Control
 and Cybernetics

Existence theorems for solutions of optimal problems with variable delays

by
TOMAZ TADUMADZE
Tbilisi State University
Institute of Applied Mathematics
Tbilisi, USSR

Two existence theorems are proved for optimal problems containing variable delays in phase coordinates as well as in controls.

1. Introduction.

In the present paper the author considers an optimal problem with an integral cost functional and boundary conditions of general form for nonlinear systems with variable delays:

$$
\dot{x}(t)=f\left(t_{;} x(t), x(\tau(t)), \dot{u}(t), u(\theta(t))\right)
$$

The delay $\tau(t) \leqslant t$ in phase coordinates is a piecewise continuous function. The delay $\theta(t)<t$ in controls is an absolutely continuous and increasing function.

For the problem stated above, with the help of the method offered in [1], existence theorems for solutions are proved. These theorems are analogues to the well--known theorems of C. Olech [1].

2. Formulation of the problem.

Existence theorems. Let the motion of an object be described by the system of differential equations

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t), x(\tau(t)), u(t), u(\theta(t))), t \in I=\left[t_{0}, T\right] . \tag{1}
\end{equation*}
$$

The right-hand side $f(t, x, y, u, v)$ is an n-dimensional vector function continuous with respect to $(x, y, u, v) \in G^{2} \times 0^{2}$ for a fixed $i \in I$, and measurable with respect to $t \in I$ for a fixed $(x, y, u, v) \in G^{2} \times 0^{2}$, where G and 0 are open sets from the Euclidean spaces R^{n} and R^{r}, respectively. The delays $\tau(t)$ and $\theta(t)$ satisfy the above -mentioned conditions on the interval I.

Let $U: I \times G \rightarrow 2^{0}$ be an upper semicontinuous (u s.c.) multivalued mapping, i.e., the set

$$
\{(t, x, y) \mid y \in U(t, x)\}
$$

is closed in R^{1+n+r}. It is not difficult to notice that, if $U(t, x)$ is an u.s.c. mapping, the set $U(t, x)$ is closed ; $\varphi(t) \in G, \min \left(\theta_{0}, \tau_{0}\right)=\tau \leqslant t \leqslant t_{0}, \theta_{0}=\theta\left(t_{0}\right), \tau_{0}=\min _{I} \imath(t)$, -a continuous initial function; $g^{i}: I \times G^{2} \rightarrow R^{1}, i=1, \ldots, p$, continuous functions.

Consider an integral functional

$$
\begin{equation*}
I\left(t_{1}, x(\cdot), u(\cdot)\right)=\int_{t_{0}}^{t_{1}} f^{0}(t, x(t), x(\imath(t)), u(t), u(\theta(t))) d t \tag{2}
\end{equation*}
$$

where f^{0} satisfies the same conditions as f.
An element $\left(t_{1}, x(\cdot), u(\cdot)\right), t_{1} \in I$, will be called admissible if the following conditions are satisfied:

1) $x(t)=\varphi(t), \tau_{0} \leqslant t<t_{0}$, on the interval $t_{0} \leqslant t \leqslant t_{1}, x(t) \in G$ - absolutely continucus, and
$g^{i}\left(t_{1}, x\left(t_{0}\right), x\left(t_{1}\right)\right)=0, i=1, \ldots, k, \quad g^{k+j}\left(t_{1}, x\left(t_{0}\right), x\left(t_{1}\right)\right) \leqslant 0, j=1, \ldots, P-k$,
2) $u(t)$-a measurable function on the interval $\theta_{0} \leqslant t \leqslant t_{1}$, satisfying the condition $u(t) \in U(t, x(t))$ almost everywhere (a.e.),
3) The pair $(x(\cdot), u(\cdot))$ on the interval $t_{0} \leqslant t \leqslant t_{1}$ satisfies system (1) a.e.,
4) $I\left(t_{1}, x(\cdot), u(\cdot)\right)<\infty$.

The set of admissible elements will be denoted by Ω.
An element $\left(\tilde{1}_{1}, \tilde{x}(\cdot), \tilde{u}(\cdot)\right)$ is called a solution to optimal problem (1)-(3) if

$$
I\left(t_{1}, \tilde{x}(\cdot), \tilde{u}(\cdot)\right)=\min .
$$

Let us decompose the interval $\left[\theta_{0}, T\right]$ into the intervals $E_{\alpha}=\left[\xi_{\alpha}, \xi_{\alpha+1}\right], \alpha=0, \ldots, \sigma$,

$$
\xi_{\alpha}=\theta\left(\xi_{\alpha+1}\right), \alpha=0, \ldots, \sigma-1, \xi_{1}=t_{0}, \xi_{\sigma+1}=T
$$

In the space $R^{m+n m}$ we shall introduce the ordering defined by the cone C_{m} :

$$
C_{m}=\left\{\left(x^{1}, \ldots, x^{m}, 0\right) \mid x^{i} \geqslant 0, i=1, \ldots, m, 0 \in R^{n m}\right\}, m=1, \ldots, \sigma
$$

Let us introduce the notations:

$$
\begin{aligned}
& F_{0}^{i}\left(t, x_{i}, y_{i}, u_{i}, u_{i-1}\right)=\dot{\zeta}^{i-1}(t) f^{0}\left(\zeta^{i-1}(t), x_{i}, y_{i}, u_{i}, u_{i-1}\right), \\
& F_{1}^{i}\left(t, x_{i}, y_{i}, u_{i}, u_{i-1}\right)=\dot{\zeta}^{i-1}(t) f\left(\zeta^{i-1}(t), x_{i}, y_{i}, u_{i}, u_{i-1}\right),
\end{aligned}
$$

$i=1, \ldots, \sigma, t \in E_{1}, \zeta(t)$ - the inverse function of $\theta(t), \zeta^{i}(t)=\zeta\left(\zeta^{i-1}(t)\right), \zeta^{0}(t)=t$,

$$
\zeta(t)=T, \quad \theta(T) \leqslant t \leqslant T ;
$$

$$
F_{m}=\left(F_{0}^{1}, \ldots, F_{0}^{m}, F_{1}^{1}, \ldots, F_{1}^{m}\right), m=1, \ldots,
$$

