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Two existence theorems are proved for optimal problems containing variable delays in phase
coordinates as well as in controls.

1. Introduction.

In the present paper the author considers an optimal problem with an integral
cost functional and boundary .conditions of general form for nonlinear systems
with variable delays: - i B

2 (=1 (t:x (1), x (1 (D), 4 (1), u (8 ())-

The delay 7 (f)<t in phase coordinates is a piecewise continuous function: The
delay 6 ()<t in controls is an absolutely continuous and increasing function.

For the problem stated above, with the help ot the method offered in [1], exis-
tence theorems for solutions are proved. These theorems are analogues to-the well-
-known theorems of C. Olech [1].

2. Formulation of the problem.

“Existence theorems. Let the motion of an object be described by the system of
differential equations

% (t)_=f(r, x (), x .(r tt)); u(t), u (0(0)), t e I=[t,, T]. )

The right-hand side f(¢, x, y, ,v) is an n-dimensional vector function continuous
with respect to (x, y, u, v) € G x0? for « fixed ¢ € , and measurable with respect
to ¢ €I for a fixed (x, y, u, v) € G* X0?, where G and 0 are open.sets from the Eu-
clidean spaces R" and R", respectively. The delays 1 (¢). and 8 (7) satisfy the above
-mentioned conditions .on the interval I
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Let U:IxG—2° be an upper semicontinuous (u s.c.) multivalued mapping,
i.e., the set

{tx, »lyeU(, x)}
is closed in R**"*r It is not difficult to notice that, if U (7, x) is an u.s.c. mapping,
the set U (¢, x) is closed; ¢ (¢) € G, min (8y, 7o) =1<I< 1y, 05=0 (t,), To=min 1 (1),
3 £

—a continuous initial function; gi: IXx G*—R*, i=1, ..., p, — continuous functions.
Consider an integral functional : :

I(t, x(-),u())= flf° (r, x (0), x (2 (1)), u (2), u (6 (1)) dt, (2)

where f° satisfies the same conditions as f.
An element (t,, x (), u (- ))s t: €1, will be called admissible if the following
conditions are satisfied:

1) x (=0 (1), 1<t <ty, on the interval t,<t<t., x () € G — absolutely conti-
nucus, z_md _
gi (tlax(t0)5x(t1))=0: i=l’ LEES ) k’ gk+j (flax(to)ax(tl))<03 J=ls xS P_ks (3)

2) u (f) — a measurable function on the interval 0,<r<zt,, satlsfymo the con-
dition u(¢)e U (¢, x (1)) almost everywhere (a.e.),
3) The pair (x (), # (-)) on the interval #,<t<¢, satisfies system (1) a.c.,
4) 1(t2, % (), () <00,
The set of admissible elements will be denoted by €.
An element (7,, % (+), @ (- )) is called a solution to optimal problem (1)—(3) if
I(t;, %(-),@())=min.
Let us decompose the interval [6,, T] into the intervals E,=[¢,, &, ., ], =0, ..., &
éa=0 (éa;—vl)s OC=0> vy O— }’ 51 =1y, §a+1=T‘

In the space R™*™ we shall introduce the ordering defined by the cone C,:

Ca={(xt, woy ¥™ O)lx'>0, i=1, ..., m, 0€ R™}, m=1, ., 0.

Let us introduce the notations:
F§ (t, xi yis thy =)= (0 (81 (0, X2, iy w4 1)
Fi (@, X1, iy gy - )=C1 (@ (7 (0, X4 pis iy 1),
i=1, ..., 0, t€ Ey, {(t)— the inverse function of 8 (1), {* ()= ({1 (1), {° (D=t,
C()=T, 0(T)<I<T;
Fp=(FL, .., F™ F', . F™, m=1, ..., ;
P (1 X15 oy Xy Vis woy Vs 205 005 Zm)={q=(q"5 s 4", G15 s Gu)|qZFo (1, X35 o5

