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In the paper we consider the problem of least squares estimation of nonlinear model in which 
the parameters to be estimated can be reclassified as linear-nonlinear. 

Variable projection method is presented and another version of it is proposed. 

Short numerical discussion is given. 

1. Introduction 

In fitting nonlinear models by least squares the estimates of the parameters 
cannot be in general determined analytically. Therefore the usual way to obtain 
them is to employ one of the several existing iterative algorithms. Thus by making 
an initial guess to the optimum parameter values and then by consecutive repeti
tions of the iterative step, given an appropriate stopping rule, we ·can obtain esti

mates that have approximately the least squares property. However, when the 
number of unknown parameters is l~rge the required computer time may appear 
unduly great. This is the reason why many authors have focused their attention 

on methods exploiting the properties of some particular classes of models. More 
specifically the majority of papers is devoted to nonlinear models in which some of 
the parameters are linear, [2-5) and others. 

In the present paper special attention would be paid to the method first intro
duced by Scolnik (7] and then extended to a wider class of models by Guttman, 
Pereyra, Scolnik (2]. This double-step algorithm proceeds with determining first 

the least squares estimates of nonlinear parameters and then it makes use of linear 
regression to produce the estimates of linear parameters. 
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The aim of this paper is to show that the variable's projection method can be 
extended to a wider class of models and that to compute functional which is to be 
minimized (and its derivatives) stable numerical algorithms can be employed. 

In Section 2 a general problem of nonlinear estimation is formulated. In Section 
3 the variable projection method is presented and then a theorem given in [2] on the 
equality between estimates is reformulated. Finally Section 4 gives a formula for 
derivatives which is suitable for numerical handling. 

2. The problem of nonlinear regression 

Let us consider a system of L inputs xT = [x1 , ... , xL] and one output y, subjected 
to stochastic disturbance z 

y=J(x, z) (1) 

' 
Let us assume that a set of N independent observations of input and output 

values is given 

(2) 

and moreover that for each observation 

:Y~~=f(x,,p) 

Yn=Y11+w" 
n= l, .. . , N (3) 

where fin (3) is a matl1ematical model of (1), depending on 2K unknown para
meters pT = (p1 , ... , p2K] and at least some of them enter into f nonlinearly. x"' Y11 , w, 
are respectively input, output and disturbance for n-th observation. 

Since disturbances are usually unknown it is in general impossible to determine 
tl;le exact form off Our aim is therefore to find parameters p* of fwhich minimize 
the following sum of squares 

N N 

s(p)=lly-yll 2=}; w~=}; (y,-f(xn,P)Y (4) 
n=l n=l 

s {p*)=min s (p) 
p 

In the paper we consider a more particular case of estimation parameters a, b, 
appearing in models of the form 

K 

f(x, a, h)=.}; ad, (x, b) (5) 
i=l 

where each j; is a given nonlinear function of b (i= 1, ... , K). 
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The aim is, as previously, to determine parameters aT= [a1, ... , aK] and 'bT = 
=[b1 , ••• , bK] which minimize (4) on~ the basis of observations (2), that is 

N 

S (a,b)=: 2; (Yn- f(xm ·a, h))2· (6) 
n=l 

s (a*, h*)=min s (a, h) 
a' b 

This problem for a more particular model 

K 

J(x, a, h)= .2; aJ;. (x, b;) (7) 
i=l 

was investigated in [2]. We shall now resummarize the method develol'ed there~ 

3. Double step 'variable projection algorithm 

Referring to the model (7) notice that for fixed parameter values, the functions 
f and /; (i= 1, ... , K) taken at the points x1 , ... , xN may be identified with N-di
mensional vectors, i.e. 

JT = [f(x1, a, h), ... ,f(xN, a, h)] 

fi =[/; (xl, b;), ... ,/;. (xN, b;)], i=l, ... , K 

' ' 
Assume that for fixed h vectors /; are linearly independent. This implies that 

N~K. For fixed hand changing a the vector fwould then form (according to (7)) 
a hyperplane spanned by (/1 , .•. ,JK) which we will denote from now on by Q (h). 
Let P (h) be an orthogonal projector onto Q (h) . . Consider the functional 

r 1 (h)=II(I-P (b)) y [[2 

Suppose, we minimize (8) to find estimates b 

rl (b)=min rl(h) 
b 

(8) 

Estimates a can now be found by substituting b into (7) and applying linear 
regression i.e. by minimizing 

K 

rz (a) = [[y- .2; adi (h;.)[[2
· 

i=1 

It turns out that estimates h* are equal to the' estimates b ~ 
\ 

THEOREM 1. [2]. If the functiona/s (6), (8) have unique minima then 

(a*, h*)=(a,b ) 

(9) 
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To complete the method let us now recall (see [2]) the formula for ~erivative 
of a projection functional. This method enables us to apply gradient minimization 
algorithms 

(10) 

where 

a~; (bi) a~; (bJ 
t!Ji = (Jb. - p (Jb . . 

