each x € S the inequality

(8, X=8)<f({x}, X—{x}) ®)
holds.

COROLLARY 4 [2]. Let S<X, |S|=3. If the following equality
w (x, y)=wy=const ©)

holds for each pair x,y of distinct elements from S, then every nonempty proper
subset R of S, |R|>1, is not a minimal set.

For the proofs of the above properties see [2, 4].

3. On some specific sets

The general properties of sets given in [2, 4, 7] are quite sufficient for the con-
struction of an efficient algorithm for determining minimal sets. The computational
procedure can be, however, not efficient enough for high dimensional problems.
The following new properties may here be important.

ProrosiTION 1. Let S<JX, |S|=2. The necessary and sufficient condition for §
to be a minimal set is that for each xe S:

(IS|=1) wo>f(S—{x}, X-5) (10)
Proof. According to (9) we obtain
f({x}, S—{xh=(S|-1) wo=f ({x}, X—{x))-f({x}, X-5) (11)
Furthermore, we have
F(S—{x}, X=8)=1(S, X—8)—f({x}. X-5) (12)

From (11) and (12) it is evident, that the inequality (10) is equivalent to the condi-
tion (8). Moreover, each nonempty proper subset R of S is not minimal in view
of Corollary 4. Hence, S is the smallest set, which completes the proof due to Corol-
lary 3. Q.E.D.

As an immediate consequence of the above proposition we obtain the following
property given in [2].
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COROLLARY 5 [2]. Let S<X, [S|>2 and (9) hold). We also assume that for every
pair x,y€X, {x,y}&S, of distinct vertices we have w(x,y)#wo, and wy=
=max {w (x, y): x,y€ X, x#y}. Then, the necessary and sufficient condition for
S to be a minimal set is to satisfy the inequality (10) for each x€ S.

It is evident that Corollary 5 concerns a particular case of the situation dis-
cussed in Proposition 1.

ProrosITION 2. We consider a nonempty set S<X, S#X. Let
w (x, »)Z(X]=IS) w(x, 2) (13)

hold for each x, y € § and for every z belonging to' X—S. We assume that the ver-
tices of § can be arranged in a path in G such that each edge of this path has a po-
sitive weight. If there exists a pair s, ¢ s, f € S, such that for each y € § there exists
a pair ¢, r € X— S, where

w (s, ) >(|X[—[S|w(s, q) (14)
w(t, »)>(X|=[SHw(t,r) (15)
respectively, then Sisa minimal set.

Proof. Due to the existence of path described before, for each nonempty proper
subset R of S the condition (5) holds. It means that § can be a minimal set. It is
easy to calculate, that

fRS=-R-fRX-5)=3[ 3 wxn- Y w2z Yuw @16

xeR yeS—R EX-5 XER
where
u@= D' wix»)-wxy ()
yeS—R

and y, € A (x). By A (x) we define the following set

A (x)={y: w(x,y)=min {w(x, y): y € S—{x}}} (18)

It is obvious that # (x)=0 for each x€ S. If (§S—R)N 4 (x)=0 for some x& R or
|S|—|R|>1, then u (x)>0 for this x, and then the condition (3) holds due to (16).

Let us now assume that R=S—{p}, p€ S, and for each x € R we have 4 (x)n
N {p}={p}. Let ps#s. Through (16), (17), (18) and the above assumptions one
can obtain

f R, S=R)~f R, X~8)=f(S—{p}. {P)~/S~{p} X-8)>
> Y Ep-wEnl+wE)- D wis) (19

x E€S—{p, 5} ZEX-5§

With regard to (13) and (14) we can write

w (s, p)
|X] =S|

wisp)— D wis=

ZEX—-§

—w(s,9)>0 (20)
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Taking into account (20), the relation (3) results from (19). In a similar way using
(15) instead of (14), we proceed in the case R=S—{s}. Hence, Lemma 1 implies
that § is a minimal set. Q.E.D. e