&> X Y1 w05 Yoy U0y e Unm)s (uo; ey Unm) € U (0 (t) 7o) x U (1, 21) X o XU ("1 (),
' : Z,,,)} tEEl, -—1, p—
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TazoreM 1. An optimal exists if the following conditions are satisfied:
1) Q+0,
2) there exists some M>0 such that |x ()|<M, to<t<t,V (1, x(),

u(-))eQ,

3) for any de€ R", there exists an integrable function ®,(t), t €I, such that
—fot, %,y u,0)+ <d, [ (t, %, 5, u,9)> <P, (D, W, v)e U, x) xU (6(),2),
x€Ay={x||x|< M}, yeBy={p@)|to<t<to} JAp; 2 €Dy={p (0)|o<t<to} ) Ane

4) the set Pp (t, Xy15 coos Xy Vis voos Vi Z0s o> Zi) 1S convex for each fixed (t, xy, ...,
e Xy Vi sevs Voo 203 =vos Zn) € By X GO™+1 qpnd m=1, ...,
5) the mapping

g,

(X15 ey xm’ yl’ b }’”l’ ZO’ bl Zm)_)Pm (t7')
is u.s.c. for each te€ E, and m=1, .

Let the functions f and f© be defmed on IXR*xU? and satisfy the above-
mentioned conditions, and U (7, x) — u.s.c. on /XR".

THEOREM 2. An optimal solution exists if the following conditions are satisfied:
1) Q#90, o
2) the set Pp (8, X, coos Xiys Vs o> V> Z0s -o» Zm) IS CONvEX fOr each fixed (1, x,, .
cves Xy Vs oo Poms 205 ooe> Zpg) EEy X RO D qndm=1, ..., o
3) the mapping ’

aay

5

(X1 v Xons Vs oo V> 205 +os Zm)—>Pr (1, )

is w.s.c. for each te E, and m=1, ..., o,
4) there exists some M > QO with a property that, for any element (t, , x(- ), u(. )) e
€ Q, one can find some t € [ty,1,] such that |x (H)|<M,

5) for any d=(—1,d,)e R'*" and y>0, there exists a function ®, (t y) in-
tegrable on 1, such that

=0 %, u, )+ <dy, f(8, X, 3, u,0)>< Py (8, ),
(u,v)eU(t,x) XU (0 (1), 2), (x,9,2)€ A, XB,XD,,
where @, (t, y) possesses the following properties:
a) the function ®;(t,y), d=(—1,0), does not depend on y, there exists some
7>0 such that, for each d, e R", |d,|=1, the function @, (t, y) is linear with respect
to p, dy=(n—, dy).

b) the functzons D; (t, v) and (bd (t, ) are linear with respect to y for each d, € R",
|di|=1 and €0, 7o, 70>0, if ¢d (t, »= D, (t)'l‘?'//d (t), then

[ wa, () di<L<oo, ¥d, e R", |dy|=1, 1€ (0, 75].
I
Below we give an example which shows that, for the existence of solutions,
the convexity of the set P, is essential.

H<.,.» —denotes the sclar product
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ExampLE. Consider an optimal problem
X()=—x{—D)+u@+u*(E-1), 0<tL2
x (=0, —1<1<0, |x (2)|<3.
u()=1, —1<1<0, U=[-1, 1],

f (x ()= 1)? dt=min.

For a given k=1, 2, ..., we shall decompose the interval [0, 1] into the inter-
vals I, i=1, ..., k, of length 1/k. Let us define a control %, (¢), 0<t<2: uy ()=
=u, (1), 0<1<1, u (H)=1—1, 1<1<2, where v, (¢) is an oscillating control, i.e.,
o, (=+1, tel, v, (H=-1, tel,, etc.

With & sufficiently large, the element (x; (), # (-)) is admissible. Here

3
X (t)=t+ [ w (s)ds, 0<i<1, X (D=2, (1) +
: o

t
+f(s—l——x,,(s—]))ds+t—-l, 1<1<2.

Furthermore, lim x; (t) ¢t uniformly with respect to 7 € [0, 1], and the sequence
k-

. 1 1
of Dirac measures d,, ., is weakly convergent to 5 o—1 +~2~ d+1, [2]. It is easy

to observe that the trajectory X (£)=t, 0<t<2, corresponds to the control i (¢):
1 (=0, 0<t<1, @ (f)=t, 1<i<2, but (X(-), @(-)) is not admissible.
Consequently, in the problem under consideration there is no optimal solution

since the set
-y +u, +u?
P(ts Vi, yZ)={( _yl ! (2))

et u; e U, i=0, 1,2}

is not convex.

