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The assignment problems are formulated in an abstract ordered semiring. Also a polynomial
algorithm solving these problems is presented.

1. Introduction.

In recent years much interest was involved in algebraization of mathematical
programming problems. Their formulation in the terms of abstract algebraic sys-
tems enables investigations of manifold connections between varions classical
optimization problems and a deeper insight into the algorithms.

This work is devoted to the algebraic X, — assignment problems. In [4] the
classical X, — assignment problem for n-men and n-jobs is formulated. For k=n
this problem nccurs to be linear and for k=1 to be bottleneck assignment problem.
On the other hand there are many works (e.g. [1], [2], [3], [5], [7], [8]) in which
the linear and the bottleneck assignment problems are treated as the algebraic
optimization problem in a suitable ordered semigroup.

In [6] the following question was posed: what kind of an algebraic structure
should be introduced in order to put the X, — objectives and the algebraic objec-
tive into one common framework?

In section 2 the basic definitions, properties and examples of the considered
algebraic systems are presented.

In section 3 we prove the theorem on which the proposed algorithm is based
and the algorithm itself is presented. Also a simple numerical example is given.

2, Assignment problems
The classical formulation of the linear assignment problem is as follows: let

n jobs and n men be given and let A=[q;;] i, j=1, ..., n be the cost matrix. a;; stands
here for the cost of performing i-th job by j-th man. Let I7 be the set of all permu-
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n
tations of the set /={l, ..., n}. Find a permutation 7, € I which minimizes > 4,
over all mell . e
The bottleneck assignment problem consists in finding such a permutation

7o € IT which minimizes max ¢, ;, over all 7 € I1.
=
The %, — assignment problem, 1<k<n, is: find 7, € /7 which minimizes over

all 7 € /7 the sum of k& maximal elements among @y ;.

It is easy to observe that for k=1 we obtain the bottleneck and for k=n —
the linear assignment problem respectively. Both can be treated as a general linear
assignment problem in a suitable ordered semigroup.

Let (G, %, <) be a semigroup with some commutative binary composition =
and a linear order relation <. Let A=[d;;] ;, j=1,.---n b€ nXn matrix with the ent-
ries ¢;; € G. The general linear assignment problem in the semigroup G, as it is
defined in [2], reads: find a permutation 7, for which
*1 Ain(iy: =d1n(1y * Aageay * oo % Gunny 1S Minimal. @)

i€.

For the semigroup G being.the set of real numbers with the arithmetic addition
taken as the composition % and the natural order relation we get the linear assign-
ment problem.

If we take as G the set of real numbers with the composition

a ¥+ b=max («, b)

and the natural order relation < — we get bottleneck assignment problem.

Some other optimization problems can be also considered as a minimization
of the objective function of the form (1) in a suitable semigroup. Such situation
is e.g. for the lexicographic multicriteria assignment problem, p-norm assignment
problem and others (cf. [1], [2], [3], [5]).

Unfortunately the X, — assignment problem can not be placed within this
bounds. We need a bit more complicated algebraic system. The most natural is
an ordered semiring.

DerINITION 1. 4 set S with two binary operations @, ® such that:
(i) with respect to each of them S is a commutative semigroup,
(i) the distributivity law holds:

v aQBb@)=@R®b® @0

a,b,ces
is called a semiring
If moreover in S is a linear order relation such that:
(i) V a<h a@®c<b®c
a,b,ces

iv) Vv ash a®c<b®c

a,b,ces

then (S, ®, ®, <) is an ordered semiring.
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Axioms (iii) and (iv) secure the compatibility of the order relation with the alge-
braic operations in S.

Revark. The set of all positive real numbers with the natural addition and mul-
tiplication and natural order relation fulfills all axioms (i)-(iv), however in the
set of all real numbers (iv) fails.
One can obtain a broad class of ordered semirings in the following way: let S be
an ordered semigroup with the multiplication ® and order relation < fulfilling
the compatibility condition:

a<b then for every ce S a ® ¢<b ® c. Introducing in S the addition @ =
=max defined as

a @ b=max (a, b)
we get on § the structure of an ordered commutative semiring.
The distributivity law holds in (S, @, ®, <):
c®U@Db)=(cQa)D(c®Db)
For the proof of this equality let us assume that a<b, that is ¢ @ b=b.
Then
cRUWAH=cRb=>cRa
which implies:
(cRAD(R)=cRb=cR (@@ b),
in the case b<a the proof is similar
Moreover the addition @=max is compatible with the order relation < in S,

that is if ¢<b then for every ceS a @ c<b @ ¢
REMARK. Quite similarly one can prove that taking min as addition, in S, that is
a @ b=min (a, b)

one can obtain a structure of an ordered semiring on S.
Now we will give some examples of the ordered semigroups in which the multi-
plication ® is compatible with the order relation.

