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The assignment problems are formulated in an abstract ordered semiring. Also a polynomial 
algorithm solving these problems is presented. 

1. Introduction. 

In recent years much interest was involved in algebraization of mathematical 
programming problems. Their formulation in the terms of abstract algebraic sys­
tems enables investigations of manifold connections between various classical 
optimization problems and a deeper insight into the algorithms. 

This work is devoted to the algebraic Lk- assignment problems. In [4] the 
classic~J Lk- assignment problem for n-men and n-jobs is formulated. For k = n 
this problem nccurs to be linear and for k= 1 to be bottleneck assignment problem. 
On the other hand there are many works (e.g. [1], (2], [3] , (5], (7], [8]) in which 
the linear and the bottleneck assignment problems are treated as the algebraic 
optimization problem in a suitable ordered semigroup. 

In [6] the following question was posed: what kind of an algebraic structure 
should be introduced in order to put the Lk- objectives and the algebraic objec­
tive into one common framework? 

In section 2 the basic definitions, properties and examples of the considered 
algebraic systems are presented. 

In section 3 we prove the theorem on which the proposed algorithm is based 
and the algorithm itself is presented. Also a simple numerical example is given. 

2. Assignment problems 

The classical formulation of the linear assignment problem is as follows: let 
njobs and n men be given and let A=[au] i, j=l , ... , n be the cost matrix. au stands 
here for the cost of performing i-th job by j-th man. Let n be the set of all permu-
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11 

tations of the setl={1, ... , n}. Find a permutation n0 E llwhich minimizes }; a;" (i) 

over all n E n 1 = 1 

The bottleneck assignment problem consists in finding such a permutation 
n0 E JI which minimizes max d1" (i) over all n E 11. 

i El 

The l:k- assignment problem, 1 ~k~n, is: find n0 Ell which minimizes over 
all nE ll the sum of k maximal elements among ain(i) · 

It is easy to observe that for k= 1 we obtain the bottleneck and for k=n -­
the linear assignment problem respectively. Both can be treated as a general linear 
assignment problem in a suitable ordered semigroup. 

Let (G, *, ~ ) be a semigroup with some commutative binary composition * 
and a linear order relation ~-Let A = [au];, j = 1 , . . . , be n x n matrix with the ent­
ries a1j E G. The general linear assignment problem in the semigroup G, as it is 
defined in [2], reads: find a permutation n0 for which 

* ain(i) :=aln(l) * a2n(2) * ... * a""(") is minimal. 
i E/ 

(1) 

For the semigroup G being.the set of real numbers with the aritlm1etic addition 
taken as the composition * and the natural order relation we get the linear assign­
ment problem. 
If we take as G the set of real numbers with the composition 

a* b= max (a, b) 

and the natural order relation ~ -we get bottleneck assignment problem. 
Some other optimization problems can be also considered as a minimization 

of the objective function of the form (J) in a suitable semigroup. Such situation 
is e.g. for the lexicographic multicriteria assignment problem, p-norm assignment 
problem and others (cf. [I], [2], [3], [5]). 

Unfortunately the l:k- assignment problem can not be placed within this 
bounds. We need a bit more complicated algebraic system. The most mi.tural is 
an ordered semiring. 

DEFINITION 1. A set S with two binary operations EB , ® such that: 
(i) with respect to each of them S is a commutative semigroup, 

(ii) the distributivity law holds: 

V a ® (b EB c) = (a ® b) EB (a ® c) 
a,b,cEs 

is called a semiring 
If moreover in S is a linear order relation such that: 

(iii) V 
a,b,cEs 

(iv) V a~ b a ® c~b @ c 
a,b,CES 

then (S, EB, ®, ~) is an ordered semiring. 
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• ·oms (iii) and (iv) secure the compatibility of the order relation with the alge­
raic operations in S. 

