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The paper deals with a problem of partitioning a set of entities into subsets. The decompo-
sition is performed by taking into consideration the reciprocal dissimilarities between the entities.
Both the number of subsets and the way of partitioning are determined. First, the goal function
is defined and interpreted. The problem is to generate a partition such that it maximizes the value
of the function mentioned. Then some basic properties of the goal function are formulated and
proved. These properties provide a basis for decomposing the problem into two disjoint subprob-
lems. One of them consists in consecutive enumeration over a smaller space of partial solutions.
The second one is to generate the next solution on the basis of the previous result. The exact so-
Iution of the second subproblem is given and a fast heuristical procedure which generates (sub)
optimal results is proposed. The procedure makes it possible to obtain an approximate sclution

of the general problem in time proportional to n?, where # denotes the number of entities in the
set considered.

1. Introduction

In many real life situations a non-trivial mathematical description of any real
problem under consideration leads to a multidimensional and large scale model.
Investigations performed on such a model are very complex and time-consuming.
For simplification we often decompose the model into several pairwise disjoint
parts (submodels). The way of the decomposition depends upon the kind of in-
terconnections assigned to respective pairs of parts of the model and to pairs of
entities. We propose a general classification of these interconnections, which divides
them into two groups. To the first one we assign interconnections, which have
the nature of similarity. The second group consists of interconnections with the
opposite naturs, i.e. the dissimilarity. To obtain a “good” decomposition of the
model with interconnections of the first type we have to fulfil the two following
conditions: every pair of entities with a relatively high value of similarity should
belong to the same part, and two objects with a relatively small mutual similarity
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Now, it is obvious that the maximization proceeds over both aspects of the de-
composition, i.e. the number of subsets in the optimal partition and the way of
partitioning the entities of X into the subsets mentioned.

3. Some properties of the global partition index

By the definition of partition and due to the formula (7) we obtain
M (P)=S (X, X)=M=const., ©)
for each P € # (we omit here the subscript &, because it is out of interest. This same

will be done in some further formulae). Hence, a simpler form of the formula (6)
is as follows

! [_k+1 ]
G(Pk)“ (k—l)k M b V(Pk) (10)

Now, we construct a partition P, on the basis of the partition Py, |X|>k>2.
Let P, ={X;:i=1,2,...,k+1}. We also assume that the following conditions
hold

X,=X,, for each i=1,2, ...k, i#q: (11)
X}q\-)j}k+1=)(q: (12)
where X; € P, for each i=1, 2, ..., k. The index ¢ is chosen in such a way that | X |>2,
qg=1, 2, ..., k. Since
V(Peyr)=V (P)—28 (X, Xii) (13)
then one obtains

G (Prs1) —G (PY= (k+3) V(P)+2 (k+2) (k—1) S§—4M],

1
=Dk GrD) |

where we denote S¢=S (X,, X, ), for short. In the similar way one can show that

G (P) =G (Pr-1)= (k+2) V(Pe-1)+2 (k+1) (k=2) S}, —4M],

I
=2 =Dk |

for 3<helX]; #=1,2, v b1, Py €Pp . Hete Ppy={X;id=1,2, s bo=1}
X=X, for each i=1,2, ..., k—1, i#r and X,=X, U X,, X,, X;. € P,. Then, we im-
mediately have the following theorem.

THEOREM 1. Let Pi_, Py and P, be as defined before, 3<k<|X|. If

G (P;)=max {G (P): P e &} (14)

then the two following conditions must hold
AM=(k+3) V(P)+2 (k+2) (k—1) SE, (15)
AM<(k+2) V(Pro1)+2 (k+1) (k=2) ST _, . 16)

for each g=1,2, ...,k and r=1,2, ..., k—1.
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Let a partition P, ,={X;:i=1,2, .., k+1} be given, which is defined as fol-
lows: for each i=1,2, ..., k, i#r, we have X;=X,eP, and X, UX,, =X, €P,
The index r is here arbitrarily chosen, but r=1, 2, ..., k. Thus, one can calculate

G(Pk+1.)_G(P;’;+1)= S(Yq,}:’k+l_)~S(X;,X,;+l)}

k+2
k(k+1) [
Then, we have the following theorem

THEOREM 2. Let P, and Py, be in the same form as in Theorem 1, 2<k <|X|. Mo-
reover, let P, maximize G over 2. The partition Py, fulfills the relation

G (Piy)=max {G(P): P € Py, .}
if and only if the following condition
| Si>S (X, Xy.)

holds for each P, € Py, ., where P, is as described above.