ExAmPLES. (cf. [8])
1. Let R, (Z,) be the set of nonnegative real (integer) numbers with the usual
order relation < and multiplication defined as

a@b=a+b

Compatibility condition is naturally valid.
2. The unit interval <0,1) with the multiplication:

a @ b=a+b—ab
and the usual order relation.
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Let us order this sequence in such a way, that:
ai1"(i1)>di2"(iz)>"'>ain7‘(in)

In order tO simplify the indices let us denote the j-th element,

jel,  @aqy by dja.
Proposition 2.
If b=4, , and B=[b;], j=1,-..n Where b ;=a;; ® b then
G (W)=F4 (7)) @ b"*
Proof.

Gy ()= ® (aiﬂ(i) @ b= (4,,.® D)
i=1 =1

The second equality is valid because of the commutativity of the multiplication ®.

E __jd,-,,, for j<k
Be@E=13"" por ok
Gy ()=d1,7 ® 2,2 ® ... By, @ b"7F.

On the other hand

FA (E)= @ ® ain(i)= @ ® dj,n_—_dl,n @ 5;275 @ ® &k,n
Iy<I el I<I jely
IIg| =k x| =k

The rearrangement of the elements in the second equality is possible because of
the commutativity and the associativity of the multiplication &.

This gives us the equality we need.
Now let 7, be an optimal permutation for F, which means, that:

V Fy(m)zF4(mo).

nell
et as before g, ,, be the k-th element in the ordered sequence determined by 7.
Bo=l[a;; @ bo] where bo=d; -
If =, is an optimal permutation for Gp, then:
Gy (7)< G (o)=F. (7o) @ by "< F, (m;) @ by".
On the other hand:

GBO(nl)ZFA (731) &® bﬁ"‘-
This gives:

GBO(TCI)'-:FA (m;) @ by,
Observe now, that z, is optimal for Gy,:

VG ()2 Fa(m) © By Fy (1) © By *=Gi (o)

nel
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so finally we get:
Fy(mo) @ by *=F, (n,) ® by~ .

Now let us take an ordinal decomposition of the ordered semigroup (S, ® ,<)
inio the indexed family of subsemigroups (S;; A€ A4) (cf. [3], [8]). Here A is the
Linearly ordered set and S, 4 € 4, are mutually disjoint, linearly ordered ccmmu-
tative subsemigroups of S'! -

For se S let A(s) denote the index of this unique subsemigroup which contains
element s. ‘

The ordinal decomposition has the property: if s<s  then 1 (s)</(s'). So we get
L(F 4 (mo))= 4 (bo)- '
Using the Proposition 4.19 (6) and (1) from [8] we get

A (bo)=2(b3™")
and F, (mo)=F, (m,).

This last equality menas that z, is optimal for F,.
So we get the following theorem

THEOREM. Let mg be a permutation which minimizes F, and by be the k-th element
in the seqitence d,,n0>d2’,,o>...>dn, 7 Then a permutation minimizing GBu is also
optimal for F,.

REMARK. In the case of the ordinary X, — assignment problem the above theorem
gives Dinic result (cf. [4]).

In order to solve the algebraic X, — assignment problem (SAP) it is sufficient
to find optimal permutations n, for the problems:
(LAP) min Gp(n), I=1,..,n°

nel

where B=[a;; ® a\] i, j=1,..,n

and a;, I=1, ..., n% is an entry of the matrix 4. Then one may find the values F, (x,).

A permutation, for which this value is minimal, is optimal for (SAP).

For the simplicity let us assume that there is an element e € S such that for
all e S a ® e=a.

The problems (LAP) can be solved by the algorithm developed in [S]. This
algorithm is of order 0 (#3). In the worst case we have to solve n? (LAP) problems.
So we get 0 (#°) estimation for the whole algorithm.

Let B=[b,;] i,j=1, ..., n be a matrix with b;; € S. The algorithm finds a per-
mutation 7 which minimizes Gp.