REMARK. The set of all positive real numbers with the natural addition and mul­
- plication and natural order relation fulfills all axioms (i)-(iv), however in the 
5et ·of all real numbers (iv) fails. 
One can obtain a broad class of ordered semirings in the following way: let S be 
an ordered semigroup with the multiplication ® and order relation :::; fulfilling 
·he compatibility condition: 

a:;:;b then for every c E S a ® c:;:;b Q9 c. Introducing in S the addition EB = 
=max defined as 

a EB b=max (a, b) 

we get on S the structure of an ordered commutative semiring. 
The distributivity law holds in (S, EB, ®, :::;): 

c ® (a EB b)=(c Q9 a) EB (c ® b) 

For the proof of this equality let us assume that a:;:;b, that is a EB b=b. 

Then 

c ® (a EB b) =c ® b~c ® a 

which implies: 

(c ® a) EB (c ® b)=c ® b=c ® (a EBb), 

in the case b:;:; a the proof is similar 

Moreover the addition EB =max is compatible with the order relation :::; in S, 
that is if a:;:;b then for every c E S a EB c:::;b EB c 

REMARK . Quite similarly one can prove that taking ruin as addition, in S, that is 

a EB b=min (a, b) 

one can obtain a structure of an ordered semiring on S. 

Now we will give some examples of the ordered semigroups in which the multi­
plication ® is compatible with the order relation. 

EXAMPLES. (cf. [8]) 
1. Let R+ (Z+) be the set of nonnegative real (integer) numbers with the usual 
order relation :::; and multiplication defined as 

a ® b=a+b 

Compatibility condition is naturally valid. 
2. The unit interval <O, 1) with the multiplication: 

a@) b=a+b-ab 

and the usual order relation. 
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Let us order this sequence m such a .way, that: 

In order to simplify the indices let us denote the j-th element, 

Proposition 2. 

If b=ii"." and B= [bul , i= 1 , ... , 11 where bu = au EB b then 

Proof. 
11 11 

i = 1 j=l 

The second equality is valid because of the commutativity of the multiplication ®. 

_ b fai " for j~k 
ai,nEB = lb' ' for j>k 

GB (n) = ii1 ," ® iiz," ® ... ®iik," 0 b11
-k. 

On the other hand 

I~.;. C f i Elk 
lhl =k 

J'k, C ] } E: h 

lh l=k 

The rearrangement of the elements in the second equality is possible because of 
the commutativity and the associativity of the multiplication ®. 

This gives us the equality we need. 
Now let n0 be an optimal permutation for FA which means, that: 

rrEJI 

Let as before iik, rr o be the k-th element in the ordered sequence determined by n0 . 

Bo = [au EB boJ where bo =iik, nO. 

If :n: 1 is an optimal permutation for GB then: 
0 

GB/nt)~GB0(no)=FA (n0 ) ® b~-k~FA (n1) ® b~-k. 

On the other hand : 

This gives: 

Observe now, that n0 is optimal for Gn : 
0 

V GB (n)~FA (n) ® b"0-k~FA (n0 ) ® b~-"=GB (no) 
0 0 

1tEli 
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finally we get: 

FA (no) Q9 b~- k=FA (n 1 ) ® b~-k. 

_ ·ow let us take an ordinal decomposition of the ordered semigroup (S, 0 ,::::; ) 
to the indexed family of subsemigroups (S"; ), EA) (cf. [3], [8]). Here A is the 
early ordered set and S;., A. EA, are mutually disjoint, linearly ordered ccmmu-

• tive subsemigroups of S! 
For s E S let ), (s) denote the index of this unique subsemigroup which contains 
element s. 
The ordinal decomposition has the property: if s::s;s' then A. (s)::s; J, (s'). So we get 
;_ (FA (no))~), (bo)· 

Using the Proposition 4.19 (6) and (1) from [8] we get 

A. (b0 )= ), (b~-k) 

and FA (n0 )=FA (n1). 

