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In the p~per the well known nonlinear equation T= H (lq-FH)- 1G (which describes the relation 
between. transfer function matrices H and T and a pair (F, G) representing output feedback and 
input transformation in the exact model matching problem) is replaced equivalently by linear 
(with respect to F and G) equation. Presented algoritlun is a general one and gives an answer to 
the exact model matching question for any pair of proper transfer function matrices with arbitrary 
number of cohunns. Parametrisation of solutions (when possible) is obtained . 

• 
1 .. ~ntroduction 

The problem of forming dynamical performance of a system represents one 
of the most important questions of control theory of multivariable linear systems. 
The main method is based on suitable shifting of poles by feedback techniques. 
In the case of one dimensional object it is not difficult to express desired dynamical 
proporties of the closed loop system by fi1eans of itspoles locations. Closed loop 
poles of multivariable system do not describe them uniqely. Full characterisation 
of dynamical performance of linear time invariant controllable and observable 
system is given by an impuls response matrix or equivalently by transfer function 
matrix. 

· The transfer function matrix synthesis problem (called the exact model mat­
ching problem) was introduced by W.A. Wolovich in 1971 [29]. The whole biblio­
graphy devoted to this problem can be divided in two groups due to aspects they 
touch. First group is concerned with state feedback techniques. The lack of me­
surable state vector is compensated by using a state observer. To this group there' 
belong the following papers: [1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 18, 20, 21, 22, 
23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The second group is pertained to the si­
tuation where the output feedback only is used: [2, 6, 14, 15, 17, 19, 24, 25]. For 
details see Mysze:vski [15]. 

This pa.per presents an algorithm of the exact model matching with relatively 
weak assumptions with respect to synthesised system. 
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2. Problem formulation 

Consider linear time invariant controllable and observable system described 
by the equations 

X (0)=0 

y=Cx+Eu, 

(la) 

(ib) 

where x=x (t) ER", u=u (t) E Rq, y = y (t) ER", t;;?;O are the state, input and out­
put vectors respectively. 

The transfer function matrix of system (1) is given by the formula 

H(s)=C (sl,.-A)- 1 B+E (2) 

and is a rational proper p X q matrix. 
Assume that a p x· r rational proper matrix T is given. 

Synthesis Problem 

Find constant matrices FeRqx"and GeRttxrsuch that the system (1) under the 
action of a control Jaw 

u=Fy+Gv (3) 

is controllable and observable and its transfer function matrix is T, where v=·v (t) ER: 
~ 

is a vector of external reference signals. · 
The stated above problem has not been solved satisfactorily . The most diffi­

cult step in solving it is to find a solution of the nonlinear matrix equation 

(4) 

with respect to matrices F and G. The attempts to overcome it were based either 
on very strong assumptions e.g. invertibility of matrix H or required solving a large 
system of linear equations with no insight in inner properties of the systems. 

3. Solution to the problem 

Consider S~ - minimal observability matrix for the system with the tran&fer 
function matrix H. S1~ has following properties (Forney (3]): 

(a) SZ=[PR]. PER[s]" x", ReR[s]" xq _p and Rare polynomial matrices. 
(b) P is row proper. 
(c) P and R :;:re relatively left prime. 
(d) H=P- 1 R 

det P is the characteristic polynomial of the system described by the H, deg -det 
P-degree of det P-is the dimension of minimal state space realisation of the H. 

Notice that these arc the properties of polynomial matrix quotient represen­
tation of transfer function matrix H introduced by Wolovich (Wolovich [33]). 
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Let S~= [U L] be minimal obse.rvability matrix for the system with transfer 
·on matrix T. Assume that both matrices (S.Ji and S~) have their rows ordered 
h a way that row indexes i.e. highest degrees of polynomial elements in rows 
nondecreasing sequences. 

One can easy verify that (4) is equivalent to 

(5) 

titute H and T expressed as quotients of polynomial matrices as in property 
of minimal observability matrices. We obtain 

· is equivalent to 

u- 1 L = (P - RF)- 1 RG 

DU= P - RF 

DL= RG, 

(6a) 

(6b) 

ere D is some p x p nonsingular polynomial matrix. System (6) can be written 
in more concise form • 

Since (1) and closed loop system are assumed to be controllable and observable, 
the state spaces of both systems should have the same dimensions. Thus det D E R- {0} 
because 

deg (dei U)=deg (det P)+deg (det D) 

and deg (det U) as well as deg (det P) are dimensions of minimal realisations ofT 
and H respectively. Let denote 

[
lP O]=M 
-F G 

(7) 

We get 

DS~=S~M, (8) 

where M is constant matrix of the form (7) and D is unimodular polynomial matrix. 
We see that equation (8), is linear with respect to elements of matrices F and G 

and the left side of it is parametrised by coefficients of elements of D. (8) is much 
more attractive for computional purpose than ( 4) but so far one might doubt in 
advantages of it since elements of the unimodular matrix remain unspecified and 
can be of arbitrary high degree. 

It was shown however ([15]) that if there exists a solution to (8) satisfying the 
assumptions of the problem statement then the matrix D should have the following 
form 

:.I (9) 
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Step 5. Check if condition (10) is satisfied . If not then there is no solution to the 
problem. Otherwise choose maximal number of independent rows of matrix 

take corresponding rows of matrix 

and solve resulting linear noncontradictory equation with respect to matrices F 
and G. 