ReMARK 1. It should be noticed that the existence theorem given in [3] is not true;
in the example considered, all assumptions of the theorem in question are satis-
fied and yet, no solution exists.

The lemmas formulated below play an essential part in provmg theorem 1.
The proofs of these lemmas are given in [1].

3. Fundamental lemmas.

Let P be a subset of the space R". We shall define a set
Kp={c|p+ieeP, VpeP, 120}.
The set K» is a cone and possesses the following properties:
Kp=co Kp, K p=cl K, “)
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Let in R" the ordering be detned by the cone C:
Ce=fxs=(x, o o5, 0)[X 20, =21, ..., 5}
The set
X=C—-C={X|x=¢,—¢,, ¢, ¢, € C},

%= 2 subspace in R". Denote by Y an orthogonal complement of the subspace X,
@nd by C° — the polar of the cone C:

CO={x®, ooy 2% P00, e, oo 8, pB RO}

Lewa 1. (C. Olech). Let P: I-2%" be a multivalued mapping such that, for every t,
ihe set P (1) is closed and convex. Besides, we shall assume that

Kpy=C, tel,
and, for each deint C° there exists an integrable function ®,(1), t € I, such that

max {d, pp><D,(?).

PeP(@)
If the sequence of absolutely continuous functions z, (t), k=1, 2, ..., is uniformly
Bbounded and
Zy (1) e P (1) ae. on I,
then there exists a subsequence zy (1), i=1, 2, ..., which is pointwise convergent to a
function z (f)+v (t), where

1°. z (2) is absolutely continuous, and 2 (t) eP(t)ae. onl,
2°. 2 ()=0 a.e. on I, v (s)<v (1), s<t, v (1,)=0,
3% Lim Pr,z, (1)=Pr, z(t)® uniformly on I.

i—w

LemMMA 2. (Q — property of L. Cesari [4]). Let a mapping Q: IX R"—2%" be u.s.c.
for each fixed tel, the values of Q (t, x) — be convex sets, and the following condi-
tions are satisfied.:

KQ )= C,
for each d e int C° and y>0, there exists a function D, (¢, y) integrable on I, such that

sup sup (4, @><P;(t, 7).

|x]<7 g€Q(1,%)

Then the mapping Q has the property
Q(t, xo)=[)clco Q (¢, x)foreachfixedt el

£=0 |x—xp|<e

(see statement 3 and remark 3, [1]).

?) Pr — operator of orthogonal projection
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Lemma 3. Let a function f(t,u): IXR"—R" be continuous.with respect to ue R’
for a fixed t e I and measurable with respect to t for a fixed u.

Let U (t): I-2F be a u.s.c. maping. If the measurable function y (1), t € I, satisfies
the condition

vy () eQ ()={zlz=f(t,u), ue U (t)} ae. on I,
then there exists a measurable function u(t) € U (t) such that
z(O)=f(t,u, (1)) ae. on I.
Proof of theorem 1. It follows from assumption 3) that the set
P (txCluC))I(t,x (), u()) e}

is bounded from below. Consequently, there exists a sequence (t(l"), % () uwe (4)),
k=1, 2, ..., such that

lim 7 (12, x, (+), we ())=inf I (¢, x (), u (*))=0.

k— o0

From the sequence {f} we choose a subsequence which will again be denoted
by {#¥}, tending to some 7, € I.
- Let#, e E,; we shall introduce the notations:

= = ffo (5~ X (8), X (7 (5))s s (5), s (9 (5))) ds, to<t<tP,

2z (O=(x (@), ... x2 ({'~2®), %O, ., % (= (@)), t € By

xl? (t)=xk (t(lk))’ xk (t)=xk (t(lk))’ 12 t(lk); Pl (t’ X(Cl_ 1 (t))’ xh L xlsyl.s -.--’yl’ 209 5 Z,)=
={ge R*™Mg=(F), ..., x (('"* ®) Fb, Fuy ooy 20 (81 (9) Fb)l(tioy ooy ) €

eU(0 ), zo)Xu(t,zy) x...xu ({1 (1), z)}, tekE,.