' ' 
A 

A e \i) 
e (i) = !le (i)ll 

Pi -projection on Cf1, ... ,/;_1,/;+1' ... ,fK), i= J, ... , K. 

Finally notice that although this method applies to the model (7), it can be 
easily extended to the model (5). However this would need a bit more general for
mula for derivatives. 

4. Calculations of derivatives 

The algorithm just described has evident advantages. However the number 
of multiplications necessary for calculating the value of functional (8) and its de
rivatives as given above is large ( 0 (NK3

)). For large Nand Kit annihilates to great 
extent the advantages of reducing the number of parameters. Hereafter we would 
show how the derivative of (8) can be easily computed, what can considerably 
simplify an algorithm. 

First we shall prove the following theorem: 

THEOREM 2. Let W be Nx K matrix (K <N), the columns of which are formed by 
K linearly independent N-dimensional vectors f 1 , ... , fK: Let W* denote a Nx (K + 1) 
matrix, the columns of which areformed by vectors ft> ... ,fK,Y· If U= WT Wand 
U*=WH W* then , 

. det U* . 
. r 1 (b)= det U (11) 

Proof. If [~T~] is a positive definite matrix then obviously 

det (~T~)=det(~ C-BT~-~B)=detAdet(C-BT A-
1

B) (12) 

In our case 
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Hence 

det U* 
___ = yT y - yT wcwT w)- 1 wT Y 

det U 
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It is known that P= W(WT wr- 1 WT is asymmetric projection on (/1, ... ,fK) 
that is 

P 2 = P and pT = P 

so we have 

this completes the proof. 

Since our aim is to minimize r1 (b) we can assume that det U* # O. 
Before we shall state the next theorem let us assume that: 

a) if A is M1 XL1-matrix, B is M 2 XL2-matrix then both multiplication or 
addition of A and B can be done after appropriate extension of A and/or B with 
zero rows or columns; 

b) derivative of matrix A is a matrix containing the derivatives of the elements 
of A. 

Now we shall show that 

or1 ( aw* )T 
- - = 2zT -- W* z 
abi ab, 

where 

but first let us recall some well known facts. 

Fact 1 [1] 

(13) 

M - P pseudoinverse of the matrix A which we shall denote by A+ has the following 
properties: 
a) if A NxK-matrix: (N>K) has rang K then A+ = (AT A)- 1 AT; 
b) (AT A)+ = A+ (AT)+; 
c) (AT)+ = (A +)T; 
d) AA+ is a projection operato~ on a. space spanned by columns of A; 

XT 
e) if xis a vector then x+ = Txii2. 
Fact 2 [1] 

·' Let A N x K- matrik', c E RN, dERK if g = A+ c, h=dT A+, u= (l- AA+)c 

v= dT (J-A+ A), /3= 1 +dT A + c 

then if u#O, v# O 
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Fact 3 

If A K x K-matrix has rank K then 

a det A ( oA) - - --=detA · tr A- 1 -
ob · - ob 

Let Df stand for off ob. We can formulate the following theorem: 

THEOREM 3. Let W, W*, U, U* be defined as in Theorem 2. Jfr 1 = li(J -WW+Jyll 2 

then 

where 

z~ w+ y -eK+1> ei+t=[O, ... , 0, 1], eK+1 E RK+'1 

det U* 
Proof. By· Theorem 2 we have r = - -- Differentiating this ratio we have_ 1 det U · 
(by Fact 3) 

Dr1 =r1 tr (U*- 1 DU*)-1\ tr (U- 1 DU)=r1 tr (U*- 1 DU*- U- 1 DU) (14) 

We would like to show that U*- 1=U- 1 +C. This together with observation that 

tr (U- 1 DU*-:- u- 1 DU)=O 

would reduce (14) to the following 

Dr1 =r1 tr (C DU*) 

For that purpose let us notice that 

W*=W+yei+1 

and one can easily verify the assumptions of Fact 2 hence 

W*+=(W+yei+ 1)+=W+~gu+-v+ h+[Jv+ u+ 

but 

lr=el+ 1 W+=O so fJ=l and v·= ei+ 1 

and (15) can be rewritten 

WH=(W+yei+l>+= w+ -(g~eK+1) u+ 

Notice now, that 0= w+ U=U + WH and i[ul! 2 = r1 thus by Fact 1 

If we call Z=g-eK+1 = w+ y-eK+l then from (14a) and (16) we have 

Dr1 =tr ((g-eK+1) (g-ex-1-l))Y DU*=zT DU* z= 

(14a) 

(1'5) 

(16) 

=zr(.DWH W*+W*r DW*) z=2zT .DWH W* z • 
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5. Remarks 

In the present section we would like to stress the necessity of correct imple
mentation of the presented formulas·. Depending on the problem one should choose 
an algorithm which is as fast and exact as possible and which has minimal storage 
requirements. Below we would give some remarks concerning the existing algorithms 
which can be employed during evaluating r 1 and its derivatives. 