Theorems 1 and 2 give us a simple method for seeking the solution of the prob-
lem considered. Initially we look for the partition P;={X,, X,} of the set X such
that it maximizes S (X;, X,). Then, we compute two new subpartitions (which
will be called bipartitions), namely {X;, X; } and {X,, X'}, where X; UX, =X,,
1X;]>2,and X, UX; =X, |X,|>2. The former one maximizes S (X, X;’) and the
second one maximizes S (X, X,'). Then, we choose the greater number out of
these two values obtained and the corresponding bipartition. Thus, we have Pj=
={X,, X,, X5}, which fulfills the formula (14) for k=3, etc. If we do not want
to attain the global maximum, then we stop when the inequalities (15) and (16)
hold for some k. Otherwise we continue up to k=|X]|.

It seems that the above described idea for solving the problem is very natural
and simple. It is obvious that the most important problem is here to obtain an
effective and efficient procedure for seeking a bipartition of any specified set X,|X|>3,
into two subsets X;, X, that maximizes S (X;, X,). This bipartition is said to be
the bipartition with the greatest value. Next sections of the paper are mainly de-
voted to the derivation of a procedure for seeking the bipartition considered.

4. Maximal bipartitions

From now on we consider partitions of a set X inte two disjoint and nonempty
subsets, i.e. bipartitions. Let a partition P={X,, X,} be given, and its value, i.e.
S (X3, X,), be equal to S. If there exists no X9, X9#X,, such that

X;cX%<X and S(X%, X—-X9=8 a7

and for every X< X; we have S (X, X—X)< S, then the ordered pair of sets <X;, X,)
is said to be a maximal bipartition. Moreover, a bipartition {X,, X,}, where (X1, X,)
is a given maximal bipartition is called the bipartition corresponding to a maximal
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bipartition. (Note that the bipartition corresponding to a maximal bipartition and
a bipartition with the greatest value can be, but need not to be the same!). The
set of all the maximal bipartitions for the considered X is denoted by #°.

In order to simplify later notations we write

S, (D=8 ({x}, Xi—{x}), i=1,2; (18)
S (x)=S8 ({x}, X—{x}) TR -

It is evident that for any fixed bipartition {X;, X,} we have
S, ()48, ()= ) (20)

Lemva 1. Let <Xy, X,) € P°. The necessary and sufficient condition for xe€ X,
is to fulfil the inequality
8 (08, (%) (21)

Proof. We assume that x € X;. Let S, (x)>S, (x). Then, we have S (X; —{x}, X, u
uix}=S(X,, X,)+S; (x)—S, (x)>S (X, X,), which is a contradiction, because
X, X3) € 2°. .

Now, let the inequality (21) hold. We assume that x € X,. Then S (X, u {x}, A, +
—xh=8S (X1, X))+ 8, ()~ S, (x)>S(X,, X,), hence a contradiction which com-
pletes the whole proof. Q.E.D. £

In a similar way we can prove the next lemma.

Lemma 2. Let (X, X5) be a maximal bipartition. The relation x € X, is equivdlent
to the following inequality

S (0)>8; (%) (22)

Now, we formulate a more general property of maximal bipartitions.

THeEOREM 3. P=(X,, X,) is a maximal bipartition, if and only if the formula (21)
holds for each x € X,, and each x € X, satisfies the inequality (22).

Proof. The necessity for P e 2° directly results from Lemmas 1 and 2.

Now, we consider the sufficiency. We deal with a bipartition {X,, X,} and as-
sume that the relation (21) holds for each x € X,. Moreover, let the inequality (22)
be fulfilled for every x € X,. We consider a set 4, AcX,, A#X,. We have S (X, +
=A, X VA)=8 (X1, X)) +[S (X,, A)— S8 (Xz, A)]—-S (A, A). We observe that for
some C, CcX,

S (X1, ©) =S (X2, O)= D [S1 ()~ S, (W] (23)
xecC
In this case we obtain [S (X, A)—S (X5, 4)]<0, due to (21), and then the bipar-
tition {X; —4, X, U 4} has the value not greater than §(X,, X,). Next, we con-
sider a set B, B=X,, B#X,. By a similar argument we obtain the following ine-
quality S (X, B, X,—B)<S8(X,, X,), which accomplishes the proof. Q.E.D. [
Then, we will investigate the following algorithm.
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ALGORITHM 1.
1. START.

. Initialize the value of bipartition §: =0.

. For each x € X calculate S (x).

. For each x € X take a(x): =5 (x).

. Initialize the working lists ¥: =X, Z: =0.

. Take any x € ¥ and the corresponding « (x).

.S =8+a ).

Y:=¥—{x}, Z: =Zvu{x}

For each ye X substitute a(»): =« (¥)—2f (x, y). Moreover, if «(y)<0,

then ¥: =Y—{y}.

. For all the elements y from the list Z test, whether a (p) <0. If so, then
Z:=Z-1{y}, §: =S—a(y) and, moreover, for each z € X substitute a (z): =
=a (z)+2f (z, ). Otherwise, go to Step 12.