ProposiTION 3. We consider a nonempty proper subset S of X. Let
w(x, )z w(x, 2) 21
hold for each x, ye §, ze X—S. We assume that R is a nonempty proper subset
of § and PcX—S8, P#0. If the condition
|S|=|R|+|P] (22)
holds, then H=Ru P is not a minimal set.
Proof. It is easy to notice that
f(H, X—H)=f (R, X—(SU P)) +f (R, S=R)+f (P, X-P)—f(R,P)  (23)

Then, we have

fR,S=R)—f(R,P)= D' [f({x}, S—R)—f ({x}, P)]=

= Z[ 2 w(x, y)— Zw(x,z)]

XER yeS—R zZeP
Due to (21) the right-hand side of the above equality has a lower bound given
by the expression (|S] —]R|—;PI)ZW (x, ), where y, e 4 (x) and A4 (x) is given

XER

by (18). Thus, we obtain
f(R, S—R)—f (R, P)=(S|=|RI=|P)) D) w(x, ) (24)

XER

Due to (24) and (22) we obtain the following inequality
f(R, S—R)—f(R,P)=0 (25)

In view of (23) and (25) we obtain that f(H, X— H)=f (P, X—P), because f (R, X +
—(Su P))=0. It ensures, by definition, that H is not a minimal set. Q.E.D.

As a natural consequence of Proposition 3 we notice the following property
stated and proved in [2].

COROLLARY 6 [2]. Let S be as described in Corollary 5. If R, P are nonempty pro-
per subsets of S and X— 8, respectively, and the relation (22) is satisfied, then H=
=Ry P is not a minimal set.

The properties formulated and proved in this section concern some specific
sets. In them, every two vertices are connected with edges weighted by the same
number or weighted by the number with a relatively great value. From the theo-
retical point of view, it is a rare case. This is not, however, true from the practical
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point of view [9, 10]. In fact, in applications there often occur situations when
we have a great number of approximately equal weights or some group of entities
is connected with edges weighted by relatively great numbers. In the former case
we have to keep in mind that the parameters mentioned are usually approximated
or even estimated. Hence, they can be assumed to be of equal value. With regard
to the above remarks, the properties of sets given in this section can be especially
useful for the initial estimation of results and, therefore, for the eventual renum-
bering of vertices in order to reduce the computation time of the algorithm while
determining minimal sets.

4. Condensates and their properties

In many real life situations we have to do with large scale problems. In this
case, the cardinality of X is a large number and much computation is required
for enumerating minimal sets. The natural way in this case is to merge some ver-
tices into one vertex and then to obtain a problem with a smaller dimension. This
concept leads to the idea of condensates.

We consider a graph of similarity {G, w), G=(X, E). Let W be a nonempty
set of indices and {S;:ie W} — an arbitrary family of pairwise disjoint, nonempty
subsets of X. We also assume that |§;|>1 for each i e W. We denote

o= S, (26)

ieWw
and Y=X—Q. We construct a complete undirected graph G*=(YuW, Ey_ )
without loops and multiple edges, where Ey p={{x,y}:x,ye YUW, x#y}.
We also denote YUW by X* and Ey_, by E*, for simplicity. Then, we define

w(x, ), if xyeY,
2 Z w(@j), if xyeW
LESy JESy
* 7
w* (x, y)= Z w (i, ¥), if xeW,yeY, 27
iESy
%‘w(x,j), if yeW,xeY

It is easy to show that {G*, w*) is also a graph of similarity. Moreover, we assume
that /* has the same meaning as f, but with respect to {G*, w*) instead of {G, w).
The above described (G*, w*) is called a condensate of (G, w).

Hence, we see that the determination of condensates is in fact an arbitrary sub-
jective matter. The best solution would be first to determine some minimal sets,
then, to assume them as the condensates. This would, however, be often impos-
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sible and, moreover, inefficient. Hence, the best way would be to apply the resuits
of the previous section to determine the merging of which vertices in condensates
is expedient. Then, these condensates are handled.

Now, we have the following basic properties.

CorOLLARY 7. The set S, S<Y is a minimal set in {G, w), if and only if it is a mini-
mal set in {G*, w¥).

Proof. Let R be a nonempty proper subset of §. Then we can state that
SR, X—R)=f*(R, X*-R), (28)

and
f(S, X=8)=f*(S,X*-95) (29)

According to (28) and (29) we see that the relation f* (R, X*—R)>f* (S, X*—5)
is equivalent to the formula (2). Q.E.D.