Functional r 1 can be eva~uated by solving normal equations or directly. from 
(11). However, it is usually recommended t~ make use of orthogonalization methods 
such as Householder method [8] or modified Gram-Schmidt method [9]. Errors 
resulting from these methods are proportional to the condition number of the 
matrix W and only the coefficient in the error estimation formula of the latter is 
greater. Both require essentially NK2 multiplications and NK 2 +K2/2 storage lo
cations. Direct solving of normal equations gives an error which is proportional 
to the square of condition number of W, but the number of multiplications de-

l 1 . 
creases to about Z NK2 +(j K 3 (if Cholesky's method is used [8]) and relatively 

small number ofstorage locations is required (about K 2
). It is worthwile to notice 

that in evaluating r1 by means of Cholesky's method there is no need to evaluate 
separately numerator and denominator since 'the value of denominator can be 
extracted on the last but one step of this method. Error resulting this time is also 
proportional to the square of condition number of w although with a little smal
ler coe:tp.cient that the one obtained when solving normal eqmi.tions. Analoguesly, 
the number of multiplications which is roughly the same, would slightly differ 
because of different coefficients. 

The computation ·of the derivatives requires a relatively small number of mul
tiplications. More precisely, veCtor z in (13) has already been computed while de
termining '1· Consequently multiplying first W* z and them zT (8W*f8b;)r for 
i= 1, ... , K, we can get all the derivatives in a process involving about NK2 multi
plications. In fact, in the case of model (7) the indispensable number of multipli
cations decreases to about NK. 

We would like to mention also that W* z= -r where residual vector r = 
=(l-P)y and zT DW*T =(yW+)T DWT hence formula (13) can be replaced by 
another one Dr1 = -2rDWW+y which may be easier to implement. 

l . . 

Now we can sum up all the general remarks: · 
a) when the gradient optimization methods are to be used: 

- if A is known to be well conditioned it is reasonable to solve the norma,l 
equations, 

- otherwise it is bettwe to make use of Householder orthonalization 
algorithm; 

b) when optimization algorithms without derivatives are to be used: 
-if A is known; to be well condit,oned it is better to make use of formula.(ll). 
- otherwise Householder orthogona,lization algorithm should be employed. 
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All these directions were adopted in the computer implementation of the de
scribed method. For minimization of (8) the Davidon's procedure has been em
ployed with necessary derivatives calculated according to (10). 

The algorithm has been applied to the model 

for two different data sets (N= 6 and N=72). Both versions of the algorithm pro
duced the same estimates while the computer time differed especially in the second 
test (fV=72) and for the version presented above was 30% shorter. 
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0 rownowaznycb postaciacb funkcjonalow i ich pochodnycb 
w pewnycb zadaniach estymacji parametrow 

Rozpatrzono zadanie identyfikacji parametr6w metod~t najmniejszej sumy kwadrat6w w mo
delach czc:;sciowo Jiniowych o postaci 

K 

f(x, a, b) = ,2 aJ, (x, b) 
i = l 

Opisano metodc:; rzutowania zmiennych Scolnika a nastc:;pnie zaproponowano inn~t jej wersjc:;. 
w· wersji tej wygodna postac pochodnej umdzliwia Uproszczenie procesu 'JJczenia D?. kazdym kroku 
zastosowanej iteracyjnej melody minimalizacji. 
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06 3KBiffiaJICHTllbiX BIIJ];aX cpyHKIIIIOHaJIOB 11 IIX DpOIBBOJ];HbiX 

B neKoTopbiX 3aJJ;a'!ax ouemm napaMeTpon 
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B CTaTbe paCCMaTpHBaeTCll 3a,Lia'!a li,LieHTUql.IH<fti.Ulli napaMeTpOB MeTO,LIOM HaUMeHblilliX KBa

,n;paTOB B 'laCTl'I'IHO rnmeiiHhiX MO,LieJiliX Tima 

K 

f(x, a, b)= }; ad, (x, b) 
i=l 

Tipe,n;cranrreH: Mero,n; npoeKrurn nepeMeHhl>IX, a 3aTeM npe,n;rrolKeH: HOBhlli ero nap:aaHT. B noM 

nap:aaH:Te y,n;o6Hh!H B.ll:,ll; npOH3BO)JJ{OH lJ03BOJ1lleT ynpOCTHTb npon:ecc Bbi'JHCJieHHH Ha KalK,ll;OM 

mare rrpHMeltlleMoro nTepan;:aoHHoro MeTo):(a MHHHMH3an;:au. 