11. Test, whether a (z)>0 for any ze X—(Zu ¥). If so, then ¥:=Yu{z}.

12. Check, whether ¥Y=0. If so, then X,: =Z, X,: =X—X,. Otherwise pass

to Step 6.

13. STOP.

In the above description we use the symbol of substitution: =. Its meaning
is here analogous as in ALGOL.

IR - NI C I N VU )

.
o=l

A simple numerical example for the above algorithm is given later in this sec-
tion. The following lemma concerns one of the most important properties of Al-
gorithm 1.

Lemma 3. Let (X, X,) be an ordered pair of sets generated by Algorithm 1. Then,
Jor each x & X the condition (21) holds and each x € X, fulfills the inequality (22).

Proof. Due to the 4th, Sth, 10th and 12th steps we notice that
a(x)=8 (x)—2 Z’ F(x, 2)=8 (x)—28, (x) (24)

ZEX,
From (20) and (24) it follows that a (x)=3S, (x)— 8 (x).

According to Step 12 we have X, =2Z. From Steps 5, 8, 9, 10 and 11 it follows
that the list ¥ contains the elements x € X such that x ¢ Z and ¢ (x)=>0. Due to
Step 12 the procedure terminates, if and only if ¥=0@. Hence, after having performed
Step 13, there is no element x € X outside the list Z, such that « (x)>0. Thus,
we have a (x) <0 for each x € X,=X-X, (Step 12). Due to Steps 6, 8, 10 and 11
each element taken from X, has a nonnegative @ (x). It is obvious that the last
property is equivalent to the formula (21). From the relation a{x)<0 there 101-
lows the formula (22). Q.E.D.

Lemma 3 and Theorem 3 immediately imply the folloving property o
Algorithm 1.
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TrEOREM 4. Algorithm 1 generates a maximal bipartition.

There can exist more than one maximal bipartition. Moreover, they may have
distinct values. It is shown in the following simple example which also gives an idea
how Algoritm 1 works.

Example.
Let X={1,2, 3,4, 5,6,7}. The values of f are given in the matrix below.
0111231
1012101
1101101
1210111
2111011
3001101
1111110

Algorithm 1 is initiated in this case with $§=0 (Step 2) and ¢=[9, 6, 5, 7, 7, 6, 6]
(Step 4), where in the xth element of the row vector a we store the current value
of a(x). Let x=1 be taken in Step 6. Then $=9, a=[9, 4, 3,5, 3,0, 4], ¥={2,
3,4,5,6,7} and, Z={1}. We pass to Step 6 again and let x=2. Then S=13, a=
=[7,4,1,1,1,0,2], Y={3,4,5,6,7}, Z={1, 2}, and we go to Step 6. Let x=3.
Thus S=14, a=[5,2,1, —1, —1,0,0], Y={6,7}, Z={l1, 2,3}, and we pass to
Step 6. Let x=6. Hence S=14, a=[-1,2,1, =3, —3,0, -2}, Y=0, Z={1, 2, 3, 6},
but now 1€ Z and a(1)=—1. After having performed Step 10 and Step 11 we
obtain §=15, a=[—-1,4,3, —1,1,6,0], Y={5, 7}, Z={2, 3, 6}. We pass to Step 6
again and take x=5. Thus §=16, a=[-5,2, 1, —3, 1,4, —2], ¥Y=0, Z={2, 3, 5, 6}
and the procedure terminates. We obtain the maximal bipartition ({1, 4, 7}, {2, 3,
5, 6}> with the value S=16. In this case we have

s, (D=2<8, (1)=7,
S; (4)=2<S, (H=5,
S (1)=2<8, (1)=4,
and S, (2)=4>8, (2)=2,
Sy 3)=3>5, (3)=2,
S; (5)=4>8, (5)=3,
S, (6)=5>8, (6)=1.

If we take the consecutive xs in Step 6 in the order 3, 4, 6, 7, then we obtain
another maximal bipartition <{3, 4, 6, 7}, {1,2, 5}> with the value S=14. Here
we have ;

Sy 3)=2<S, 3)=3,
S, (4)=3<S, @)=4,
S (60)=2<8, (6)=4,
S (7)=3<S2 (7)=3>
and §; (1)=6>8, (1)=3,
S; 2)=4>8, 2)=2,
S; (5)=4>8, (5)=3.
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5. Bipartitions with the greatest value

There are some situations when we have more than one bipartition with the
greatest value. As a simple example we can investigate such bipartitions in the
case when to each pair {x, y} of distinct elements of X we assign f(x, y)=fo=
=const >0. Similar situations appear in the set of maximal bipartitions for a given
X, i.e. 2. There can exist two or more maximal bipartitions with distinct values,
as it was shown in the preceding section. Now, we try to estabilish a relation bet-
ween maximal bipartitions and bipartitions with the greatest value. Initially, we
formulate some properties of bipartitions with the greatest value.

