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The paper considers consequences of theorems given in [2, 3, 4]. Certain degenerate cases 
and the range of the synthesis method of diagonal controller described in [2, 4] are stlldied. The 
possibilities of adding nondiagonal elements to diagonal controller are assessed. 

Notations: 

det (G); .. . minor of the matrix G created by deleting i-th row and j-th column. 

m(f)= inf lf(jw)l 
WE[O, ro.J 

M(f) = sup lf(jw)l 
roE(O, COa] 

!lq (jw)II=M (q1)+ ... +M (q") fDr q (jw)=(q1 (jw) , ... , qm (jw)) 

f(q)=o (qP) iff . {k. 11. lf(q)l o} p=mm -mteger 1m ·· · · k-·= 
l!ql!-+0 llqll 

1. Introduction 

The paper constitutes a continuation of the article [4], which regarded the syn­
thesis of multivariable linear control systems in the frequency domain. The distur­
bance damping over the given frequency range [0, wa] was accepted there as a per­
formance index and the requirements were formulated in a quantitative way. The 
sequential method of diagonal controller design was proposed, which warrants 
that the closed-loop control system will be stable and will satisfy specified demands. 
In connection with this the following questions could be stated: 

- Can the strong disturbance attenuation be achieved for all plants? 



146 A. ZOOHOWS-KI 

-If we considere plants, for which strong disturbance damping can be achie­
ved, does the procedure described in [4, 2] apply to all of them? 

-Will the increased number of "degrees of freedom", that is using the same 
method for the design of the controller containing more nonzero elements 
than the diagonal one, im.prove characteristics of the system? 

In the presented paper we shall try answer these questions. At the begining, 
in order to prepare foundations , we shall remaind some results from [2] (part 2) 
and describe the generalized on the case of full controller sequential return diffe­
rem~e method (part 3). Than we shall discuss the first two questions (part 4) and 
the Iast one (part 5). 

2. Basic relationships 

Let us consider the standard control system with feedback loops and distur­
bances acting additively on outputs. Assume, that the plant IS described by the 
transfer-function matrix 

G (s)=[g;j (s)]; , j=l, ... , m (1) 

The antidisturbance performance of the system is represented by the matrix 

Q (s)= [qu (s)] ;, j= 1, ... , m=(I + G (s) R (s))- 1 (2) 

where R (s) =diag (r11 , ... , rmm) refers to the controller. 
From now on we shall omit the argument s=jw if it does not lead to m isun­

derstanding. 
l n [2] the notion of main loops was introduced, which are created by the con­

troller and diagonal elements of matrix G when interactions are cancelled (gij=O 
for i # j). For these loops the vector-valued function 

(3) 

of autonomous dampings was built. 
In the original formulation of the synthesis problem [2, 4], the diagonal ele­

ments of matrix Q, or dampings achieved in main loops after taking into account 
interactions, play the decisive role. The vector built of them we shall call diagonal 
dampings and denote with 

(4) 

For both of these vectors we define norms llqll and ilqdll (see Notations). 
Jn [23] the fundamental for subsequent considerations theorem was proved. 

THEOREM 1. Let 
det G 

A=-~~-.-; 

Jlgkk 
,, .~ 1 

det (G): 
A;= -m--

Jlgkk 
k = l 
ktfi 

(5) 
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det (l+GR) 
B = ----­

m n (1 + gkk rkk) 
k=l 

Then for the given control system the following relationships hold: 

A; 
q;;=B q;+o (q), i=l, ... ,m 

. . det (G)5 
qii=(-l)<+J det(G): q;;~o(q), ii=j 
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(6) 

(7) 

(8) 

(9) 

On the basis of this theorem we are able to formulate the sufficient conditions 
of satisfying inequalities 

i= l, ... ,m. (10) 

which, with the requirement that the system should be stable constitute our control 
problem. 