4. Example 

Let 

[

(s+ 3) (- 2.5s 3
- 3.5s2 + 1.5s-0.5) (s+ 3)(5.5s3 +6.5s2 + 7.5s+0.5)] 

T (s)=g:; 1 L5.sA' +22.5s3 + 30.5s2 + 14s- 3.5 7.5s4 +25.5s3 + 37.5.1'2 + 19.5.s 
(s+3) ( -4s3 -3s2 +5s+2) (s+3) ( -2s3 -3s2 +4s+ 1) _ 

where g 1 = (s- 1)2 (s2 +s+3) and g2 = (s+3)(9s 3 + 10s2 +5.5s+0.5). Compute mi­
nimal observability matrices 

['~! 0 0 s 0 HI] 
SZ= ~ s-1 0 s-1 1 

~z+s 0 s2 +s+3 1 0 

r+l 0 -2.5s -1 3s+! ] 
S~= s-3 s+3 - 2.5.H 1.5 s+2 2s 

2s2 +2s+l 0 s2 +s+0.5 -s2 -s+ 1 s2 +s+-2 

We see that row indexes of both polynomial matrices constitute the same set {1, 1, 2}. 
Polynomial unimodular matrix D has the form 

where du, dJz, dz ~> d22 , a~> b1 , a2 , b2 , dare real numbers such that (d11 d22 + 
-d21 dl2) d¥=0. 



_;. general algorithm of exact model 

nee [P]11 = 13 we have X= [DU]!, and Y= [DL]h. 

rl 0 -n 0 ] 
Rt= 1 0 

0 0 

lt is easy to check that 

[1 0 1] E= I 0 0 , 
0 0 l 

0 0 l 
0 0 0 
0 1 0 
0 1 0 

P, ~ r~ 
0 

J] 1 
0 
0 - 1 

0 0 0] 1 - 1 - 1 
- 1 0 4 

0 - 2 I 

We compute now the matrices U1 -P1 X and P1 Y- L 1 

The unique solution to (10) is : 

a 1 == a2 = h1 ==h2 = d12 = d21 = 0, d11 = d22 = d= I. 

In the last step we compute a solution to equation 

[

1 0 
0 1 
1 0 

2] [-5 0 [F G] == 2 
- 3 5 

0 2.5 - 1 
- 4 1 3 

0 2.5 4 

141 
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Ogolny algorytm syntezy ukladu o zadanej macierzy 

transmitancji za pomocl! proporcjonalnego sprz~zenia 
zwrotnego od wyjscia 

W pracy przedstawiona zostala metoda sprowadzenia nieliniowego r6wnania macierzowego 
T= H(J. - FH) - 1 0 (Wi<t:Z<tcego macierze transmitancji operatorowych Hi Toraz stale macierze: 
sprz~zenia zwrotnego od wyjscia F i transformacji wektora wejscia G, Wyst~pujflcego w problemie 
syntezy uJ.dadu o zadanej macierzy transmitancji) do Iiniowego ukladu r6wnan o sta!ych wsp6l­
czynnikach. Przedstawiony algorytm pozwala znalezc rozwi<tzanie problemu w przypadku w!asci­
wych macierzy transmitancji operatorowych o dowolnej liczbie kolumn. W przypadku, gdy to 
mozliwe naturalnq konsekwencj'! przeksztalcen jest parametryzacja otrzymanej rodziny rozWi<tzar\. 

0611.1nii anropHTM CHHTeJa cncTeMhi c Ja.r.aHHoii 

MaTpnneii nepe.z:.aTO'IHOU cflYHKJ.IlfH C DOMOmblO 
DpODOpl~UOHaJJbHOH o6paTHOH CBH3H C BbiXO.Z:.a 

B pa6ote npC)J.CTaBJICH MCTO~~ CBC)J.C"fi.Hll RCJIIH(Cih!OfO M3TPH'lliOf0 ypa:BRC}(JHI T= 
=H o.- F H)- 1 G (CBl!3bJB3IOIIIero MaTpR~bl onepaTOpHblX nepe)J.aTO'!HbiX QJYH~J.!.H li J{ T 
a TaKJKe llOCTOl!HHblC MaTpHUhl: o6paTHOH CB.SI3H C BbiXO,ll;a F H npeo6p330BaHJ-U! BeKTOpa BXO)J.a 
G, BhlCT)'llaJOIIIero B 3a)J.a'!e CHHTC3a CJ.!.CTCMbi C 3a)J.3liHOH MaTp111.1eif nepe)J.aTO'lHOl! QJJRK~IU!) 
K .ID!HCllHOM CJ1CTCMe ypaBHeHMH C ITOCTOllHHb!MJ.!. K03!}JcjJJ.!.qi-ieJ{TaMH. Hpe,ncTaBJJCHHblH anropl!TM 
l103BOJ!l!C1 Hai-iTJ.!. pell!CIDIC 33)J.3'!J.!. B CJIY'!3C npaBHJ!bHhlX MaTpni.( onepaTOpHblX nepe)J.a­
TO'lllblX QJYHKI.IHll C llp0J;l.3BO)J.hHbJM 'illCJIOM CTOJ!6li;OB. B CJIJ'!aC, KOf)J.a 3TO B03MOJKHO, eCTCCT­
BCHf!blM cne)J.Cl'BHCM npeo6pa3o:aamm l!BmreTCl! napa.MeTpH3al.IJHI no,>y'!eHHoro ceMeii.CTBa pememti-i. 