Step 1. For i=1, ..., n u;: =e
For j=1,..,n Wy =e
Vi=min (b;;; iel)



162 G. GRYGIEL

V; is a minimal element in the j-th column, say v;=b;;, ;. This defines a function
fiI-1. Construct y:I/—Ju {0} such that

L wly 1, #0
2. if y ()=y (i)#0 then i=i"=f(y (©)).
This implies that if i¢f (/) then y (i)=0.
Step 2. Find i, such that y (ip)=0.
For every j=1,..,n m;: =b, ; Q w;
q(j): =i,
Ji =0 K =i}
If there is no 7, with w (j,)=0 then y:7—{ is an optimal permutation.
Step 3. For every j¢J take d;=m;fv, djﬂz =min (d,, j¢J).
Step 4. For ie K u;: =u; ® d,-o.
For jeJ w;: =w; ® d,
if jo¢w (I) go to Step 6.
Step 5. For every jeJu {j}
m;.='vj ® d,ld,,
nl'j':(bf(ia)i @ wyltp; @ 2;) @ V;
my=min (m,, m}’)
Define ¢ (j): =f(;0) for these j for which m;=m].
K: =Ku {f(jo)}, J:=Ju {jo} go to Step 3.
Step 6. In the bipartite graph G=(K, Ju }jo}; E) where the set of edges is
E={(q(j).)): JjeJo{j}o (i f()); jed}

construct the path (i, j, i1, j1s «-s Iys Jo) from i to jo. This path defines the new
values of f and w:

14 Go)=j" w)=ih w)=Jo
f(f)=io SfUD=1, S jo)=is
for lI=1, ., 8=l
go to step 2.
Example

To illustrate how this algorithm works let us solve the linear assignment problem
with the matrix Gp,.
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ep 1. uy=u,=us=u,=us;=0

f@=2 fQB3)=2 [f@A=1 f[f(0O)=5
y@=2 y@3)=0 y@=0 y(O)=5
Step 2. i,=3 yw(3)=0
my=4, my=3, my=2, my=1, ms=2
g()=3 Jj=1,..,5
K={3} J=0
~ Step 3.
=3, d,=3, ds=1, d=1, d=2
dy=min (d))=1 j,=4
J

Step 4.

u;=1 jo=4ey ()

Step 5. s
m)=3, m,=2, my=1, m,;=1

m, =1, m,=5, my=3, mg=1
mi=1, m,=2, my=1, ms=1
for j=1 m;>m|

g ()=f“)=1

I={3}u {1} J=0u {4}

Step 3.

di=0, d,=2, d;=0, d;=1
di=min (d))=0 jo=1

Step 4.
us;=2, uy=1, we=1
Jo=1¢y ()
Step 6.
Bipartite directed graph G={{3, 1}, {4} U {1}, E} E={(3, 4), (1, D} u{(4, 1)}

| 34

Wy
i i



164

G. GRYGIEL

The unique path from i,=3 to jo=1 is (3,4,4,1, 1, 1).

The new function f is defined as

F=1, fQ@)=2, fQ)=2, f@=3, f(5)=5

The new y is:
y (D=1, y )=2, y 3)=4, y (=0, y (5)=5
Step 2.
w@)=0 i=4 :
mi=3, m,=0, my=4, m,=3, ms=1
qg(H=4 j=1,..,5
K={4}, J=0
Step 3.
dy =2, do=0, ds=3, #y==3, de=1
dy=min (d;)=0 j,=2
J

Step 4.
u,=0 2ew ()
Step 5.
m; =3, my=4, m;=3, m;=1
my =2, my=1, my=4, my=1
my=2, my=1, my=3, ms=1
For j=1,3 m;>m;
g(D=r2)=2, q@)=f(2)=2
K={4}u {2} J={2}
Step 3.
dy=1, ds=0, dy=3, d=1
dy=min (d))=0 jo=3

j

Step 4.

uy=0, w,=0 3¢y )

Step 6.

Bipartite graph G=({4, 2}, {2}u {3}, E)
E={(4,2), 2,3)}v {2, 2)}
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The unique path from 7/,=4 to k=3 is (4,2, 2,2, 2, 3).
The new y is

v (D=1, v (2)=3, y 3)=4, y D=2, y (5)=5
Step 2.
There is no iy with w (ip)=0.

So y is the optimal permutation.
The optimal value is

Gy, (W)=b11+by3+bsa+byy+bs55=3
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Algebraiczne ', —zagadnienie przydzialu.

Podane jest sformulowanie zadan przydzialu jako algebraicznych zadan przydzialu w ab-
strakcyjnym potpierscieniu.
Zaproponowany jest rowniez algorytm rozwiazujacy te zadania.

Anrebpangeckue Z‘k—sazxa‘m 0 Ha3HAYEHHH

3amawi 0 HasHaveHHH (GOPMYIMpPYIOTCS B BME anreOpanyecknx 3aa4 B abCTPakTHOM IOIy-
xosbie. TIpeioxKeH anropuTM peleHnst 3THX 3anad.
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