Here y (f) — the characteristic function of the interval #,<t<1®.
It is not hard do see that

200 €y (20 (€ O) K O o 50 (EO) e @ O)s w5 (11 O)),
% (0 (9), i (1), oy % (€1 @), 1€y

Let us define a set ,

;0= P (85 2 (€1 0, %@, oy 5 (81 ), 2 (2 (), o 32 (7 (8 D))

k>
i (6 @), e (s ooy % (€ (r))),
We shall show that ' “
Kn,y=C;, Jj=1,2,...
Indeed, let o e C,, then it is evident that
q+olell;(f), Vgell,(t), i>0,
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i‘c_, KHI-(I)D C[‘

Furtiher, let o € Ki, 1y and « ¢ C,, then there exists some b eint C) such that
= b)>0.

qo+olell; (1), Viz0,

where g, — a fixed element from I7; (¢):
For any >0, there exists some k;e€{l,2,..} such that ¢W=g,+ale

. (O (0), x, (D), ...).
We have

<q®, by= Zqi’) b'+2 g bi< Z [ OVl S G N (Sl )

5 (7 (C1 ) P, ) B+ 81 (0 7 (871 @, %, (671 @), 3, (2 (0 @), P,

W) B+ (1) 2, (61 ) [BESO (871 ), 3, (671 O)s 3, (2 (671 ),

2, w2 ) +8, 1 (07 (@, %, (O O)s 3, (7 (1 @) u2)] 3)
The left-hand side of inequality (5), with J—oco is not bounded, and the right-

hand side, by condition 3), is bounded by an integrable function; we get a contradiction
In this way.

Kn, y=Ci,
and taking into account conditions (4), we obtain
K, e=Cr,
where
P; (f)=cl co II; (1).
For each fixed j=1, 2, ...,
Ziv; O eP; (), i=0,1,....

- The sequence z;,;(#), i=0,1,..., and the mapping /—P; (¢) satisfy all con-
ditions of Lemma 1, and therefore there exists a subsequence Z, 0 7=1; 2, i
such that, with each 7€ [to, 7,],

lim z, (D=z (@) +v O=(x] O+, (1), ooy X7 () F0, (1), X1 (D), -0y X (),

Jj— o

z(t)eP,;(r) ae. on [t,, f1],

where o, (t), i=1, ..., I, are nondecreasing scalar functions, such that o; ()=0 a.e,
and 9; (¢,)=0, and z () is an absolutely continuous function.

Let us represent the function z (f)+v (¢) in the following form

z(@O+o O=(X (1) +8, (1), ..., 2 (O +5; (1), X1 (@), oos %1 (D))
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where
2 (0)=x? (1), %, (=2, (1), X2 (O)=x2 (D—v;_1 (&), T; (D=9, (D +v,_; (£1),
i=2,..,1, 9, (0)=0, X,({)+9, (I)=0o.
It is not hard to notice that
X (te)=0, 2 (i)=%0_; &), =21, ©)
since

lim x0 ({~* € ))=1m x, ({* (%)), i=1, ... 1.
k— oo

)

We shall introduce the notations:

(0 (t)a te EOa
X1 (t)’ reEla
X (H)=1x, (0 (1)), t € Ey,

'i;(l) (t)7 1 eEla
(6 (), t € Es,

‘i(l) (01_‘ (z)), te lél} fl]:

Y (D=

lxl (01“1 (t)): te [él) il]
It is obvious that
2()eP;(f) ae. on E;, j=1,2,..,

where

EF@O=(Z @), .2 (1), x@, ... X (" @)
The mapping
(2, 1. Fis wevs Xy Pits: sxve Pis Bios onsn 1) Ps
teE,, y€{0,1}, x,€ Ay, y, € By, i=1, ..., 1, z;€ Dy, j=0, ..., I, satisfies all re-
quirements of lemma 2, and therefore (t)=U P;(H=P, (t $'4 [t @), (@, s
w X(E1 ), X (2 @), o X (2 (T D), % (91;)1)’ (0, ., ({71 (1)) ae. onE,.
Here y () — the characteristic function of the interval [¢y, 7]