LeEMMA 4. Let {X,, X,} be a bipartition with the greatest value. If x € X, then the
inequality (21) holds. If S, (x)<S, (x), then x € X;.

Proof. The proof of the first part of the lemma can be accomplished in the same
way as used for proving th~ first part of lemma 1.

Now, let §; (x) <S8, (x) and let x € X,. Then S (X; U {x}, X, —{x}=8 (X, X,)+
+[S, (x)— S (x)]>8 (X, X;), hence a contradiction, which terminates the proof.
Q.E.D. B

In a similar way we obtain the next property.

LemMA 5. Let {X,, X,} be a bipartition with the greatest value. If x € X, then the
inequality

S (028, (x) (25)

holds. Further, if the relation (22) is satisfied, then x € X,.

The above lemmas are analogous to Lemma 1 and I emma 2. Let S ({x}, 4)=
=S ({x}, B), AnB=0, AuB=X—{x}, for some x eX. It must be pointed out
that if {4 U {x}, B) is a maximal bipartition, then {4, Bu {x}) cannot be a maxi-
mal bipartition due to its definition given in Section 4. On the other hand, if {A V]
U {x}, B} is a bipartition with the greatest value, then {4, Bu{x}} is also a bi-
partition with the greatest value, because S (4 uU{x}, B)=S (4, B)+S ({x}, B)=
=5 (4, B)+ S (4, {x}) (due to the above assumptions and the symmetry of S (-, *)),
and hence S (4u{x}, B)=8 (A4, Bu{x}). This is the reason for differences in
weak and strict inequalities in Lemma 4, Lemma 5 and the Lemmas 1 and 2.

Here the question arises, whether any maximal bipartition is a bipartition with
the greatest value. The following theorem gives the answer.

THEOREM 5. For each bipartition with the greatest value there exists a maximal
bipartition with the same value.

Proof. Let P={X,, X,}. Due to the lemmas 4 and 5 the condition (21) is satis-
fied for each x € X;. For x € X, the inequality (25) also holds. If for every x € X,
we have S| (x)#S, (x), i.e. the relation (22) rather than (25) is satisfied, then P
is also a bipartition corresponding to a maximal bipartition which results fiom
Theorem 3. This terminates the first part of the proof.
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Now; we make further assumptions. Let 4, A<X,, A#0, be the set of all the
elements for which we have

Sy (x)=5; (x) (26)

Let B, Bc A, be a set, such that S (B, B)=0. Since 40, then this set is also non-
empty. Indeed, if x € 4, then it is sufficient to take B={x}, and obviously we have
S ({x}, {x})=F(x, x)=0. Furthermore, let B be maximal in this sense that for
each proper superset C of R there is S (C, C)#0 (do not confuse it with a maximal
bipartition!). Then, using the formula (23) we obtain S (X; UB, X,—B)=S (X, X,).
It means that the bipartition considered is not a bipartition corresponding tc a ma-
ximal bipartition. Moreover, the bipartition {X; U B, X, —B} is also a bipartition
with the greatest value. It remains to prove that the new bipartition is maximal.
Let us denqte for simplicity X; uB=X] and X, —B=X7. We calculate

S ({x}, X1 —4xD)=S] (x)=S8, (0)+S ({x}, B), 27)
S ({x}, X3 —{x})=S} (x)=S8, (x)—S ({x}, B), (28)

Case 1. Let xe BcX|. Then, according to (26) and to the previously assumed
properties of the set B, we have S ({x}, B)=0. It implies that S} (x)=S3 (x) which
confirms the condition, (21).

Case 2. Let xe X, = X?. Since the bipartition {X7}, X3} is that with the greatest
value, then Lemma 4 results in S} (x)<S3 (x), which also agrees with the con-
dition (21).

Case 3. Let x € A—B#0. Since B is a maximal set in the sense that S (C, C)#0
for every C, C#B, C> B, then S ({x}, B)>0. It follows that ST (x)>S; (x)=8, (x)>
>87 (x), due to (25), (27) and (28), as well. Hence, S (x)>S% (x) which confirms
the inequality (22).

Case 4. Let xe X, —A. We notice that X;—A=X,—A. From the description
of A4 it results that the condition (22) holds. Since S ({x}, B)>0 then S7 (x)>S (x)
as in the previous case.

We see that the bipartion {X7, X} fulfills the assumptions of Theorem 3. Thus,
there directly results from this theorem that <X}, X3) is also a maximal biparti-
tion, which completes the whole proof. Q.E.D.