This last equality menas that n 1 is optimal for FA­
So we get the following theorem 

THEORHL Let n0 be a permutation which minimizes FA and b0 be the k -tlz clement 
in the sequence iil - ~a, - ~ ... ~a,, - 0 Then a permutation rninimizing GB is also 

'"0 -, "o • '· o o 
optimal for FA-

REMARK. In the case of the ordinary 2:"- assignment problem the above theorem 
gives Dinic result (cf. (4]). 

In order to solve the algebraic 2:"- assignment problem (S <\P) it is sufficient 
to find optimal permutations n; for the problems: 

(LAP) min G8 ,(n), I= 1, ... , n1 

nETI 

where B1=[au EB a1] i, j=l, ... , n 

and a~> l= I, ... , n2
, is an entry of the matrix A. Then one may find the values FA (n). 

A permutation, for which this value is minimal, is optimal for (SAP) . 

For the simplicity let us assume that there is an element e E S such that for 
all aeS a 0 e= a. 

The problems (LAP) can be solved by the algorithm developed in [5]. This 
algorithm is of order 0 (n3). In the worst case we have to solve n2 (LAP) problems. 
So we get 0 (n 5) estimation for the whole algorithm. 

Let B=[bij1 i,j=1 , .. . , n be a matrix with biieS. The algorithm finds a per­
mutation n which minimizes G8 • 

Step 1. For i=l, ... , n U;: = e 
For j=l, ... , n wi: =e 
Vi = min (bii; i e f) 
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V1 is a minimal element in the j-th column, say vi=bfUJi" This defines a function 
f: I->/. Construct If/: 1-+Iu {0} such that 

1. If/ If (Il # 0 

2. if If/ (i)=lfl (i')#O then i=i' =!(If/ (i)). 

This implies that if irfcf(l) then If/ (i)=O. 

S tep 2. Find i 0 such that If! (t0 )=0. 

For every }=1, ... , n mi: =b1 1 Q9 w1 

q(j): =io 

-1: =f/J K: ={io}· 

If there is no i 0 with If/ (i0)=0 then If/: I-+1 is an optimal permutation. 

Step 3. For every jrtJ take d1=m1jv1 d1 : =min (d1,j f/= J). 
0 

S tep 4. For ieK u1 : =ui ® di. 
0 

For jeJ w1 : =wi ®d10 

If .io rt If/ (I) go to Step 6. 

Step 5. For every j 6 Ju {J0 } 

m>=v1 ® d)d,
0 

m~' =(bf(io)i ® w)uf(iol ® vj) ® vj 
m1=min (m~, m~') 

Defi ne q (j): = f Go) for these j for which m 1 =m~'. 
K : =Ku {j(j0 )} , J:=Ju {j0 } go to Step 3. 

S tep 6. In the bipartite graph G=(K, Ju 1)0 }; E) where the set of edges is 

E={(q(j) ,J): jeJu {J0 }u {(j, f(j)) ; jeJ} 

construct the path (i0 , /, i i> }J> ... , i5 , j 0 ) from i0 to j 0 • This path defines the new 

values off and If/: 

go to step 2. 

Example 

If/ Cio)=./ 

f(j)=io 

If! Ut) =), 

f (jt)=it 

If! (i.) =.io 

/( Jo)=is 

for/= 1, . .. , s=l 

To illustrate how this algorithm works let us solve the linear assignment problem 

with the matrix GB,· 

1 5 3 0 1 
2 0 1 3 J 

GB,= 4 3 2 1 2 
3 0 4 2 1 
1 2 1 5 0 
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Step 1. uJ =u2 =u3 =u4 =u5 =0 

w1 = W2 = W3 = w4 = W5 =0 

/(1)=1 /(2)=2 /(3)=2 /(4)= 1 /(5)=5 

\V (1)=4 If/ (2)=2 If/ (3)=0 If/ (4)=0 If/ (5)=5 

Step 2. i0 =3 If/ (3)=0 

q (j) =3 j= I , ... , 5 

K={3} l=f/J 

Step 3. 

d1 =3, d2 =3, d3 =1, d4=1, d5 =2 

d4=min (di)=1 j 0 =4 
j 

Step 4. 