$P_{m}\left(t, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right)=\left\{q=\left(q^{1}, \ldots, q^{m}, q_{1}, \ldots, q_{m}\right) \mid q \geqslant F_{m}\left(t, x_{1}, \ldots\right.\right.$, $\left.\ldots, x_{m} y_{1}, \ldots, y_{m}, u_{0}, \ldots, u_{m}\right),\left(u_{0}, \ldots, u_{m}\right) \in U\left(\theta(t), z_{0}\right) \times U\left(t, z_{1}\right) \times \ldots \times U\left(\zeta^{m-1}(t)\right.$,

$$
\left.\left.z_{m}\right)\right\}, t \in E_{1}, m=1, \ldots, \sigma .
$$

Theorem 1. An optimal exists if the following conditions are satisfied:

1) $\Omega \neq \emptyset$,
2) there exists some $M>0$ such that $|x(t)| \leqslant M_{,} t_{0} \leqslant t \leqslant t_{1}, \forall\left(t_{1}, x(\cdot)\right.$,

$$
u(\cdot)) \in \Omega
$$

3) for any $d \in R^{n}$, there exists an integrable function $\Phi_{d}(t), t \in I$, such that
$-f^{0}(t, x, y, u, v)+<d, f(t, x, y, u, v)>\leqslant \Phi_{d}(t)^{1)},(u, v) \in U(t, x) \times U(\theta(t), z)$,
$x \in A_{M}=\{x| | x \mid \leqslant M\}, y \in B_{M}=\left\{\varphi(t) \mid \tau_{0} \leqslant t \leqslant t_{0}\right\} \bigcup A_{M}, z \in D_{M}=\left\{\varphi(t) \mid \theta_{0} \leqslant t \leqslant t_{0}\right\} \cup A_{M}$
4) the set $P_{m}\left(t, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right)$ is convex for each fixed $\left(t, x_{1}, \ldots\right.$, $\left.\ldots, x_{m}, y_{1}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right) \in E_{1} \times G^{(3 m+1) n}$ and $m=1, \ldots, \sigma$,
5) the mapping

$$
\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right) \rightarrow P_{m}(t . .)
$$

is u.s.c. for each $t \in E_{1}$ and $m=1, \ldots, \sigma$.
Let the functions f and f^{0} be defined on $I \times R^{2 n} \times U^{2}$ and satisfy the abovementioned conditions, and $U(t, x)-$ u.s.c. on $I \times R^{n}$.

Theorem 2. An optimal solution exists if the following conditions are satisfied:

1) $\Omega \neq \emptyset$,
2) the set $P_{m}\left(t, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right)$ is convex for each fixed $\left(t, x_{1}, \ldots\right.$, $\left.\ldots, x_{m}, y_{1}, \ldots, y_{n}, z_{0}, \ldots, z_{m}\right) \in E_{1} \times R^{(3 m+1) n}$ and $m=1, \ldots, \sigma$,
3) the mapping

$$
\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right) \rightarrow P_{m}(t, .)
$$

is u.s.c. for each $t \in E_{1}$ and $m=1, \ldots, \sigma$,
4) there exists some $M>O$ with a property that, for any element $\left(t_{1}, x(\cdot), u(\cdot)\right) \in$ $\bullet \Omega$, one can find some $t \in\left[t_{0}, t_{1}\right]$ such that $|x(t)| \leqslant M$,
5) for any $d=\left(-1, d_{1}\right) \in R^{1+n}$ and $\gamma>0$, there exists a function $\Phi_{d}(t, \gamma)$ integrable on I, such that

$$
\begin{aligned}
& -f^{0}(t, x, y, u, v)+<d_{1}, f(t, x, y, u, v)>\leqslant \Phi_{d}(t, \gamma) \\
& (u, v) \in U(t, x) \times U(\theta(t), z),(x, y, z) \in A_{\gamma} \times B_{\gamma} \times D_{\gamma}
\end{aligned}
$$

where $\Phi_{d}(t, \gamma)$ possesses the following properties:
a) the function $\Phi_{\bar{d}}(t, \gamma), \bar{d}=(-1,0)$, does not depend on γ, there exists some $\eta>0$ such that, for each $\bar{d}_{1} \in R^{n},\left|d_{1}\right|=1$, the function $\Phi_{d_{\eta}}(t, \gamma)$ is linear with respect to $\eta, d_{n}=\left(\eta-, d_{1}\right)$.
b) the functions $\Phi_{\bar{d}}(t, \gamma)$ and $\Phi_{d_{\eta}}(t, \gamma)$ are linear with respect to γ for each $d_{1} \in R^{n}$, $\left|\bar{d}_{1}\right|=1$ and $\eta \in\left(0, \eta_{0}\right], \eta_{0}>0$, if $\Phi_{d}(t, \gamma)=\Phi_{a_{\eta}}(t)+\gamma \psi_{a_{\eta}}(t)$, then

$$
\int_{r} \psi_{d_{\eta}}(t) d t \leqslant L<\infty, \forall \bar{d}_{1} \in R^{n},\left|\bar{d}_{1}\right|=1, \eta \in\left(0, \eta_{0}\right] .
$$

Below we give an example which shows that, for the existence of solutions, the convexity of the set P_{m} is essential.
${ }^{1}$) $\langle.,$.$\rangle - denotes the sclar product$

Example. Consider an optimal problem

$$
\begin{gathered}
\dot{x}(t)=-x(t-1)+u(t)+u^{2}(t-1), \quad 0 \leqslant t \leqslant 2, \\
x(t)=0,-1 \leqslant t \leqslant 0,|x(2)| \leqslant 3 . \\
u(t)=1,-1 \leqslant t \leqslant 0, U=[-1,1], \\
\int_{0}^{2}(x(t)-t)^{2} d t=\min .
\end{gathered}
$$

For a given $k=1,2, \ldots$, we shall decompose the interval $[0,1]$ into the intervals $I_{i}, i=1, \ldots, k$, of length $1 / k$. Let us define a control $u_{k}(t), 0 \leqslant t \leqslant 2: u_{k}(t)=$ $=v_{k}(t), 0 \leqslant t \leqslant 1, u_{k}(t)=t-1,1 \leqslant t \leqslant 2$, where $v_{k}(t)$ is an oscillating control, i.e., $v_{k}(t)=+1, t \in I_{1}, v_{k}(t)=-1, t \in I_{2}$, etc.