As a natural consequence of the above theorem we obtain a simple idea for
the generation a bipartition with the greatest value. It is sufficient to seek this bi-
partition in the set of maximal bipartitions for a given X. Let 2* be the set con-
sisting of all the bipartitions corresponding to maximal bipartitions with the gre-
atest value, ie. 2*={{X, X,}:X,=A4,X,=B, {4,B)eP°, §(X,X,)=max
{S(4,B):<{4, B) e 7°}}. By 27" we denote the set of all the bipartitions with
the greatest value for a given X, ie. 23"={{C,D}:{C,D}e2,, S(C, D)=
=max {S (4, B): {4, B} € 2,}}, and by 2} we denote the set of all the bipartitions
maximizing the value of G (P,) over 2,. Then we have the following coroliary.
COROLLARY 1. '

P =PY > (29)
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Proof. We notice that the maximization of G (P,) over #, means the search of
the minimal value of V' (P,) over £,, due to (10). The last problem is equivalent
to seeking the maximum value of M—V (P,) on Z,. If we denote P,={X,, X,},
then the equality M—V (P,)=S (X;, X,) directly follows from the formulae (7)
and (8). It means that 25 =23", Then, there is evidently no possibility to construct
a maximal bipartition with the value greater than the greatest value. Q.E.D. BB

In the general case Corollary 1 gives the best result in this sense, that the inclu-
sion cannot be replaced by the equality. It follows from the proof of Theorem 5.
However, it should be mentioned that there exists some class of ordered pairs (X, [
(i.e. some class of problems defined by the set of entities X and the function of
dissimilarity), for which such a replacement is possible.

6. Algerithm for the determination of a bipartition with
the greatest value

Let us consider Algorithm 1 again. It is evident that the content of both sets
forming a maximal bipartition depends on the method of choosing the elements
from the list ¥ in Step 6. It seems that to be sure to obtain a maximal bipartition
with the greatest value we have to generate all the permutations over the set X,
i.e. |[X|! permutations. But this is not irue. Let us assume, that the first permu-
tation has been constructed. It results in a maximal bipartition, say {X;, X,». Due
to Theorem 3 and Theorem 4 it is evident that for each x € X, the inequality (21)
holds and for each x € X, the relation (22) is satisfied. According to the formula
(24) the sign of a (x)=S, (x)— 8, (x) does not depend on the order of the elements
in the set X, and the same holds for the points of the set X,. Since any permutation
on the set X, gives us a bipartition with the same value, then the above mentioned
permutation represents the equivalence class of permutations with the same value
of bipartition. From these remarks it follows that the cardinality of this equiva-
lence class is equal at least to 2|X;|!|X,|!. Then, the next permutation we have to .
inspect should be taken from outside of the mentioned class. This new permutation
implies a new bipartition and then another equivalence class, etc. This gives the
idea of exact algorithm for searching a bipartition with the greatest value. The se-
arch is based on the controlled inspection of equivalence classes of permutations
rather than on the examination of the set of all the permutations. To obtain a sys-
tematic way of inspection, we can apply the method of enumerating all the per-
mutations proposed by Even [1]. But his algorithm is not sufficiently fast for our
purposes, because its efficiency is proportional to |X]|!. Hence, we must consider
some heuristic method.

We start with some remarks giving the possibility of preliminary diminishing
the dimension of the problem. One can observe that if for some pair of distinct
x, y the equality S (x)=f(x, y)=S () holds, then surely either x€ X, and y e X,
or xeX, and y € X;. Hence, for example, we can arbitrarily assume that x € X,
and y e X, and remove x, y from X. The other special case appears when for some
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x € X the relation S (x)=0 holds. The definition of maximal bipartition yields
that such an element must belong to X,. It means that we can start the algorithm
by including this x in X,.

Furthermore, each element x must belong either to X, or to X,, for any bipar-
tition {X;, X,}. Then, we can arbitrarily choose the first element for testing. For
example, we can assume that this is the element x;, which maximizes the value
of S (x). Many reasons support this choice. The most important one is that it makes
very probable the exclusion of some elements from Y (see Step 9) in the first ite-
ration.

The above remarks are taken into account in the construction of a heuristic
algorithm. It is based on Algorithm 1. The problem of choosing the element from
the working list Y is solved by taking that which maximizes the current value of
a(x), xe€ Y. It assures the property of local maximum. In other words in each
iteration we achieve the greatest possible increase of the value of the bipartition
generated. This idea is similar to the concept of gradient methods. It also results
in an increase of efficiency and speed of the algorithm. In the case when we have
more than one x, x € ¥, with the greatest value of the current ¢ (x) we proceed
as follows. We arbitrarily choose any x, say x,, and save the other ones in the com-
puter memory. Then, we continue the algorithm until the determination of a ma-
ximal bipartition. If some element saved before belongs to the computed X, then
we delete it from the memory. If no element is saved, then we terminate the com-
putations. Otherwise, we go back to the situation described before, choose a new
element, say x,, delete it from the computer memory and proceed as above, etc.
After the inspection of all the possibilities we take that of the greatest value.