It follows fiom lemma 3 that there exist measurable functions #; (1), t € E,,
i=0, .., L i )eU(0@®),x(00)). @ OeU @), (@), i=L..1
such that the following conditions are satisfied:

d
= (L O)2E O (¢ 0.7 ([ 0) 2 (2 (E D)) s @) i 0)
=0, wuy 1—2,
4 )
— ()2 O (07 @ 2 (@ ), £ ( (T O)),

dt

iy (1), ¢ (t)) 70,
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d . sl . . ’
(@)=L OO, 2 (@) % (2 (D). s O (r)),

i=0,...,1-2,
— R O)=E (07 0, (@ O) 2 (< (8 ),

@ (1), i1 () 2 (0,

ae. on E,.
Carrying out elementary transformations and taking into account (6), from (7),
(8) we obtain

F=f(t, X0, % (z @), a (), a (0 ())), to<t<iy,

bl

@z [ fO(6%0. (@ @), @ @), a(0)) dt,

where

’ZO (g (0)9 ZEEOa
ﬁl (t)a tEEb
i (t)y=\i, (0(), tekE,,
ﬁl (91—1 (’)), te [’l.q il]
From the definition, X (7)=2X%, (f,))<Z%, ({))+7,(f;) since 3, (#,)=0.
In this way
Of course X (1), to<t<1f,, satisfies boundary conditions (3). Consequently, the
element (7, X (), #(+)) is the solution. Thus, theorem 1 has been proved. [l

Proof of theorem 2. It follows from assumption 1) that there exists a number
L, such that

Qi ={(t, x () u(-)) e QU (t;, x (), u ()<L} #0
Of course,
inf I=inf I.

2, 2

Further, in the same way as in [1], one proves the existence of a number M >0
such that

|x'(r)1<M, toStLt, W (z,, % ) u )) €Q,.

In this manner, the proof of theorem 2 is reduced to that of theorem 1. E

ReMark 2. Theorems 1 and 2 hold true also in the case when the right-hand side
of system (1) has the form

It x (1 ()5 s X (55, (0), u(0; (D)), .. u ((6, D)),
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2. Problem formulation

Consider linear time invariant controllable and observable system described
by the equations

X=Ax+FEu x(0)=0 (lay
y=Cx+Eu, (1b)

where x=x(t) e R", u=u(t) € R y=y (1)€ R?, t>0 are the state, input and out-
put vectors respectively.
The transfer function matrix of system (1) is given by the formula

H(s)=C (s1,— A)~' B+E 2

and is a rational proper pxg matrix.
Assume that a p>Xr rational proper matrix 7" is given.

Synthesis Problem
Find constant matrices F e R*? and G € R**"such that the system (1) under the
action of a control law

u=Fy+Gv 3)

is controllable and observable and its transfer function matrix is 7, where v=uv{t)e R
is a vector of external reference signals.

The stated above problem has not been solved satisfactorily. The most diffi-
cult step in solving it is to find a solution of the nonlinear matrix equation

T:H(l,—FH)*l G Gy

with respect to matrices ¥ and G. The attempts to overcome it were based either
on very strong assumptions e.g. invertibility of matrix A or required solving a large
system of linear equations with no insight in inner properties of the systems.

3. Solution to the problem

Consider Sy — minimal observability matrix for the system with the transfer
function matrix H. S)} has following properties (Forney [3]):

(a) Sy=[PR]. PeR[s]P*?, Re R[s]°**—P and R are polynomial matrices.

(b) P is row proper.

{c) P and R cre relatively left prime.