With k sufficiently large, the element $\left(x_{k}(\cdot), u_{k}(\cdot)\right)$ is admissible. Here

$$
\begin{aligned}
x_{k}(t)=t+\int_{0}^{t} u_{k}(s) d s, 0 \leqslant t \leqslant 1, x_{k}(t)= & x_{k}(1)+ \\
& +\int_{1}^{t}\left(s-1-x_{k}(s-1)\right) d s+t-1,1 \leqslant t \leqslant 2 .
\end{aligned}
$$

Furthermore, $\lim _{k \rightarrow \infty} x_{k}(t)=t$ uniformly with respect to $t \in[0,1]$, and the sequence of Dirac measures $\delta_{v_{k}(t)}$ is weakly convergent to $\frac{1}{2} \delta-1+\frac{1}{2} \delta+1$, [2]. It is easy to observe that the trajectory $\tilde{x}(t)=t, 0 \leqslant t \leqslant 2$, corresponds to the control $\tilde{u}(t)$: $: \tilde{u}(t)=0,0 \leqslant t \leqslant 1, \tilde{u}(t)=t, \quad 1 \leqslant t \leqslant 2$, but $(\tilde{x}(\cdot), \tilde{u}(\cdot))$ is not admissible.

Consequently, in the problem under consideration there is no optimal solution since the set

$$
P\left(t, y_{1}, y_{2}\right)=\left\{\left.\binom{-y_{1}+u_{1}+u_{0}^{2}}{-y_{2}+u_{2}+u_{1}^{2}} \right\rvert\, u_{i} \in U, i=0,1,2\right\}
$$

is not convex.

Remark 1. It should be noticed that the existence theorem given in [3] is not true; in the example considered, all assumptions of the theorem in question are satisfied and yet, no solution exists.

The lemmas formulated below play an essential part in proving theorem 1. The proofs of these lemmas are given in [1].

3. Fundamental lemmas.

Let P be a subset of the space R^{n}. We shall define a set

$$
K_{P}=\{\alpha \mid p+\lambda \alpha \in P, \quad \forall p \in P, \lambda \geqslant 0\} .
$$

The set K_{p} is a cone and possesses the following properties:

$$
\begin{equation*}
K_{\mathrm{co} P}=\operatorname{co} K_{P}, K_{\mathrm{cl} P}=\mathrm{cl} K_{P} \tag{4}
\end{equation*}
$$

Let in R^{n} the ordering be detned by the cone C :

$$
C=\left\{x=\left(x^{1}, \ldots, x^{s}, 0\right) \mid x^{i} \geqslant 0, i=1, \ldots, s\right\} .
$$

The set

$$
X=C-C=\left\{X \mid x=c_{1}-c_{2}, c_{1}, c_{2} \in C\right\},
$$

is a subspace in R^{n}. Denote by Y an orthogonal complement of the subspace X, and by C° - the polar of the cone C :

$$
C^{0}=\left\{\left(x^{1}, \ldots, x^{s}, y\right) \mid x^{i} \leqslant 0, i=1, \ldots, s, y \in R^{n-s}\right\}
$$

Lemma 1. (C. Olech). Let $P: I \rightarrow 2^{R^{n}}$ be a multivalued mapping such that, for every t, the set $P(t)$ is closed and convex. Besides, we shall assume that

$$
K_{P(t)}=C, t \in I
$$

and, for each $d \in$ int C°, there exists an integrable function $\Phi_{d}(t), t \in I$, such that

$$
\max _{p \in P(t)}\langle d, p\rangle \leqslant \Phi_{d}(t)
$$

If the sequence of absolutely continuous functions $z_{k}(t), k=1,2, \ldots$, is uniformly bounded and

$$
\dot{z}_{k}(t) \in P(t) \text { a.e. on } I
$$

then there exists a subsequence $z_{k_{i}}(t), i=1,2, \ldots$, which is pointwise convergent to a function $z(t)+v(t)$, where
1°. $z(t)$ is absolutely continuous, and $\dot{z}(t) \in P(t)$ a.e. on I,
$2^{\circ} \cdot \dot{v}(t)=0$ a.e. on $I, v(s) \leqslant v(t), s \leqslant t, v\left(t_{0}\right)=0$,
30. $\lim _{i \rightarrow \infty} \operatorname{Pr}_{y} z_{k_{i}}(t)=\operatorname{Pr}_{y} z(t)^{2)}$ uniformly on I.

Lemma 2. (Q - property of L. Cesari [4]). Let a mapping $Q: I \times R^{n} \rightarrow 2^{R^{n}}$ be u.s.c. for each fixed $t \in I$, the values of $Q(t, x)$ - be convex sets, and the following conditions are satisfied:

$$
K_{Q(t, x)}=C
$$

for each $d \in$ int C^{0} and $\gamma>0$, there exists a function $\Phi_{d}(t, \gamma)$ integrable on I, such that

$$
\sup _{|x| \leqslant \nu} \sup _{q \in Q(t, x)}\langle d, q\rangle \leqslant \Phi_{d}(t, \gamma) .
$$

Then the mapping Q has the property

$$
Q\left(t, x_{0}\right)=\bigcap_{\varepsilon \geqslant 0} \mathrm{cl} \operatorname{co} \underset{\left|x-x_{0}\right| \leqslant \varepsilon}{Q}(t, x) \text { for each fixed } t \in I
$$

(see statement 3 and remark 3, [1]).

[^0]Lemma 3. Let a function $f(t, u): I \times R^{r} \rightarrow R^{n}$ be continuous with respect to $u \in R^{r}$ for a fixed $t \in I$ and measurable with respect to t for a fixed u.
Let $U(t): I \rightarrow 2^{R^{r}}$ be a u.s.c. maping. If the measurable function $y(t), t \in I$, satisfies the condition

$$
y(t) \in Q(t)=\{z \mid z \geqslant f(t, u), u \in U(t)\} \text { a.e. on } I,
$$

then there exists a measurable function $u(t) \in U(t)$ such that

$$
z(t) \geqslant f(t, u,(t)) \text { a.e. on } I .
$$

Proof of theorem 1. It follows from assumption 3) that the set

$$
\left\{I\left(t_{1}, x(\cdot), u(\cdot)\right) \mid\left(t_{1}, x(\cdot), u(\cdot)\right) \in \Omega\right\}
$$

is bounded from below. Consequently, there exists a sequence $\left(t_{1}^{(k)}, x_{k}(\cdot), u_{k}(\cdot)\right)$, $k=1,2, \ldots$, such that

$$
\lim _{k \rightarrow \infty} I\left(t_{1}^{(k)}, x_{k}(\cdot), u_{k}(\cdot)\right)=\inf _{\Omega} I\left(t_{1}, x(\cdot), u(\cdot)\right)=\omega
$$

From the sequence $\left\{t_{1}^{(k)}\right\}$ we choose a subsequence which will again be denoted by $\left\{t_{1}^{(k)}\right\}$, tending to some $\tilde{t}_{1} \in I$.