THEOREM 2. Let a set Z be given, Z#0, Z<X. We assume that Z can be represen-
ted in the form

zZ=sul J S, (30)

iel
where I=W and S< Y. If Z is a minimal set in {G, w), then Su I is a minimal set
in {G*, w*).
Proof. Let us assume, that Z is a minimal set in {G, w). If /=0, then the theorem

follows from Corollary 7. Now, we assume that /#0. For simplicity of later no-
tations we introduce the symbol

u=UJs., (1)

ieK

where K<I. We have

fWU,X~V)= S 1f(S. X-0)+f (5. 0~ U)]=

=f* (K, V)+f* (K, W-K)=f* (K, X*-K) (32

In a similar way we derive

f(Z X-Z)=f*(SuLX*-(Sul), (33)
and for each U, 0£U<Z, U#Z, we have

and for each Ru U, §#Ru U<Z, Ru U#£Z, R<S, we obtain
fZ,X-Z)<f(RUU,X-(RuU))=f*(Ru K, X*—(RUK)) (35)
Due to (34), (35) and (36), the set Su I is minimal in {(G*, w*). Q.E.D. i)
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It should be noticed that the converse is, in general, not true. A special case
in which each S;, i€/, is a minimal set, is considered in Theorem 1. It is worth
noting that the computational algorithm described in [4] is based on that theorem.

Moreover, some of further properties derived in [2, 4] concern some specific con-
densates too.

THEOREM 3. Let S be a nonempty proper subset of Y. If S U W is a minimal set in
{G*, w*>, then Y—R is not a minimal set in {G, w) for each nonempty proper sub-
set R of S.

Proof. Due to (35) we have
f*(Ru W, X*~(Ru W))=f(Y—R, X—(Y-R), (36)
f*(Su W, Xx*~(Su W)=f(Y-5, X—(Y-9)) (37)

Since Su W is a minimal set in {G*, w*), then f(Y—R, X— (Y- R)>f (Y-8, X +
—(Y—29)). Since, evidently Y—R> Y-S, Y—R#Y—S#0 then the proof is ac-
complished. Q.E.D.

5. An example

Let us now present an example to show the application of our considerations
to derive condensates.

Let there be given a graph of similarity with 41 vertices, i.e. X={1, 2, ..., 41}
and edge weights w (7, j) as in Tab. 1 (evidently, only w (i, /)'s, i <j, are here relevant).

Let us now arbitrary assume the following sets of vertices S ={l, 2, ..., 24},
S ={25,26,..,30}, O0=S,u S,. Hence, W={q, b}, Y={31,32,..,41}, X*=
=Wu Y, and the grph <{G*, w*), with w* as given in Tab. 2, has now only 13
vertices. Its analysis is obviously much easier than of the original graph.

In the first step, in (G*, w*) we find the following minimal sets: {40, 41}, {33,
34, 35}, {36. 37, 38, 39}. Then, a new graph being a condensate of the above is
derived. The obtained minimal sets will become the vertices C, B and A, respec-
tively. In the second step, we find the following minimal sets {B, C}, {8, 31, 32, 4}.
Then, the procedure is interrupted. Thus, we have obtained above. e.g. the fol-
lowing minimal sets consisting of vertices of the original graph: {36, 37, ..., 41}
and {33, 34, 35}. They can be assumed to be condensed in the following manner:
S =133, 34, 35}, S ={36, 37, ..., 41}. Because we do not know, whether the verti-
ces corresponding to the previous @ form minimal sets then we must split it and
perform a test. To increase the numerical efficiency we once more condense the
original graph. We see that the set {1, 2, ..., 9} satisfies the assumptions of Pro-
position 1, in approximation. Then we assume Q,={i:i€ X, i>9}=S, and we
obtain Y,={l, 2, ...,9}, W,={m}. The test confirms our conjecture that S, is
a minimal set in {G, w) (on the base of Corollary 7).