Let us now assume that the elements of X are distinct natural numbers. Then
the above described concept can be presented in a more formal way, as follows,

A HEURISTIC ALGORITHM.

. START.
. Compute S (x), for each xe X.
. Substitute @ (x): =8 (x), for every x € X.
0: =i{x.x€eX, a(x)=0}.
T: =X-0.
Ko: ={x:x,y&T, a(x)=f(x, )=a(y), ¥<y}.
Ky:={x:x,yeT, a(x)=f(x,y)=a(y), x>y}
Sk = D a(x).
x €K,

Ts Pk, ~K,.
p:=0; t: =0; w: =0.
» Wb =T Ho =, Z,: =
Sy =0;
By

s, Tt s g
AL =00 0N LR W=

n,: =0.
={x:x€Y,, a(x)=max {a(y):y € Y,}}.
. g: =min {x: x € By}.
. Go to Step 26.

—
i
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16. B,: ={x:x€ ¥,, a(x)=max {a (y): y € ¥, }}.

17. If p=0, then go to Step 20.

18. Determine L,: =B,NB,, for each r=0,1, ..., p—1.

19. B,: =B,~L,; n,: =n,—|L,|, for each r=0,1, ..., p—1.

20. ¢: =min {x: x € B,}.

21. B,: =B,—{q}.

22. Substitute b,: =|B,|.

23. If b,=0, then go to Step 26.

24. ny: =b,; nyy (i =0; t: =t+1; and for each y € T define a, (»): =a (y).

25. Your: =Yy Zpiy =25 Spin: =8,; pr=p+1.

26. Y,: =Y,—{q}; Z,: =Z, U{Q}; Sp: =8,+a(g).

27. For each y € T substitute a (y): =a (y)—2f (g, y) and if the new a(y) <0,
then Y,: =Y,—{y}.

28. For each y € Z, test whether @ (¥) <0, and if so, then Z,: =Z,—{y}; S,: =
=S,—a(p); for each ze T substitute a(z): =a (z)+2f(z,y), and if also
z¢Z, and a(2)=>0, then ¥,: =Y, U {z}. Go back to checking further ele-
ments of Z,.

29. If ¥,+#0, then go to Step 16.

30. If w>S,, then S,: =w and Z,: =Z.

31. If p#0 or ##0, then go to Step 33.

32, XL =Z,VKou0; X,: =T-Z,UK;; S: =S,+8k; go to Step 41.

3B. wi=Sy; Zi=4,.

34, If n,=0, then p: =p—1 and ¢: =¢—1.

35. n,: =n,_,.

36. Substitute @ (x): =a,(x), for each xeT.

37. g: =min {x: x € B,}.

38. B,: =B,—{q}.

39. If n,>0, then go to Step 25.

40. Go to Step 26.

41. The bipartition has the form {X,, X,}, and its value is equal to S.

42. STOP.

Now we present a computational example. Let X={1,2,3,4,5,6,7,8,9, 10,
11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}. The values of f'are shown in Table 1.
The first run of Algorithm is shown in Table 2. The current values of & (x) for the
elements actually belonging to the list Z are given in brackets. The asterisk means
that it is possible to have another choice than it has been made. If the elements
labelled with the asterisks are finally included in X, then the asterisks disappear.
In our example this situation refers to the 19th entity. As the result we -obtain the
following bipartition: {{1, 4, 7, 8, 10, 11, 12, 13, 18, 19, 20, 22}, {2, 3, §, 6, 9, 14,
15, 16, 17, 21, 23}}, with the value S=595. Since we have still two asterisks, then
the algorithm has to take into account two additional possibilities. First, it returns
to the 10th iteration of the previous run. Now, in this iteration there is chosen the
14th entity instead of the 12th one. It results in the bipartition {{1, 4,7,8,10, 11,
13, 14, 17, 19, 20, 22}, 12, 3, 5, 6, 9, 12, 15, 16, 18, 21, 23}}, with the value S$=600.

5
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Table 2. The performance of Heuristic Algorithm