(d) H=P~ 'R

det P is the characteristic polynomial of the system described by the H, deg det

P—degree of det P—is the dimensicn of minimal state space realisation of the .
Notice that these are the properties of polynomial matrix quotient represen-

tation of transfer function matrix A introduced by Wolovich (Wolovich [33]).
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Let S2=[U L] be minimal observability matrix for the system with transfer
fumction matrix 7. Assume that both matrices (Sg and S?) have their rows ordered
ia such a way that row indexes i.e. highest degrees of polynomial elements in rows
form nondecreasing sequences.

One can easy verify that (4) is equivalent to

T=(l,— HF)~! HG. (5)

Substitute H and 7 expressed as quotients of polynomial matrices as in property
1d) of minimal observability matrices. We obtain

U-!' L=(P—RF)~' RG
This is equivalent to
DU=P—RF (6a)

DL=RG, (6b)
where D is some pXp nonsingular polynomial matrix. System (6) can be written
in more concise form :
1 0
psg=s;;{_" . G]

Since (1) and closed loop system are assumed to be controllable and observable,
the state spaces of both systems should have the same dimensions. Thus det D e R—{0}
because

deg (det U)=deg (det P)+deg (det D)

and deg (det U) as well as deg (det P) are dimensions of minimal realisations of 7°
and H respectively. Let denote

1, 0]
[_F G]—M 5

DS?=S3M, (3)

We get

where M is constant matrix of the form (7) and D is unimodular polynomial matrix.
We see that equation (8), is linear with respect to elements of matrices F and G
and the left side of it is parametrised by coefficients of elements of D. (8) is much
more attractive for computional purpose than (4) but so far one might doubt in
advantages of it since elements of the unimodular matrix remain unspecified and
can be of arbitrary high degree.

It was shown however ([15]) that if there exists a solution to (8) satisfying the
assumptions of the problem statement then the matrix D should have the following
form

D, 0 .0

p| U D2 o 0 ©)

Ui Uz . D
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Step 5. Check if condition (10) is satisfied. If not then there is no solution to the
problem. Otherwise choose maximal number of independent rows of matrix

=]

UI—PI X P]_ Y—Ll
i~¥ ¥

take corresponding rows of matrix

and solve resulting linear noncontradictory equation with respect to matrices F
and G.

4. Example
Let
s*+252—3s 0 S*+534+25%2—5—3
H(s)=g;'| s*—5>+28*—5s+3 s°+25—-3 0
§—=25+1 0 st—53—5%+5

(s4+3) (—2.553—3.55?+1.55—0.5) (s+3)(5.55+6.55>+7.55+0.5)
T (s)=g5"'| 1.5s*+22.55° +30.55% +145—3.5  7.55*+25.55°+37.58* 4+ 19.5s
(s+3) (—4s3 =352 +55+2) (s+3) (=253 =357 +4s+1)

where g =(s—1)* (s*+s+3) and g,=(s+3) (9s°+ 105>+ 5.55s+0.5). Compute mi-
nimal observability matrices

s—1 0 0 K 0 s+1
82=10 s—1 0 s—110
0 0 s*+s+3 1 0 2+s
4s+1 0 —2.5s -1 3s+1
So=]s-3 s+3 —2.55+1.5 s+2 2s

2s2+4+25+1 0 245405 —5—s+1 s245+2

We see that row indexes of both polynomial matrices constitute the same set {1, 1, 2}.
Polynomial unimodular matrix D has the form

dll dlZ 0
D= dz: dzz 0
a13+b1 azs+b2 d

where oy, dy,, dyy, dyy, @y, by, a,, b5, d are real numbers such that (d,, dy, +
_le dll) d#—O.
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Since [P],=1; we have X=[DU], and ¥Y=[DL],.

10 2 10 0
101
01 0 01 0
=110 3]’ Ezég?’ Pr=lo0 -3
00 O 00 —1
4d11+d12 d{z _2.50"‘—2.5d12 d12 3d|1+2d12
X= 4d21+dgg dzz —2.50’21-—2.56/;._2 s Y= d22 3d21+2d22
da,+a,+2d a, —2.5a,—2.5a,+d d,—d 3d,+2a,+4d
>'3d12_d11 *3d12 —1-_5dx2
U . 3d22_d21 _3d22 -I.Sdzz
' 3b2_b1"d "‘3b2 —15b2'—0.5d
_36[2-41)1—611—1)2—2&' _bz'—3a2 2.Sbl+2.5b2—1.53.2—d‘
—d11—2d12 _dli
L = d21—2d22 _dll
YUl b —2b,—d —2d—b,
_dl+d—b2—203 _Bbl_(ll _2b_v—d