Let $\tilde{t}_{1} \in E_{l}$; we shall introduce the notations:

$$
\begin{array}{r}
x_{k}^{0}(t)=\int_{t_{0}}^{t} f^{0}\left(s, x_{k}(s), x_{k}(\tau(s)), u_{k}(s), u_{k}(\theta(s))\right) d s, t_{0} \leqslant t \leqslant t_{1}^{(k)}, \\
z_{k}(t)=\left(x_{k}^{0}(t), \ldots, x_{k}^{0}\left(\zeta^{t-1}(t)\right), x_{k}(t), \ldots, x_{k}\left(\zeta^{l-1}(t)\right)\right), t \in E_{1}, \\
x_{k}^{0}(t)=x_{k}\left(t_{1}^{(k)}\right), x_{k}(t)=x_{k}\left(t_{1}^{(k)}\right), t \geqslant t_{1}^{(k)}, P_{l}\left(t, \chi\left(\zeta^{t-1}(t)\right), x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{t}, z_{0}, \ldots, z_{l}\right)= \\
=\left\{q \in R^{t+n t}\left|q \geqslant\left(F_{0}^{1}, \ldots, \chi\left(\zeta^{l-1}(t)\right) F_{0}^{l}, F_{1}, \ldots, \chi_{k}\left(\zeta^{t-1}(t)\right) F_{0}^{l}\right)\right|\left(u_{0}, \ldots, u_{l}\right) \in\right. \\
\\
\left.\in U\left(\theta(t), z_{0}\right) \times u\left(t, z_{1}\right) \times \ldots \times u\left(\zeta^{l-1}(t), z_{l}\right)\right\}, t \in E_{1} .
\end{array}
$$

Here $\chi_{k}(t)$ - the characteristic function of the interval $t_{0} \leqslant t \leqslant t_{1}^{(k)}$.
It is not hard do see that

$$
\begin{array}{r}
z_{k}(t) \in P_{l}\left(t ; \chi_{k}\left(\zeta^{l-1}(t)\right), x_{k}(t), \ldots, x_{k}\left(\zeta^{t-1}(t)\right), x_{k}(\tau(t)), \ldots, x_{k}\left(\tau\left(\zeta^{t-1}(t)\right)\right)\right. \\
\left.x_{k}(\theta(t)), x_{k}(t), \ldots, x_{k}\left(\zeta^{l-1}(t)\right)\right), t \in E_{1} .
\end{array}
$$

Let us define a set

$$
\begin{array}{r}
\Pi_{j}(t)=\bigcup_{k \geqslant j} P_{l}\left(t ; \chi_{k}\left(\zeta^{l-1}(t)\right), x_{k}(t), \ldots, x_{k}\left(\zeta^{l-1}(t)\right), x_{k}(\tau(t)), \ldots, x_{k}\left(\tau\left(\zeta^{l-1}(t)\right)\right),\right. \\
\left.x_{k}(\theta(t)), x_{k}(t), \ldots, x_{k}\left(\zeta^{l-1}(t)\right)\right) .
\end{array}
$$

We shall show that

$$
K_{I_{j}(t)}=C_{t}, \quad j=1,2, \ldots
$$

Indeed, let $\alpha \in C_{l}$, then it is evident that

$$
q+\alpha \lambda \in \Pi_{j}(t), \quad \forall q \in \Pi_{j}(t), \quad \lambda \geqslant 0,
$$

ie., $K_{\Pi_{j}(t)} \supset C_{l}$.
Further, let $\alpha \in K_{\Pi_{j}(t)}$ and $\alpha \notin C_{l}$, then there exists some $b \in \operatorname{int} C_{i}^{0}$ such that $\langle a, b\rangle>0$.

$$
q_{0}+a \lambda \in \Pi_{j}(t), \quad \forall \lambda \geqslant 0,
$$

where q_{0} - a fixed element from $\Pi_{j}(t)$.
For any $\lambda \geqslant 0$, there exists some $k_{\lambda} \in\{1,2, \ldots\}$ such that $q^{(\lambda)}=q_{0}+\alpha, \lambda \in$ $P_{I}\left(t, \chi_{k_{l}}\left(\zeta^{l-1}(t)\right), x_{k_{l}}(t), \ldots\right)$.
We have

$$
\left\langle q^{(\lambda)}, b\right\rangle=\sum_{i=1}^{l} q_{i}^{(\lambda)} b_{0}^{i}+\sum_{i=1}^{i} q_{i}^{(\lambda)} b_{1}^{i} \leqslant \sum_{i=1}^{q-1}\left[\dot { \zeta } ^ { i - 1 } (t) f ^ { 0 } \left(\zeta^{i-1}(t), x_{k_{\lambda}}\left(\zeta^{i-1}(t)\right),\right.\right.
$$

$\left.x_{k_{\alpha_{\alpha}}}\left(\tau\left(\zeta^{i-1}(t)\right)\right), u_{i}^{(\lambda)}, u_{i-1}^{(\lambda)}\right) b_{0}^{i}+\zeta^{i-1}(t) f\left(\zeta^{i-1}(t), x_{k_{\lambda}}\left(\zeta^{i-1}(t)\right), x_{k_{k_{2}}}\left(\tau\left(\zeta^{i-1}(t)\right)\right), u_{i}^{(\lambda)}\right.$, $\left.\left.u_{i-1}^{(\lambda)}\right) b_{1}^{i}\right]+\dot{\zeta}^{l-1}(t) \chi_{k_{\lambda}}\left(\zeta^{l-1}(t)\right)\left[b_{0}^{l} f^{0}\left(\zeta^{l-1}(t), x_{k_{2}}\left(\zeta^{l-1}(t)\right), x_{k_{\lambda}}\left(\tau\left(\zeta^{l-1}(t)\right)\right)\right.\right.$, $\left.\left.u_{l}^{(\lambda)}, u_{l-1}^{(\lambda)}\right)+b_{1}^{l} f\left(\zeta^{l-1}(t), x_{k_{\lambda}}\left(\zeta^{l-1}(t)\right), x_{k_{\lambda}}\left(\tau\left(\zeta^{l-1}(t)\right)\right), u_{l}^{(\lambda)}, u_{l-1}^{(\lambda)}\right)\right]$.