Let us introduce for autonomous dampings denotions 

k=1, ... ,m . (11) 

Then the sufficient conditions of satisfying ( i 0) form the set of inequalities 

M(Ai)x; 
- --,-, ---n-,----<<5; (12) 

m (A) (1 - }; xk)-}; M (Ak) xk 
k=l 

i=l, ... ,m 

(13) 

3. Return differences 

The return differences method consists in consecutive joining of single control­
lers into feedback loops in a way which ensures stability of the final closed-loop 
system. The procedure described here, based on [3], is slightly more general than 
in [5]. 

i) Let R 0 be a zero matrix and R (c{, fJ) the matrix which has the only nonzero 
entry rap on the place (o:, [J) u, fJ<m. rap is the transfer function of the appro­
priate controller. 

3 
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------------------------------------------------------------

Let us arrange all the controllers we want to add into sequence 

{ri J. ' ri J. ' •• • , ri J. } 
11 22 ss 

(14) 

The final matrix R can be expressed as 

R = _2; R (ik, jk) (15) 
k=l 

We shall define also the sequence 

{Ro, R 1 , ••• , Rs} (16) 

where 

k=l, ... , s (17) 

To each Rk corresponds matrix Tk> which will play the crucial role in the algorithm, 

(18) 

ii) Now we shall calculate the transfer function being seen by the controller Rik h 

under assumption, that the remaining k-1 controllers R;, J,• .. . , R;k -
1 
h-

1 

have been already joined to the system. · 

It turns out [3], that it is simply the proper element of the matrix Tk-l 

(19) 

Let us form the cone-dimensional return difference 

k = ], ... ,s . (20) 

As it can be easily proved [5, 3], if no one of the return differences has zeros 
m the r ight half-plane, then the whole system is stable. 

The selection of the controller R;k h for transfer function tk-l (}k, ik), by means 
of standard methods, we shall call synthesis of the k-th equivalent loop. 

If we are designing the system with diagonal controller then the sequence (14) 
takes simple form: 

(21) 

To fascilitate calculations of succesive matrices Tk the reccursive formulas can 
be \Vorked out [5, 3]: 

(22) 

where 

tk-l (A, · ) - A-th row of the matrix Tk-1 . 
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4. The range of the design procedure 

In the above considerations the autonomous dampings occupy central place. 
They are intermediate link between requirements imposed on the system (from 
which we calculate x1., ... , xm) and scalar dampings in equivalent loops (which 
are calculated from x 1 , ... , Xm· Details see [4J). By damping in k-th equivalent loop 
we mean M (1 /f,J Hence the relations between vector of autonomous dampings 
and vector 01. diagonal dampings occuring in the problem formulation (10) are of 
great i!>1portance. 

At the beginning let us notice that sufficient conditions (12), (13) can be sa­
tisfied only when m (A) >0 and M(A;) <oo i= 1, ... , 111. Generally speaking functions 
A and Ai have decisive influence on the properties of the control> system. It can 
be expressed in the following theorem: 

THEOREM 2. 

i) If 111 (A) >0 and M (AJ <oo, i= I, ... , m then 

(1\q\\ ~o)=>(l\q d\1 ~o) (23) 

ii) If m(A;)>O for i=I, ... ,m and M(A)<oo, M(A;)<oo for i=l, ... ,m then 

(1\qc~\\ ~o)cc>(\\qi\~O) 

iii) If m (A) >0, M (A) <:oo and m (A;) >0, M (A;) < oo, i= I, ... , m then 

(\lq dll ~o)<o:>(\\q\1 ~o) 

Proof. Based on theorem I , see [3]. 

(24) 

(25) 

Point iii) of the theorem 2 specifies conditions under which the regulation of 
main loops is equivalent to the regulation of the whole system. Let us explore, 
what will happen if some of these constraints are violated. Using once again the­
orem I in (3] it was proved: 

THEOREM 3. 

i) If m (A)=O then there exists frequency w0 E [0, wal such that 

q 11 (jwo) + · · · + qmm (.iwo) = 1 
exactly to o (q). 