Pl
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We notice, as before, that the set {18, 19, 20, 21, 22} fulfills the assumptions
of Proposition 1, in approximation. The test confirms again our hypothesis. Then
we can define a new condensate. Let S,, S, be as above, and §,=7Y,, S,={18, 19,
20, 21, 22}, @=S, U Squ S, U 8§, W={c, d, g, h}, Y={10, 11, ..., 17,23, 24, ..., 32}.
Hence X* has 22 vertices. Here we obtain, among the others, the following mini-
mal sets {23, 24}, {15, 16, 17}, {10, 11, ..., 14} and {25, 26, ..., 32,c} i.e. {25, 26, ..., 35}
and the calculations are terminated. It is easy to evaluate that the algorithm destri-
bed in [4, 10] needs 210843 tests for obtaining final results. Using properties de-
scribed in this paper we reduce the number of tests up to 17705 tests.

6. Concluding remarks

The aim of the paper was to present some mechanisms for improving the efficien-
cy of the method of minimal sets in the case of large-scale networks. The theore-
tical analysis of Section 3 and 4 suggests some gain in efficiency. First, the new
properties presented provide some additional tool for eliminating more subsets
of vertices. Second, the derivation of condensates reduces the dimension of the
graph, hence diminishes the time of handling it.

The computations performed for the 41 — vertex graph from Section 5 fully
supported the above. As a criterion we used the number of tests during the deter-
mination of minimal sets. The use of mechanisms presented in the paper increased
the efficiency about 12 times. '

Thus, the approach presented is a successful involvement of both the science
and the art into some extremely important class of graph partitioning problems.
It seems that in general the ability to effectively solve large problems of the type
considered, as well as many other ones arising in practice, is closely related to the
availability of such procedures which make use of both formal mathematical tools
and human experience and knowledge of problem’s specifics.
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O metodzie zespeléw minimalnych w przypadku
grafow o wielkich rozmiarach

Praca dotyczy zastosowania metody zespolow minimalaych do podzialu grafu podobiefistw
(zainteresowari). Rozpatruje sie przypadek grafu o duzych rozmiarach. Proponuje si¢ zwickszenie
efektywnosci algorytmu podansgo w [4], podajac pewna metode, w ktorej wykorzystuje sie in-
teraktywnie wiedze 1 do§wiadczenie projektanta. Na wstepie formuluje si¢ i dowodzi pewnych nowych
wiadciwosci zespolow minimalnych. Nastepnie wprowadza sie pojecie kondensatu, ktory jest od-
powiednikiem podzbioru zbicru wierzcholtkéw i ma odpowiednio okreslone wagi krawedzi. Wypro-
wadza sie pewne wilasciwosci kondensatow. Analizuje sig efektywnos¢ zaproponowanego algo-
rytmu, poréwnujac go z algorytmem dotychczas stosowanym.

MeTton MHHAMAJIHHO CBAZAHHBIX moarpadoB B ciayuae
Be/IMKAX rpagos

CraThs KacaeTcsa OPHMEEHT METOAA MHHEMAILHO CBA3AHHLIX NOATPadoB Ouf AeKOMIOO3HIHA
AarHOTO Tpada cxoactB. PaccmoTpusacTes ciyyait Bemuxux rpados. Ilpennaraerca Meromsl IO-
BBIIeHns SOQEKTHBHOCTE anropuTMa mpeacTapienHoro B [4]. Berymurensso dopMymipyercs
M JIOKa3bIBAeTCA HEKOTOPHIE HOBBIE CBONCTBA MWHHMATNBHO CBs3aHHBIX mojrpador. Tlocie sroro
BBOIMTCS MIEH KOHMIEHCATA, KOTOPHIl ABISETCH MOAMHOMKECTBOM MHOXKECTBA BEPIIWH C COOT-
BeTCTBYIOLIMMIE BecaMu Ha pebpax. Ilpencrapnsercss HEKOTOPBIE CBOICTBa KOHOeHCaTOB. IToTOM
CpaBHMBAETCH, Ha mpuMepe, d(ddexTHBHOCT ANTOPHTMA, B KOTOPOM IPHMCHEHBI BHIIIE IIpemc-
TABNEHEl yuydueHns ¥ 3OQEeKTHBHOCTE HPEKHEr0o BHIA ANTOPHTMA.