The left-hand side of inequality (5), with $\lambda \rightarrow \infty$ is not bounded, and the righthand side, by condition 3), is bounded by an integrable function; we get a contradiction

In this way.

$$
K_{\Pi_{J^{\prime}}(t)}=C_{l},
$$

and taking into account conditions (4), we obtain

$$
K_{P_{j}(t)}=C_{l},
$$

where

$$
P_{j}(t)=\mathrm{cl} \mathrm{co} \Pi_{j}(t)
$$

For each fixed $j=1,2, \ldots$,

$$
\dot{z}_{i+j}(t) \in P_{j}(t), \quad i=0,1, \ldots .
$$

The sequence $z_{i+j}(t), i=0,1, \ldots$, and the mapping $t \rightarrow P_{j}(t)$ satisfy all conditions of Lemma 1, and therefore there exists a subsequence $z_{k_{j}}(t), j=1,2, \ldots$, such that, with each $t \in\left[t_{0}, \tilde{t}_{1}\right]$,

$$
\begin{gathered}
\lim _{j \rightarrow \infty} z_{k_{j}}(t)=z(t)+v(t)=\left(x_{l}^{0}(t)+v_{1}(t), \ldots, x_{l}^{0}(t)+v_{l}(t), x_{1}(t), \ldots, x_{l}(t)\right), \\
\dot{z}(t) \in P_{j}(t) \text { a.e. on }\left[t_{0}, \tilde{t}_{1}\right],
\end{gathered}
$$

where $v_{i}(t), i=1, \ldots, l$, are nondecreasing scalar functions, such that $\dot{v}_{i}(t)=0$ a.e, and $\dot{v}_{i}\left(t_{0}\right)=0$, and $z(t)$ is an absolutely continuous function.

Let us represent the function $z(t)+v(t)$ in the following form

$$
z(t)+v(t)=\left(\tilde{x}_{l}^{0}(t)+\tilde{v}_{1}(t), \ldots, \tilde{x}_{l}^{0}(t)+\tilde{v}_{l}(t), x_{1}(t), \ldots, x_{l}(t)\right),
$$

where

$$
\begin{gathered}
\tilde{x}_{l}^{0}(t)=x_{l}^{0}(t), \tilde{v}_{1}(t)=v_{1}(t), \tilde{x}_{i}^{0}(t)=x_{i}^{0}(t)-v_{i-1}\left(\xi_{i}\right), \tilde{v}_{i}(t)=\dot{v}_{i}(t)+v_{i-1}\left(\xi_{1}\right), \\
i=2, \ldots, l, \tilde{v}_{i}(t) \geqslant 0, \tilde{x}_{l}\left(\tilde{t}_{1}\right)+\tilde{v}_{l}\left(\tilde{t}_{1}\right)=\omega .
\end{gathered}
$$

It is not hard to notice that

$$
\begin{equation*}
\tilde{x}_{1}^{0}\left(t_{0}\right)=0, \tilde{x}_{i}^{0}\left(t_{0}\right)=\tilde{x}_{i-1}^{0}\left(\xi_{1}\right), \quad i=2, \ldots, l, \tag{6}
\end{equation*}
$$

since

$$
\lim _{k \rightarrow \infty} x_{k}^{0}\left(\zeta^{i-1}\left(\xi_{1}\right)\right)=\lim _{k \rightarrow \infty} x_{k}\left(\zeta^{i}\left(t_{0}\right)\right), \quad i=1, \ldots, l .
$$

We shall introduce the notations:

$$
\tilde{x}^{0}(t)=\left\{\begin{array}{l}
\tilde{x}_{1}^{0}(t), t \in E_{1}, \\
\tilde{x}_{2}^{0}(\theta(t)), t \in E_{2}, \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
\tilde{x}_{l}^{0}\left(\theta^{l-1}(t)\right), t \in\left[\xi_{l}, \tilde{t}_{1}\right],
\end{array} \quad \tilde{x}(t)=\left\{\begin{array}{l}
\varphi(t), t \in E_{0}, \\
x_{1}(t), t \in E_{1}, \\
x_{2}(\theta(t)), t \in E_{2}, \\
\cdots \ldots \\
x_{l}\left(\theta^{l-1}(t)\right), t \in\left[\xi_{l}, \tilde{t}_{1}\right] .
\end{array}\right.\right.
$$

It is obvious that

$$
\dot{\tilde{z}}(t) \in P_{j}(t) \text { a.e. on } E_{j}, \quad j=1,2, \ldots,
$$

where

$$
\tilde{z}(t)=\left(\tilde{x}^{0}(t), \ldots, \tilde{x}^{0}\left(\zeta^{l-1}(t)\right), \tilde{x}(t), \ldots, \tilde{x}\left(\zeta^{l-1}(t)\right)\right)
$$

The mapping

$$
\left(t, \chi, x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{t}, z_{0}, \ldots, z_{l}\right) \rightarrow P_{l},
$$

$t \in E_{1}, \chi \in\{0,1\}, x_{i} \in A_{M}, y_{i} \in B_{M}, i=1, \ldots, l, z_{j} \in D_{M}, j=0, \ldots, l$, satisfies all requirements of lemma 2, and theretore $\dot{z}(t)=\bigcup_{j \geqslant 1} P_{j}(t)=P_{l}\left(t ; \chi\left(\zeta^{l-1}(t)\right), \tilde{x}(t), \ldots\right.$, $\ldots, \tilde{x}\left(\zeta^{l-1}(t)\right), \tilde{x}(\tau(t)), \ldots, \tilde{x}\left(\tau\left(\zeta^{l-1}(t)\right), \tilde{x}(\theta(t)), \tilde{x}(t), \ldots, \tilde{x}\left(\zeta^{l-1}(t)\right)\right)$ a.e. on E_{1}. Here $\chi(t)$ - the characteristic function of the interval $\left[t_{0}, \tilde{t}_{1}\right]$.

