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In the paper the well known nonlinear equation T=H (1,— FH)~'G (which describes the relation
between transfer function matrices H and T and a pair (F, G) representing output feedback and
input transformation in the exact model matching problem) is replaced equivalently by linear
(with respect to F and G) equation. Presented algorithm is a general one and gives an answer to

the exact model matching question for any pair of proper transfer function matrices with arbitrary

number of columns. Paramstrisation of solutions (when possible) is obtained.
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1. Introduction

The problem of forming dynamical performance of a system represents one
of the most important questions of control theory of multivariable linear systems.
The main method is based on suitable shifting of poles by feedback techniques.
In the case of one dimensional object it is not difficult to express desired dynamical
proporties of the closed loop system by means of its poles locations. Closed. loop
poles of multivariable system do not describe them unigely. Full characterisation
of dynamical performance of linear time invariant controllable and observable
system is given by an impuls response matrix or equivalently by transfer function
matrix.

- The transfer function matrix synthesis problem {called the exact model mat-
ching problem) was introduced by W.A. Wolovich in 1971 [29]. The whole biblio-
graphy devoted to this problem can be divided in two groups due to aspects they
touch. First group is concerned with state feedback techniques. The lack of me-

surable state vector is compensated by using a state observer. To this group there

belong the following papers: [1,3,4,5,7,8,9,10,11, 12,13, 16, 18, 20, 21, 22,
23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The second group is pertained to the si-
tuation where the output feedback only is used: [2, 6, 14, 15, 17, 19, 24, 25]. For
details see Myszewski [15]. -

This paper presents an algorithm of the exact model matching with relatively
weak assumptionsv with respect to synthesised syétem.
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2. Problem formulation

Consider linear time invariant controllable and observable system described
by the equations

X=Ax+FEu x(0)=0 (lay
y=Cx+Eu, (1b)

where x=x(t) e R", u=u(t) € R y=y (1)€ R?, t>0 are the state, input and out-
put vectors respectively.
The transfer function matrix of system (1) is given by the formula

H(s)=C (s1,— A)~' B+E 2

and is a rational proper pxg matrix.
Assume that a p>Xr rational proper matrix 7" is given.

Synthesis Problem
Find constant matrices F e R*? and G € R**"such that the system (1) under the
action of a control law

u=Fy+Gv 3)

is controllable and observable and its transfer function matrix is 7, where v=uv{t)e R
is a vector of external reference signals.

The stated above problem has not been solved satisfactorily. The most diffi-
cult step in solving it is to find a solution of the nonlinear matrix equation

T:H(l,—FH)*l G Gy

with respect to matrices ¥ and G. The attempts to overcome it were based either
on very strong assumptions e.g. invertibility of matrix A or required solving a large
system of linear equations with no insight in inner properties of the systems.

3. Solution to the problem

Consider Sy — minimal observability matrix for the system with the transfer
function matrix H. S)} has following properties (Forney [3]):

(a) Sy=[PR]. PeR[s]P*?, Re R[s]°**—P and R are polynomial matrices.

(b) P is row proper.

{c) P and R cre relatively left prime.

(d) H=P~ 'R

det P is the characteristic polynomial of the system described by the H, deg det

P—degree of det P—is the dimensicn of minimal state space realisation of the .
Notice that these are the properties of polynomial matrix quotient represen-

tation of transfer function matrix A introduced by Wolovich (Wolovich [33]).
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Let S2=[U L] be minimal observability matrix for the system with transfer
fumction matrix 7. Assume that both matrices (Sg and S?) have their rows ordered
ia such a way that row indexes i.e. highest degrees of polynomial elements in rows
form nondecreasing sequences.

One can easy verify that (4) is equivalent to

T=(l,— HF)~! HG. (5)

Substitute H and 7 expressed as quotients of polynomial matrices as in property
1d) of minimal observability matrices. We obtain

U-!' L=(P—RF)~' RG
This is equivalent to
DU=P—RF (6a)

DL=RG, (6b)
where D is some pXp nonsingular polynomial matrix. System (6) can be written
in more concise form :
1 0
psg=s;;{_" . G]

Since (1) and closed loop system are assumed to be controllable and observable,
the state spaces of both systems should have the same dimensions. Thus det D e R—{0}
because

deg (det U)=deg (det P)+deg (det D)

and deg (det U) as well as deg (det P) are dimensions of minimal realisations of 7°
and H respectively. Let denote

1, 0]
[_F G]—M 5

DS?=S3M, (3)

We get

where M is constant matrix of the form (7) and D is unimodular polynomial matrix.
We see that equation (8), is linear with respect to elements of matrices F and G
and the left side of it is parametrised by coefficients of elements of D. (8) is much
more attractive for computional purpose than (4) but so far one might doubt in
advantages of it since elements of the unimodular matrix remain unspecified and
can be of arbitrary high degree.

It was shown however ([15]) that if there exists a solution to (8) satisfying the
assumptions of the problem statement then the matrix D should have the following
form

D, 0 .0

p| U D2 o 0 ©)

Ui Uz . D
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Step 5. Check if condition (10) is satisfied. If not then there is no solution to the
problem. Otherwise choose maximal number of independent rows of matrix

=]

UI—PI X P]_ Y—Ll
i~¥ ¥

take corresponding rows of matrix

and solve resulting linear noncontradictory equation with respect to matrices F
and G.