- A The number of the iteration
! o3 1 3 3 .| %] & ] ¥ ] 8 9 10 1 12
A >i; The current value of a (x)
1 30 30 30 30 30 30 30 30 (30) (30) (30) (30) (30)
2 75 15 15 5 15 15 13 13 —7 —35 —35 —35 —35
3 95 15 —5 —5 —5 —5 —5 —5 —25 —25 —55 —55 —55
4 145 (145) (145) (145) (145) (145) (145) (145) (145) (129) (129) (129) (129)
5 79 51 ==51 —51 —51 —51 —51 —51 —51 —77 —77 —77 —77
6 50 50 30 16 16 16 16 16 —4 —4 —-t - —16
i 120 120 (120) (120) (120) | (120 (120) (120) (120) (120) (20) (20) (20)
8 115 115 15 15 15 15 15 . 15 15 15 (15) (15) (15)
9 110 110 10 10 10 10 10 10 10 10 -—90 —90 —90
10 46 © 30 30 30 30 30 2 20 20 (20) (20) (20) (18)
11 55 55 55 55 35 35 35 (35) (35) (35) (35) (15) )
12 55 39 55 49 29 .. 2! 29 9 9 9 9 ) ©)]
13 57 57 57 57 (57) 7) (57) 37 37 &) (37) un un
14 59 57 57 49 29 29 29 9 9 9 9 *—11 *—19
15 55 55 55 55 35 25 25 5 5 5 5 —I15 —15
16 59 57 57 57 *37 2 L | * *1 *] | *—19 *_19
17 64 64 64 4 4 4 4 4 4 4 4 0 —40
18 69 69 69 (69) (69) (69) (59) (59) (59) (59) (59) (53) (13)
19 61 61 61 21 21 21 21 11 11 9 9 *9 ©)
20 48 48 48 48 48 (48) (48) (48) (48) (48) (48) (48) 49)
21 48 48 48 48 34 0 —38 —38 —38 —38 —38 —38 —438
22 48 48 48 38 38 38 (38) (38) (38) (28) (28) (28) (28)
23 47 47 47 47 47 11 —25 —25 —25 —35 —35 —35 —35
The number of 4 7 18 13 20 22 11 1 10 8 12 19
the entity added
to X 1

senIIUd JO 39S e Suruonaeg

181




Table 3. The performance of Heuristic Algorithm (const.)

The number of the iteration

= g 127 12, 137 Il 4 | i | 6" ] 7 8¢ 9" 107 | i
The current value of a (x)
1 (30) (30) (30) (30) 30 30 30 30 (30) 30) 30) (30)
2 —35 —35 —35 —35 15 15 15 15 —5 —33 —33 —33
3 —55 —55 —55 —55 —5 —5 —5 —5 —25 —25 —55 —55
4 (127) 127 (127) 127) (143) (143) (143) (143) (143) 127) 127 (127)
5 —77 —77 —77 —77 —51 —51 —53 —53 —53 —79 —79 —79
6 —4 —18 —4 —16 16 16 16 16 —4 —4 —4 —4
7 (20) 20) (20) (20) (120) (120) (120) (120) (120) (120) (20) (20)
8 (15) (15) (15) (15) 15 15 15 15 15 15 (15) (15)
9 —90 —90 —90 90 10 10 10 10 10 10 —90 —90
10 (20) (20) (20) 18 30 30 20 20 20 (20) (20) (20)
11 (15) 1s) (15) ’) 35 35 35 35) 3% (35) (35 (15)
12 —11 —15 -—9 -—9 29 29 29 9 9 9 9 —11
13 a7 a7 7 a7 37 23 23 3 3 3 3 —17
14 ©) ©) 17 ©) 29 29 29 9 9 9 9 —11
15 —15 —15 —15 —15 35 35 *35 E1S *15 %15 ¥15 (15)
16 —19 —19 —19 —19 37) (57) (57) 37 37 (€)) (37 a7n
17 4 @) (64) 249 4 4 —6 —6 —6 —6 —6 —6
18 (51 -9 —9 —49 (69) (69) (69) (69) (69) (69) (69) (69)
19 1 —39 1 )] 21 11 11 1 1 = —1 —1
20 (48) (48) (48) (48) 32 —2 —38 —38 --38 —38 —38 —48
21 —38 —38 —38 —48 48 (48) 48) (48) (48) (48) (48) (48)
22 28) (28) (38) (38) 38 0 —36 36 —36 —46 —46 —46
23 ~-35 45 —45 —45 47 47 47) 47 47) 37) 37) 37)
the 14 17 —18 19 16 | 2 23 1 1 10 8 15
number
of the
entity
added
o X

[4:31
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We notice that in the case considered we delete from Z the 18th entity, which was
previously included in Z (see the 12'th and the 12;th iterations in Table 3). Then,
we return to the conflict, which occurs in the 4th iteration of the initial run. Now,
we include in Z the 16th element instead of the 13th one. The solution takes the
following form: {{1, 4,7, 8,10, 11, 15, 16, 18, 21, 23}, {2, 3, 5, 6, 9, 12, 13, 14, 17,
19, 20, 22}}, with the value S=601. Hence, this result is the best one. The algo-
rithm terminates, because there is no asterisk. Let us notice that the final result
was obtained after 23 iterations. The performance of the algorithm in two additional
cases is shown in Table 3.