It follows from lemma 3 that there exist measurable functions $\tilde{u}_{i}(t), t \in E_{1}$, $i=0, \ldots, l, \quad \tilde{u}_{0}(t) \in U(\theta(t), \tilde{x}(\theta(t))) . \quad \tilde{u}_{i}(t) \in U\left(\zeta^{i-1}(t), \quad \tilde{x}\left(\zeta^{i-1}(t)\right)\right), \quad i=1, \ldots, l$, such that the following conditions are satisfied:

$$
\left\{\begin{array}{r}
\frac{d}{d t} \tilde{x}^{0}\left(\zeta^{i}(t)\right) \geqslant \dot{\zeta}^{i}(t) f^{0}\left(\zeta^{l}(t), \tilde{x}\left(\zeta^{i}(t)\right), \tilde{x}\left(\tau\left(\zeta^{i}(t)\right)\right), \tilde{u}_{i+1}(t), \tilde{u}_{i}(t)\right), \tag{7}\\
i=0, \ldots, l-2, \\
\frac{d}{d t} \tilde{x}^{0}\left(\zeta^{l-1}(t)\right) \geqslant \dot{\zeta}^{l-1}(t) f^{0}\left(\zeta^{l-1}(t), \tilde{x}\left(\zeta^{l-1}(t)\right), \tilde{x}\left(i\left(\zeta^{l-1}(t)\right)\right),\right. \\
\left.\tilde{u}_{l}(t), \tilde{u}_{l-1}(t)\right) \chi(t),
\end{array}\right.
$$

$$
\left\{\begin{array}{r}
\frac{d}{d t} \tilde{x}\left(\zeta^{i}(t)\right)=\dot{\zeta}^{i}(t) f\left(\dot{\zeta}^{i}(t), \tilde{x}\left(\zeta^{i}(t)\right), \tilde{x}\left(\tau\left(\zeta^{i}(t)\right), \tilde{u}_{i+1}(t), \tilde{u}_{i}(t)\right),\right. \\
i=0, \ldots, l-2, \\
\frac{d}{d t} \tilde{x}\left(\zeta^{l-1}(t)\right)=\dot{\zeta}^{l-1}(t) f\left(\zeta^{l-1}(t), \tilde{x}\left(\zeta^{l-1}(t)\right), \tilde{x}\left(\tau\left(\zeta^{l-1}(t)\right)\right),\right. \tag{8}\\
\left.\tilde{u}_{l}(t), \tilde{u}_{l-1}(t)\right) \chi(t),
\end{array}\right.
$$

a.e. on E_{1}.

Carrying out elementary transformations and taking into account (6), from (7), (8) we obtain

$$
\begin{gathered}
\dot{\tilde{x}}(t)=f(t, \tilde{x}(t), \tilde{x}(\tau(t)), \tilde{u}(t), \tilde{u}(\theta(t))), t_{0} \leqslant t \leqslant \tilde{t}_{1}, \\
\tilde{x}\left(\tilde{t}_{1}\right) \geqslant \int_{t_{\theta}}^{\tilde{\tau}_{1}} f^{0}(t, \tilde{x}(t), \tilde{x}(\tau(t)), \tilde{u}(t), \tilde{u}(\theta(t))) d t,
\end{gathered}
$$

where

$$
\tilde{u}(t)=\left\{\begin{array}{l}
\tilde{u}_{0}(\zeta(t)), t \in E_{0}, \\
\tilde{u}_{1}(t), t \in E_{1}, \\
\tilde{u}_{2}(\theta(t)), t \in E_{2}, \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\tilde{u}_{l}\left(\theta^{l-1}(t)\right), t \in\left[t_{l}, \tilde{t}_{1}\right] .
\end{array}\right.
$$

From the definition, $\tilde{x}\left(\tilde{t}_{1}\right)=\tilde{x}_{l}\left(\tilde{t}_{1}\right) \leqslant \tilde{x}_{l}\left(\tilde{t}_{1}\right)+\tilde{v}_{l}\left(\tilde{t}_{1}\right)$ since $\tilde{v}_{l}\left(\tilde{t}_{1}\right) \geqslant 0$.
In this way

$$
I\left(\tilde{t}_{1}, \tilde{x}(\cdot), \tilde{u}(\cdot)\right)=\omega .
$$

Of course $\tilde{x}(t), t_{0} \leqslant t \leqslant \tilde{t}_{1}$, satisfies boundary conditions (3). Consequently, the element $\left(\tilde{t}_{1}, \tilde{x}(\cdot), \tilde{u}(\cdot)\right)$ is the solution. Thus, theorem 1 has been proved.

Proof of theorem 2. It follows from assumption 1) that there exists a number L_{1} such that

$$
\Omega_{1}=\left\{\left(t_{1}, x(\cdot), u(\cdot)\right) \in \Omega \mid I\left(t_{1}, x(\cdot), u(\cdot)\right) \leqslant L_{1}\right\} \neq \emptyset
$$

Of course,

$$
\inf _{\Omega_{1}} I=\inf _{\Omega} I .
$$

Further, in the same way as in [1], one proves the existence of a number $M \geqslant 0$ such that

$$
|x(t)| \leqslant M, t_{0} \leqslant t \leqslant t_{1}, \quad \forall\left(t_{1}, x(\cdot), u(\cdot)\right) \in \Omega_{1}
$$

In this manner, the proof of theorem 2 is reduced to that of theorem 1.

Remark 2. Theorems 1 and 2 hold true also in the case when the right-hand side of system (1) has the form

$$
f\left(t, x\left(\imath_{1}(t)\right), \ldots, x\left(\tau_{s}(t)\right), u\left(\theta_{1}(t)\right), \ldots, u\left(\left(\theta_{v}(t)\right)\right)\right.
$$

2. Problem formulation

Consider linear time invariant controllable and observable system described by the equations

$$
\begin{gather*}
\dot{x}=A x+E u \quad x(0)=0 \tag{la}\\
y=C x+E u, \tag{lb}
\end{gather*}
$$

where $x=x(t) \in R^{n}, u=u(t) \in R^{q}, y=y(t) \in R^{p}, t \geqslant 0$ are the state, input and output vectors respectively.

The transfer function matrix of system (1) is given by the formula

$$
\begin{equation*}
H(s)=C\left(s 1_{n}-A\right)^{-1} B+E \tag{2}
\end{equation*}
$$

and is a rational proper $p \times q$ matrix.
Assume that a $p \times r$ rational proper matrix T is given.
Synthesis Problem
Find constant matrices $F \in R^{q \times p}$ and $G \in R^{q \times r}$ such that the system (1) under the action of a control law

$$
\begin{equation*}
u=F y+G v \tag{3}
\end{equation*}
$$

is controllable and observable and its transfer function matrix is T, where $v=v(t) \in R^{r}$ is a vector of external reference signals.

The stated above problem has not been solved satisfactorily. The most difficult step in solving it is to find a solution of the nonlinear matrix equation

$$
\begin{equation*}
T=H\left(1_{q}-F H\right)^{-1} G \tag{4}
\end{equation*}
$$

with respect to matrices F and G. The attempts to overcome it were based either on very strong assumptions e.g. invertibility of matrix H or required solving a large system of linear equations with no insight in inner properties of the systems.