4. Example
Let
s*+252—3s 0 S*+534+25%2—5—3
H(s)=g;'| s*—5>+28*—5s+3 s°+25—-3 0
§—=25+1 0 st—53—5%+5

(s4+3) (—2.553—3.55?+1.55—0.5) (s+3)(5.55+6.55>+7.55+0.5)
T (s)=g5"'| 1.5s*+22.55° +30.55% +145—3.5  7.55*+25.55°+37.58* 4+ 19.5s
(s+3) (—4s3 =352 +55+2) (s+3) (=253 =357 +4s+1)

where g =(s—1)* (s*+s+3) and g,=(s+3) (9s°+ 105>+ 5.55s+0.5). Compute mi-
nimal observability matrices

s—1 0 0 K 0 s+1
82=10 s—1 0 s—110
0 0 s*+s+3 1 0 2+s
4s+1 0 —2.5s -1 3s+1
So=]s-3 s+3 —2.55+1.5 s+2 2s

2s2+4+25+1 0 245405 —5—s+1 s245+2

We see that row indexes of both polynomial matrices constitute the same set {1, 1, 2}.
Polynomial unimodular matrix D has the form

dll dlZ 0
D= dz: dzz 0
a13+b1 azs+b2 d

where oy, dy,, dyy, dyy, @y, by, a,, b5, d are real numbers such that (d,, dy, +
_le dll) d#—O.




& general algorithm of exact model

141

Since [P],=1; we have X=[DU], and ¥Y=[DL],.

10 2 10 0
101
01 0 01 0
=110 3]’ Ezég?’ Pr=lo0 -3
00 O 00 —1
4d11+d12 d{z _2.50"‘—2.5d12 d12 3d|1+2d12
X= 4d21+dgg dzz —2.50’21-—2.56/;._2 s Y= d22 3d21+2d22
da,+a,+2d a, —2.5a,—2.5a,+d d,—d 3d,+2a,+4d
>'3d12_d11 *3d12 —1-_5dx2
U . 3d22_d21 _3d22 -I.Sdzz
' 3b2_b1"d "‘3b2 —15b2'—0.5d
_36[2-41)1—611—1)2—2&' _bz'—3a2 2.Sbl+2.5b2—1.53.2—d‘
—d11—2d12 _dli
L = d21—2d22 _dll
YUl b —2b,—d —2d—b,
_dl+d—b2—203 _Bbl_(ll _2b_v—d

It is easy to check that

iR [o0o01 0 0 0O
{El”oooo 1 -1 -1
o010 -1 0 4
1010 0 -2 1

We compute now the matrices U, —P, X and P, Y—L,

[ —5d,+2d,, —4d,, 2.5d,, +4dy
U, —P k,_ “"5d21_+2d22 —4d22 2.5d21+d22
LR 3, + 120y + 3a, + 5d—b, 3a,—3b, —7.5a;,—7.5a;—1.5b,+2.5d
l_3([1 +4a2—4b1—‘b2 _2a2—b2 “2.5a; —'4(12 +2.5b1 +2.5b2
—3d12‘—'d11 4d‘1+2d12
o 3dyy—dsy, 4d, +2d,,
Po ¥=Lil g i oo, 35, Oy ity 4By il
_a2+b2_(ll 3b1+2b2—2a1—203

The unique solution to (10) is:
ay=a,=by=b,=d;=d,; =0, dyy=dy,=d=1.
In the last step we compute a solution to equation

16 & ~5 038 -1 #
01 O|FGI=| 2 -41 3 2
10 -3 5 025 & -1
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Ogolny algorytm syntezy ukladu o zadanej macierzy
transmitancji za pomocg proporcjonalnego sprzezenia
zwrotnege od wyjsScia

W pracy przedstawiona zostala metoda sprowadzenia nieliniowego réwnania macierzowego
T=H (1,—FH)™'G (wiazacego macierze transmitancji operatorowych H i T oraz stale macierze:
sprzgzenia zwrotnego od wyjscia F i transformacji wektora wejscia G, wystepujacego w problemie
syntezy ukladu o zadanej macierzy transmitancji) do liniowego ukladu réwnan o statych wspol-
czynnikach. Przedstawiony algorytm pozwala znalez¢ rozwiazanie problemu w przypadku wiasci-
wych macierzy transmitancji operatorowych o dowolnej liczbie kolumn. W przypadku, gdy to
mozliwe naturalng konsekwencja przeksztalcen jest parametryzacja otrzymanej rodziny rozwiazan.

O6umii anropuTM CHHTE32 CHCTEMBI C 3aJIAHHOH
MaTpuiell nepefaTouHOi QYHKIHH ¢ HOMOMIBIO
HPONOPIHOHAILHONH 00paTHON CBA3H C BBIXO/2

B paGore mnpeacraBieH MeETO[ CBEAEHHMSI HEITHHEIHOTO MATPWYHOIO ypaBHewusi 7=
=H(,—F H) ' G (CBA3BIBAIOILETO MATPHLbI CIEPATOPHBIX NEPeiaTOuYHbIXx Gymkunit H u T
a TakXKe IOCTOSHHbIE MAaTPHLbl: 0OpaTHOM CBA3HM C BBIXOHA F ¥ npeoOPa30BaHHs BEKTOpAa BXOIA
G, BLICTYNAOIETO B 3aJa4e CHHTE3a CHCTEMBI C 3aJaHHON MaTtpuiiel IepesaTowHOM (yHKIHH)
X JIMHEMHOIf cucTeMe ypaBHEHWI C NOCTOSHHbIMU KodbhdummenTamu. TIpescTaBieHHbl anropurMm
NO3BOJISE1 HAWTH pelIeHne 3aJayd B Cllyda€ NPaBHIBHBIX MATPHLl ONEPAaTOPHBIX Iepela-
TOYHBIX (PYHKIWMII C IPOM3BOABHEBIM YMCIIOM CTOJOHOB. B ciyuae, KOrza 3TO BO3MOXHO, €CTECT-
BCHHBIM CIEACTBHEM NpeoOpa3oBanmid ABIAETCA TapaMeTPH3aLEs NOTyYeHHOTO CeMeHCTBa penieHnii.