It is easy to check that

iR [o0o01 0 0 0O
{El”oooo 1 -1 -1
o010 -1 0 4
1010 0 -2 1

We compute now the matrices U, —P, X and P, Y—L,

[ —5d,+2d,, —4d,, 2.5d,, +4dy
U, —P k,_ “"5d21_+2d22 —4d22 2.5d21+d22
LR 3, + 120y + 3a, + 5d—b, 3a,—3b, —7.5a;,—7.5a;—1.5b,+2.5d
l_3([1 +4a2—4b1—‘b2 _2a2—b2 “2.5a; —'4(12 +2.5b1 +2.5b2
—3d12‘—'d11 4d‘1+2d12
o 3dyy—dsy, 4d, +2d,,
Po ¥=Lil g i oo, 35, Oy ity 4By il
_a2+b2_(ll 3b1+2b2—2a1—203

The unique solution to (10) is:
ay=a,=by=b,=d;=d,; =0, dyy=dy,=d=1.
In the last step we compute a solution to equation

16 & ~5 038 -1 #
01 O|FGI=| 2 -41 3 2
10 -3 5 025 & -1
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Ogolny algorytm syntezy ukladu o zadanej macierzy
transmitancji za pomocg proporcjonalnego sprzezenia
zwrotnege od wyjsScia

W pracy przedstawiona zostala metoda sprowadzenia nieliniowego réwnania macierzowego
T=H (1,—FH)™'G (wiazacego macierze transmitancji operatorowych H i T oraz stale macierze:
sprzgzenia zwrotnego od wyjscia F i transformacji wektora wejscia G, wystepujacego w problemie
syntezy ukladu o zadanej macierzy transmitancji) do liniowego ukladu réwnan o statych wspol-
czynnikach. Przedstawiony algorytm pozwala znalez¢ rozwiazanie problemu w przypadku wiasci-
wych macierzy transmitancji operatorowych o dowolnej liczbie kolumn. W przypadku, gdy to
mozliwe naturalng konsekwencja przeksztalcen jest parametryzacja otrzymanej rodziny rozwiazan.

O6umii anropuTM CHHTE32 CHCTEMBI C 3aJIAHHOH
MaTpuiell nepefaTouHOi QYHKIHH ¢ HOMOMIBIO
HPONOPIHOHAILHONH 00paTHON CBA3H C BBIXO/2

B paGore mnpeacraBieH MeETO[ CBEAEHHMSI HEITHHEIHOTO MATPWYHOIO ypaBHewusi 7=
=H(,—F H) ' G (CBA3BIBAIOILETO MATPHLbI CIEPATOPHBIX NEPeiaTOuYHbIXx Gymkunit H u T
a TakXKe IOCTOSHHbIE MAaTPHLbl: 0OpaTHOM CBA3HM C BBIXOHA F ¥ npeoOPa30BaHHs BEKTOpAa BXOIA
G, BLICTYNAOIETO B 3aJa4e CHHTE3a CHCTEMBI C 3aJaHHON MaTtpuiiel IepesaTowHOM (yHKIHH)
X JIMHEMHOIf cucTeMe ypaBHEHWI C NOCTOSHHbIMU KodbhdummenTamu. TIpescTaBieHHbl anropurMm
NO3BOJISE1 HAWTH pelIeHne 3aJayd B Cllyda€ NPaBHIBHBIX MATPHLl ONEPAaTOPHBIX Iepela-
TOYHBIX (PYHKIWMII C IPOM3BOABHEBIM YMCIIOM CTOJOHOB. B ciyuae, KOrza 3TO BO3MOXHO, €CTECT-
BCHHBIM CIEACTBHEM NpeoOpa3oBanmid ABIAETCA TapaMeTPH3aLEs NOTyYeHHOTO CeMeHCTBa penieHnii.
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