3. Solution to the problem

Consider S_{H}^{0} - minimal observability matrix for the system with the transfer function matrix $H . S_{H}^{0}$ has following properties (Forney [3]):
(a) $S_{H}^{0}=[P R] . P \in R[s]^{p \times p}, R \in R[s]^{p \times a}-P$ and R are polynomial matrices.
(b) P is row proper.
(c) P and R are relatively left prime.
(d) $H=P^{-1} R$
$\operatorname{det} P$ is the characteristic polynomial of the system described by the H, deg det P-degree of det P-is the dimension of minimal state space realisation of the H.

Notice that these are the properties of polynomial matrix quotient representation of transfer function matrix H introduced by Wolovich (Wolovich [33]).

Let $S_{T}^{0}=[U L]$ be minimal observability matrix for the system with transfer function matrix T. Assume that both matrices $\left(S_{H}^{0}\right.$ and $\left.S_{T}^{0}\right)$ have their rows ordered in such a way that row indexes i.e. highest degrees of polynomial elements in rows form nondecreasing sequences.

One can easy verify that (4) is equivalent to

$$
\begin{equation*}
T=\left(1_{p}-H F\right)^{-1} H G \tag{5}
\end{equation*}
$$

Substitute H and T expressed as quotients of polynomial matrices as in property (d) of minimal observability matrices. We obtain

$$
U^{-1} L=(P-R F)^{-1} R G
$$

This is equivalent to

$$
\begin{gather*}
D U=P-R F \tag{6a}\\
D L=R G \tag{6b}
\end{gather*}
$$

where D is some $p \times p$ nonsingular polynomial matrix. System (6) can be written in more concise form

$$
D S_{T}^{0}=S_{H}^{0}\left[\begin{array}{ll}
1_{p} & 0 \\
-F & G
\end{array}\right]
$$

Since (1) and closed loop system are assumed to be controllable and observable, the state spaces of both systems should have the same dimensions. Thus $\operatorname{det} D \in R-\{0\}$ because

$$
\operatorname{deg}(\operatorname{det} U)=\operatorname{deg}(\operatorname{det} P)+\operatorname{deg}(\operatorname{det} D)
$$

and $\operatorname{deg}(\operatorname{det} U)$ as well as $\operatorname{deg}(\operatorname{det} P)$ are dimensions of minimal realisations of T and H respectively. Let denote

$$
\left[\begin{array}{ll}
1_{p} & 0 \tag{7}\\
-F & G
\end{array}\right]=M
$$

We get

$$
\begin{equation*}
D S_{T}^{0}=S_{H}^{0} M \tag{8}
\end{equation*}
$$

where M is constant matrix of the form (7) and D is unimodular polynomial matrix. We see that equation (8), is linear with respect to elements of matrices F and G and the lett side of it is parametrised by coefficients of elements of D. (8) is much more attractive for computional purpose than (4) but so far one might doubt in advantages of it since elements of the unimodular matrix remain unspecified and can be of arbitrary high degree.

It was shown however ([15]) that if there exists a solution to (8) satisfying the assumptions of the problem statement then the matrix D should have the following form

$$
D=\left[\begin{array}{cccc}
D_{1} & 0 & \ldots & 0 \tag{9}\\
U_{2}, & D_{2} & \ldots & 0 \\
. & . . & \ldots & . \\
U_{t 1} & U_{t 2} & \ldots & D_{t}
\end{array}\right]
$$

Step 5. Check if condition (10) is satisfied. If not then there is no solution to the problem. Otherwise choose maximal number of independent rows of matrix

$$
\left[\begin{array}{l}
R_{1} \\
E
\end{array}\right]
$$

take corresponding rows of matrix

$$
\left[\begin{array}{lll}
U_{1}-P_{1} & X & P_{1} Y-L_{1} \\
1_{p}-X & Y
\end{array}\right]
$$

and solve resulting linear noncontradictory equation with respect to matrices F and G.

4. Example

Let

$$
\begin{gathered}
H(s)=g_{1}^{-1}\left[\begin{array}{lll}
s^{4}+2 s^{2}-3 s & 0 & s^{4}+s^{3}+2 s^{2}-s-3 \\
s^{4}-s^{3}+2 s^{2}-5 s+3 & s^{3}+2 s-3 & 0 \\
s^{2}-2 s+1 & 0 & s^{4}-s^{3}-s^{2}+s
\end{array}\right] \\
T(s)=g_{2}^{-1}\left[\begin{array}{lll}
(s+3)\left(-2.5 s^{3}-3.5 s^{2}+1.5 s-0.5\right) & (s+3)\left(5.5 s^{3}+6.5 s^{2}+7.5 s+0.5\right) \\
1.5 s^{4}+22.5 s^{3}+30.5 s^{2}+14 s-3.5 & 7.5 s^{4}+25.5 s^{3}+37.5 s^{2}+19.5 s \\
(s+3)\left(-4 s^{3}-3 s^{2}+5 s+2\right) & (s+3)\left(-2 s^{3}-3 s^{2}+4 s+1\right)
\end{array}\right]
\end{gathered}
$$

where $g_{1}=(s-1)^{2}\left(s^{2}+s+3\right)$ and $g_{2}=(s+3)\left(9 s^{3}+10 s^{2}+5.5 s+0.5\right)$. Compute minimal observability matrices

$$
\begin{gathered}
S_{H}^{0}=\left[\begin{array}{llllll}
s-1 & 0 & 0 & s & 0 & s+1 \\
0 & s-1 & 0 & s-1 & 1 & 0 \\
0 & 0 & s^{2}+s+3 & 1 & 0 & s^{2}+s
\end{array}\right] \\
S_{T}^{0}=\left[\begin{array}{llllll}
4 s+1 & 0 & -2.5 s & -1 & 3 s+1 \\
s-3 & s+3 & -2.5 s+1.5 & s+2 & 2 s \\
2 s^{2}+2 s+1 & 0 & s^{2}+s+0.5 & -s^{2}-s+1 & s^{2}+s+2
\end{array}\right]
\end{gathered}
$$

We see that row indexes of both polynomial matrices constitute the same set $\{1,1,2\}$. Polynomial unimodular matrix D has the form

$$
D=\left[\begin{array}{lll}
d_{11} & d_{12} & 0 \\
d_{21} & d_{22} & 0 \\
a_{1} s+b_{1} & a_{2} s+b_{2} & d
\end{array}\right]
$$

where $d_{11}, d_{12}, d_{21}, d_{22}, a_{1}, b_{1}, a_{2}, b_{2}, d$ are real numbers such that $\left(d_{11} d_{22}+\right.$ $\left.-d_{21} d_{12}\right) d \neq 0$.

