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We propose here an approximation scheme to the optimal stopping time problem for a de-
terministic system, which has been recently considered by J.L. Menaldi [1], [2] and J.L. Menaldi,
E. Rofman [3].

1. The problem.

Let us describe by a vector y, (z) € RY (>0, x € R") the state of a deterministic
dynamical system governed by the Cauchy problem:

V. (=g (= (1), t>0 a
¥x (0)=x,
where g is a Lipschitz continuous function, with constant c,.

The optimal stopping time problem for (1) is to find (if there exists) a 75>0
minimizing the function

@)= [ f(: @) e~ ds+y (yx (1)) - e, 20, @

where f and y are Borel measurable and bounded and o« a positive constant.
It is known (see [1]) that the Hamilton-Jacobi function

u (x)=Inf J, (¢) 3)

t=20

is the maximal solution of the following systeni:
v (X)<y (%)

v (X)< ft (@ () f) (x) ds+(® (1)) (x), VI>0, Vxe R", @
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where
(@ () ) (=2 (3, () - &=
and that, for continuous w and u, the time t: defined by
fr=Inf {t>0; u (. ()=y (¥: (1))} ®

is optimal if finite (if this is not the case, an optlmal time doesn’t exist).
For recent references to the semigroup approach to optimal control problems
see, for example, A. Bensoussa,n M. Robin [4] and J. Zabczyk [5]. = '

2. Discretization.

Let us consider the problem of finding, for 47>0, the maximal solution of the
system (see also [6] for the stochastic case): -

v ()<Y (%)
l*v (x)< 4t S (2% (k) f) () + (2% (1) v) (x), Vn eN, XeERY() .. ” ()
o b = , ‘ R . Htaa s
(2 (k) v) (x)=v (7' (k41)) - (1 —adt), Vke N
and y2* (kAr) is recursively defined as _
[eikdny=ys (k=1) 41) +g (2 (k=1) d0) - A1, k>1

tsh (@
bro= -
TueorREM 1. System (6) has a maximal solution u'* given by
! =1
ut (x)=TInf J.* (n)=1nf | 4t Y’ (@ (k) f) () +(2* (n)v/) (1. ®)
n=0 n=0 g = 0 ;

Moreover {u®*} is uniformly -bounded with respect to At and, if f and y- are locally
y-Holder continuous, with y>0, then (for sufficiently small At), a>c,y implies u*
locally y-Hélder continuous, as e,y implies u?t locally B-Holder continuous for all
0<f<afc,, uniformly with respect to .At.
The first statement can be proved via the Bellman’s optlmahty principle. We
have in fact, by the definition of »*, that , ‘ IR P
u#t (x)= Min (J;” (0), InfJZ* () : SR IR
nzl
- From (9), the additivity of J:* on the trajectories of (7) and the semigroup pro-
perty of the positive operators ¢“" (k) it follows that u‘“ is the maxxmal solutlon
of (6).

n—1

) We put D (M (K)f) (x) Ar=0
k=0
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The uniform boundedness is a consequence of the estimate
Min (Inf y, 1/o - Inf £)<u? (x)<Sup w.
The Holder-continuity of #** on each compact K< R" follows, for «>c,y, from
the inequalities (valid for all n €V, and x;, x, in RY):

n—1
IJ.;': (n)—J;'z‘(n)lscf At Z (l—ocA't)"ijff (kdt)—y2t (kdt)|" +

2
k=0

+ey (L—adt)|y! (ndt)=ygi () (10)

e (ndt) —ye(nan)|<|x, — x| - (1—c, 40)7", (11)
where ¢; and ¢, are the Holder constants on K. Hence, '
i (1—oat )"
Aty At < E i e Y
inl (n‘ sz (n)‘ cf Atk=0 ( (I-Cg At)v X1 ')‘2] *+ »

( 1 —oadt )" g

PR -, ¥
ta\ g drp ) el (D)

and the uniform Hoélder continuity of u#** follows from (12) through a minimizing
sequences argument.
The case «<c,y can be treated in a similar way.

3. Convergence of the approximated solutions.
The convergence result is the following:

TueorReM 2. If f and y are locally y-Holder continuous, y>0, then u?* converges,
as At—0%, to the function u defined by (3), uniformly on compact sets. Moreover,
Sor sufficiently small At, the estimate .
' sup |u (x)—u? (x)|<c (t, K) AtP+ Ce™* ' (13)
xeK

holds for all t=At and 0<fB<y(B<y if a>c, 7).