113 = 1 j 0 =4 E IJI (I) 

Step 5. 

m~ =3, m~=2, m;=l , m~=l 

m~=l, m~=5, m~=3, m~=! 
m 1 =1, m2 =2; m 3 =1, m 5 =1 

for j=l m~>m~ 
q (1)=/(4)=1 

/={3}u {1} J=f/Ju {4} 

Step 3. 

d1 =0, d2=2, d3 =0, d5 =1 

d1 =m in (di)=O j 0 = 1 

Step 4. 

U3=2, U1=l , W4 = l 

jo= !if: If/(/) 

Step 6. 

Bipartite directed graph G={{3, 1}, {4} u {1}, E} E={(3, 4), (I, 1)} u {(4, 1)} 

3 4 
·--+· 

/ 
)If' 

o(--o 

1 1 

163 
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The unique path from i0 =3 to j 0 = I is (3, 4, 4, I, I, 1). 

The new function f is defined as 

f(l) = l , /(2)=2, f(3) = 2, /(4)== 3, f(5) = 5 

"The new If! is: 

If! (I) = I, lfl (2) = 2, If/ (3) = 4, If! (4) = 0, If! (5)::5 

Step 2. 

If! (4) = 0 i 0 = 4 

m 1 = 3, m 2 = 0, m3 = 4, m4 = 3, m5 =l 

q (j) = 4 j = I , ... , 5 

K= {4}, 1=0 

Step 3. 

d1 = 2, d2 = 0, d3 =3, d4 = 3, d5 =1 

d2 = min (di) = O j 0 = 2 
j 

Step 4. 

u4 = 0 2 E If! (I) 

Step 5. 

" - , _ '' - Ll. " - I m 1 - 2, m3 - l, m4 - ., m5 -

m1 = 2, m3 = I , m4 = 3, m5 = 1 

For j = I, 3 m>m; 
q (J) = /(2) = 2, q (3)==/(2) = 2 

K= {4}u {2} 1 = {2} 

Ste p 3. 

d 1 = 1, d3 = 0, d4 = 3, d5 = 1 

d3 = min (di) = O j 0 =3 
j 

Step 4. 

U4 = 0, W2 = 0 3 rf If! (I) 

Step 6. 

Bipartite graph G= ({4, 2}, {2}u {3}, E) 

E={(4, 2), (2, 3)}u {(2, 2)} 
4 2 
• -------+. 

/ 
/ 

•+-- • 
2 3 

G. GRYG IEL 



· :gebraic Zk - Assignment problems 

The unique path from i 0 =4 to k = 3 IS (4, 2, 2, 2, 2, 3). 
The new If/ 1s 

!JI (I) = l, lf/(2)=3, lf/(3)=4, lf/(4) = 2, lf/(5) = 5 

Step 2. 

There is no i 0 with lfl (i0)=0. 
So !JI is the optimal permutation. 
The optimal value is 
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Algebraiczne }; k- zagadnienie przydzialu. 

Podane jest sformulowanie zadail przydzialu jako algebraicznych zadail przydzialu w ab­
strakcyjnym p61pierscieniu. 
Zaproponowany jest r6wniez a lgorytm rozWi<!ZUjiiCY te zadania. 

A.llre6paJI'IecKne };k- 3a.U:a'IH o Ha3naqemm 

3a.!(a'IH o Ha3Ha'leliiDI cjJopMymrpyiOTCH B BH.!(e anre6paH'!ecKnx 3a,ll,a'! B a6crpaKTHOM nony­
Konr,n:e. Tipe.!(JIO:lKeH arrropHTM peruetm.ll :nux 3a,ll,a'!. 
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