Since $[P]_{h}=1_{3}$ we have $X=[D U]_{h}$ and $Y=[D L]_{h}$.

$$
\begin{aligned}
& R_{1}=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 0 \\
1 & 0 & -3 \\
0 & 0 & 0
\end{array}\right], \quad E=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad P_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3 \\
0 & 0 & -1
\end{array}\right] \\
& X=\left[\begin{array}{lll}
4 d_{11}+d_{12} & d_{12} & -2.5 d_{11}-2.5 d_{12} \\
4 d_{21}+d_{22} & d_{22} & -2.5 d_{21}-2.5 d_{22} \\
4 a_{1}+a_{2}+2 d & a_{2} & -2.5 a_{1}-2.5 a_{2}+d
\end{array}\right], \quad Y=\left[\begin{array}{ll}
d_{12} & 3 d_{11}+2 d_{12} \\
d_{22} & 3 d_{21}+2 d_{22} \\
a_{2}-d & 3 a_{1}+2 a_{2}+d
\end{array}\right] \\
& U_{1}=\left[\begin{array}{ll}
3 d_{12}-d_{11} & -3 d_{12} \\
3 d_{22}-d_{21} & -1.5 d_{12} \\
3 b_{2}-b_{1}-d & -3 d_{22} \\
3 a_{2}-4 b_{1}-a_{1}-b_{2}-2 d & -1.5 d_{22} \\
L_{1}=\left[\begin{array}{ll}
2 & -3 a_{2}-5 b_{1}+2.5 b_{2}-1.5 a_{2}-d
\end{array}\right] \\
\left.\begin{array}{ll}
d_{11}-2 d_{12} & -d_{11} \\
d_{21}-2 d_{22} & -d_{21} \\
b_{1}-2 b_{2}-d & -2 d-b_{1} \\
a_{1}+d-b_{2}-2 a_{2} & -3 b_{1}-a_{1}-2 b_{2}-d
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

It is easy to check that

$$
\perp\left[\begin{array}{l}
R_{1} \\
E
\end{array}\right]=\left[\begin{array}{llllrrr}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 0 & 1 & 0 & -1 & 0 & 4 \\
1 & 0 & 1 & 0 & 0 & -2 & 1
\end{array}\right]
$$

We compute now the matrices $U_{1}-P_{1} X$ and $P_{1} Y-L_{1}$

$$
\begin{aligned}
& U_{1}-P_{1} X=\left[\begin{array}{lll}
-5 d_{11}+2 d_{12} & -4 d_{12} & 2.5 d_{11}+d_{12} \\
-5 d_{21}+2 d_{22} & -4 d_{22} & 2.5 d_{21}+d_{22} \\
3 b_{2}+12 a_{1}+3 a_{2}+5 d-b_{1} & 3 a_{2}-3 b_{2} & -7.5 a_{1}-7.5 a_{2}-1.5 b_{2}+2.5 d \\
3 a_{1}+4 a_{2}-4 b_{1}-b_{2} & -2 a_{2}-b_{2} & -2.5 a_{1}-4 a_{2}+2.5 b_{1}+2.5 b_{2}
\end{array}\right] \\
& P_{1} Y-L_{1}=\left[\begin{array}{ll}
3 d_{12}-d_{11} & 4 d_{11}+2 d_{12} \\
3 d_{22}-d_{21} & 4 d_{21}+2 d_{22} \\
4 d-3 a_{2}-b_{1}-2 b_{2} & -9 a_{1}-6 a_{2}+b_{1}-d \\
a_{2}+b_{2}-a_{1} & 3 b_{1}+2 b_{2}-2 a_{1}-2 a_{2}
\end{array}\right]
\end{aligned}
$$

The unique solution to (10) is:

$$
a_{1}=a_{2}=b_{1}=b_{2}=d_{12}=d_{21}=0, \quad d_{11}=d_{22}=d=1
$$

In the last step we compute a solution to equation

$$
\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 0 \\
1 & 0 & -3
\end{array}\right][F G]=\left[\begin{array}{rrlrr}
-5 & 0 & 2.5 & -1 & 4 \\
2 & -4 & 1 & 3 & 2 \\
5 & 0 & 2.5 & 4 & -1
\end{array}\right]
$$

[33] Wolovich W. A. Linear multivariable systems Applied Math. Sciences, Springer Verlag, NY, 1974.
[34] Wolovich W. A., Antsaklis, P., Elloth N. On the stability of solutions to minimal and nonminimal design problems IEEE Trans. Autom. Control, AC-21 (1976) 1, 88.
[35] Wolovich W. A., Falb P. L. Invariants and canonical forms under dynamic compensation SIAM J. Control and Opt., 14 (1976) 6, 996.

Received, December 1980.

Ogólny algorytm syntezy ukladu o zadanej macierzy transmitancji za pomocą proporcjonalnego sprzężenia zwrotnego od wyjścia

W pracy przedstawiona została metoda sprowadzenia nieliniowego równania macierzowego $T=H\left(1_{q}-F H\right)^{-1} G$ (wiążącego macierze transmitancji operatorowych H i T oraz stale macierze: sprzężenia zwrotnego od wyjścia F i transformacji wektora wejścia G, występującego w problemie syntezy ukłađu o zadanej macierzy transmitancji) do liniowego układu równań o stałych współczynnikach. Przedstawiony algorytm pozwala znaleźć rozwiązanie problemu w przypadku właściwych macierzy transmitancji operatorowych o dowolnej liczbie kolumn. W przypadku, gdy to możliwe naturalną konsekwencją przeksztalceń jest parametryzacja otrzymanej rodziny rozwiązań.

Общий алгоритм синтеза системы с заданной матрицей передаточной функции с помопью пропорциональной обратной связи с вьхода

[^1]
[^0]: $\left.{ }^{2}\right) \mathrm{Pr}$ - operator of orthogonal projection

[^1]: B работе представлен метод сведения нелинейного матричного уравнения $T=$ $=H\left(1_{9}-F H\right)^{-1} G$ (связываюшего матрицы операторных передаточных функций H и T а также постоянные матришы: обратной связи с выхода F и преобразования вектора входа G, выстулающего в задаче синтеза системы с заданной матрицей передаточной функции) к линейной системе уравнений с постоянными коэффициентами. Представленный алгоритм позволяе1 найти решение задачи в случае правильных матриц операторных лередаточных функций с производьным числом столбцов. В случае, когда это возможно, естественным следствием преобразований является параметризация полученного семейства решений.