(26) 

ii) If some of the quantities M (Ai) do not exist, but M (A) exists, then for certain 
frequency C:h E [0, WaJ 

lim (q11 (jw)+ ... +qm.m (Jw))=l (27) 
ro-tro1 

exactly to o (q). 

This theorem describes the class of plants, for which no one diagonal contr~ller 
can make it possible to obtain satisfying disturbance dampings. At the same time 
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Recalling the formula for matrix inversion, we obtain 

1

0 (q) 

tm (k, o.)= det G 
det (G)7c qkk+o (q) , 

(40) 
k=C!. 

From the definition of o (q) it results that 

(41) 

because we have to do only with polynomials of qi, i= 1, ... , m. This allows us to 
obtain from (33) final approximat ions: 

if=a, /3; j=l , ... , m {42) 

(43) 

As it can be seen, we have lost control over the impact of disturbances on 
o.-th output (because o (q- 1

) is the function practically independent on !lq//). Let 
us check now what is the cost of deeper damping in the /3-th row (34) . From (40) 

tm (/3, 1X)=o (q) and this implies that in order to satisfy inequality (37) the con­
troller rap must have immense gain (for !lqll ~0.1, / rap / ~ 1 000). The regularity can 
be demonstrate on simple example. Let 

G=[~ ~ -~] 
1 3 . 2 

Applying R3 =diag (10, 10, 10) we obtain 

[ 

0.5 0 .06 
Q=I0- 1 -0.4 0.25 

0.3 -0 4 

-02] 
0.3 
0.2 

After adding r12 =k 

I [52k+741 
Q=--- -520 

52k+ 14261 390 

-32k + 90 -40k+310] 
341 410 

k-530 2k+23l 

To have any influence, . k must be great; ·k'P 300. 
If it is so, than 

[1 -6 -8] 
lim Q=10- 1 0 0 0 

k-> ro 0 0.2 0.4 

The result is in accordance with our conclusions. From the above it follows 
that it does not pay to introduce into the system more than m controllers. It is 
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e ·en possible to formulate statement, that the only reasonable control system con­
figu ration constitutes the final controller of the form 

(44) 

where K- transfer function matrix of the compensator selected in order to obtain 
compensated plant matrix Gk=GK with su itable from the point of view of regu­
lation properties. Rd is a transfer function matrix of the diagonal controller. It 
elements depend immediately on requirements imposed on the system and may 
be designed with [2, 4] method. 
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Pewne wlasnosci wielowJ'Iniarowych ukladow regulacji 
z regulatorem diagonalnym. 

W pracy rozwazane s14 konsekwencje twierdzen podanych w [2, 3, 4]. Badane s14 pewne przy­
padki zdegenerowane i zakres stosowalnosci metody syntezy regula tora diagonalnego podane 
w [2, 4]. Rozwazane s14 mozliwosci dodania element6w pozadiagonalnych do regulatora 
diagonalnego, 

HeKoTopLie csoiiCTBa MHoroMepHhiX cncTeM pery m1posaum1 

c }J,HaronaJibHbiM perymiTopoM 

B pa6oTe o6cy)!(.n;aJOTCli cne.n;cTBHli reopeM, rrpe,!\CTaBneHH&rx B [2], [3], [4]. l13y<rawTc.si He­
KOTop&re B&rpo)!(.n;elilibre cny<faH H o6,1acr& rrpHMeHelillll npe)J,ctaBrreHHoro B [2], [4] Mero.n;a CI1HTe3a 
,ll;HaroHaJibHOro perylliiTopa. PaccMaTpl1BaiOTCli B03MOJKHOCTH .n;m:rorrneHusr ,D;HaroHaJI&Roro pe­
rynsrropa HeAHaroaarr&HbTMIT :meMeHTaMu. 
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