Remark 1. Tt follows from theorems 1 and 2 that, if f and w are locally Lipschitz
continuous and a>c, y then u is locally Lipschitz continuous; in this case u is
a local solution of the differential problem:

[u<y/, —g- Vutauf

l[u—y/] [—gVu+oau—f1=0 a.e.

as it can be seen passing to the limit, as 7/—0", in the inequality

D@0 _1 ¢
u (x) (-t(t) ) (V)<70f (@ (5) /) (x) ds

We refer to 2] for results of this type.
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Sketch of the proof of THEOREM 2.—The pointwise convergence of a sequence
{u?* } to some function u<y is an obvious consequence of the uniform bound-
edness of {u*'}. Next one shows that # satisfies the 2" inequality in (4); the main
tool in this respect are the estimates:

[t/4tj1—1 (k+1) 4t t
sup (@41 (k) ) (x) ds— [ (@ (s) /) () ds<e, (&, K) (4ep (14)
XEK k=0 kAt 0

sup (@4 ([t/4t;]) u*™) (x)— (@ (¢) &) (x)|<ca (¢, K) - (48)P +

+e™ 4t sup [u (y ()= (¥« D)), (15)

xek

holding for all > 4¢; and sufficiently small A¢;.
The estimate (14) follows from well-known results on the Euler method for
ordinary differential equations, namely

Ve (kdAt)—y, (8)I<c, 4t, se(kdt, (k+1) 4t), k=0, ..., [t/41]—1
(see [7]).
To prove (15) one makes use of the uniform Hélder continuity of #** and the
contraction property of @ (¢).
The maximality of »4' implies the maximality of &, as it can be seen by contra-
diction; this gives

i (X)=u (x)
and, therefore,

(u ()~ (x))- (u (x)—f (@) f)(x) ds—(P (1) u) (x)) =0 V>0 (16)

From (16) one ﬁnall}: obtains the estimate (13); to this purpose one considers
the sets K,= {x eK: u(xy<w(x), u(x)= f (2() f) (x) ds+(P (1) u) (x)} , Ky=
— {x €K:u(X)=y (xj, u(x)< f' (D) f) (x) ds+(P (t) u) (x)} and K;= {xe K:

D u(x)=y (x),u (x)=j (2()f) ds+('¢ () l') (x)} .

4. Convergence of the optimal stopping times.

Let us define for all je N the sets
Ty={k € N: 12 (y3" (kA1) >y (2" (kA1) —1/j}
Under the same general assumptions of Theorem 2, the following holds:
THEOREM 3. If there exists nje€ N and At;>0 such that:
At;-0% as j—+oo, {n; At;} is bounded, u* (yi* (n; 4t)))=y (y:"(n; 415)),

I ———— T
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then 1 defined in (5) is finite and therefore optimal. On the contrary, if t, is finite,
then there exists a sequence At;—0% such that T;#0 (j€ N), and the sequence

tj=A4t;Min{keN: ke T;}
conoerges 10 t. as j— 400,

Final comments. For the details of the proofs the reader is referred to [8]. In that
paper the same discretization scheme is applied to the study of the 1* order va-
riational inequality arising in connection with the optimal stopping time problem
for a deterministic system constrained by an open bounded subset of RY.
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Konstruktywne podejscie do deterministycznego
zagadnienia stopu

Proponuje si¢ tutaj formule aproksymacyjna dla zagadnienia optymalnego stopu dla ukladu
deterministycznego. Uklad taki byl ostatnio rozpatrzony przez J. L. Menaldi [1], [2] i J. L. Me-
naldi, E. Rofman [3].

KoucrpykruBHbiii HOAX0X K BONPOCY OHpeXe/IeHHN
ONTHMAJILHOTO MOMEHT2 32/IePKKH

TIpensaraercs annpoKCHMAalMOHHAS CXeMa 18 3a1aYy ONPENeNICHHsS ONTEMANIbHOTO MOMEHTA
3aJIEPAKKH [ETEPMUHUCTHYECKON CHCTEMBI, paccMaTpusaemoit . JI. Menansawm [1], [2] u J.JI. Me-
Hanbau u D. PoiismanoMm [3].
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