7. Some remarks on the efficiency

First, let us consider the heuristic algorithm. If in each iteration we find in the
set ¥, only one element with the greatest value of the current « (x), then we have
no more than n—1 iterations, where n denotes the cardinal number of X. Let us
assume that to each pair of distinct x, y we assign the same weight, i.e. f(x, y)=/,=
=const.>0. Thus we have no more than # iterations (neglecting the fact, that in
this case we can determine the partition beforehand and with no computer algo-
rithm). The case when for each p the inequality |B,—{min {x: x € B,}}| >0 holds
is less probable in practice. This fact is confirmed by the results of many compu-
tations we have performed. Then, we can assume that the number of iterations
is proportional to n, say is equal to bn, where b is some nonnegative constant.

Now, we return to the main problem defined in Section 2. It is solved in no more
than n—1 steps labelled by the consecutive natural numbers starting from k=2.
If k=2, then we search only one bipartition. In the kth step, 2 <k <n, we gene-
rate two bipartitions referred to some specified subsets of X, as it was mentioned

in Section 3. For the last, nth, step we have in explicit form G(Pn)=m,
and then we can omit this step in our considerations. Hence, we have to perform

n—1

m=bn+b 2 (e, +my) (30)
k=3 .

iterations of the heuristic algorithm. The symbols 7, and #,, denote the cardina-
lities of subsets of X, which are divided in the kth step. It is obvious that in the
worst case ny, +m, =n—k. Thus, from the formula (30) one can obtain that

n?—3n+6

m<b

It means that in practice the number of iterations of the heuristic algorithm in-
creases no faster than with the second power of |X|. We should note that this esti-
mation was obtained making many simplifying assumptions. They concern the
heuristic algorithm (see the beginning of this section) and there were given some
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average estimations corresponding to a practical rather than the worst case. In
this sense this quadratic estimation of the efficiency of the algorithm solving the
whole problem has to be meant as an estimation for the most probable situation
rather than the worst one.

8. Final remarks

The problem considered in this paper concerns a large family of problems con-
sisting in partitioning a set into mutually disjoint subsets. There is a rich literature
devoted to this subject, but there is no general method for solving this family of
problems. It is a result of different nature of interconnections joining each pair
in the set of entities under consideration, what was emphasized in the introduction.
The solution of some problem with the interconnections of similarity type was
proposed in previous papers of one of the authors [2, 3]. This paper is devoted
to the problem which we partially solved. It means that we do not give any efficient
and exact algorithm determining the solution, because we do not know any good
exact algorithm generating a bipartition with the greatest value. We hope that
the lemmas and theorems developed and proved in this paper would help to obtain
an exact algorithm, which would be efficient enough from the practical point of
view. The other way is to derive a fast heuristic algorithm, which gives also the
estimation of exactness of the solution.
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Podziat zbioru obicktéw z uwagi na ich wzajemue
niepodobienstwo

W artykule rozwazamy zagadnienie podzialu zbioru obiektoéw na podzbiory w oparciu o zna-
jomos$¢ wzajemnego niepodobienstwa miedzy obiektami. Wyznaczamy zaroéwno liczbg podzbio-
réw jak i sposob dokonywania podziatn. W tym celu formalizujemy zadanie przez wprowadzenie
funkcji celu, a przy okazji podajemy jej interpretacje. Zadanie sprowadza si¢ do wygenerowania
takiego podziatu, ktory maksymalizuje warto$¢ tei funkcji. Wyprowadzamy i dowodzimy pod-
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stawowe wlasciwosci funkcji celu. Wiasciwosci te pozwalaja na zdekomponowanie problemu na
dwa oddzielne podproblemy. Jeden z nich polega na kolejnym poréwnywaniu niewielkiej liczby
rozwiazan czeSciowych. Drugi podproblem dotyczy sposobu tworzenia kolejnego rozwiazania
czesciowego na podstawie uzyskanych juz rezultatow. Autorzy podaja Scista metode rozwiazania
drugiego zadania, a takze proponuja szybka heurystyczna procedure generujaca rozwiazania (sub)
optymalne. Przy uzyciu tej procedury mozemy otrzymaé przyblizone rozwigzanie pierwotnego
zadania w czasie proporcjonalnym do n?, gdzie n oznacza liczbe obiektéw w rozpatrywanym
zbiorze. ’

I[EKOMHOM(IIIHSI MHOKECTBA OOBLEKTOB HA OCHOBAHHH HX
B3aUMHOI0 pa3/iH4us

B crarbe paccmatpuBaeTcs pazdmeHHe MHOXeCTBA 00BEKTOB Ha NOAMHOXKECTBA HA OCHOBAHUHN
HMX B3aUMHOTO pasiuurs. Onpenensercs Yuciio MOAMHOXECTB U METO OCYIIECTBIIEHUS pa3OueH st.
C sroi 1enbio 3ana4a (hopManu3yeTcs IIyTeM BBeIeHHS LecBOd (YHKIMU M ee MHTepIpeTaliy.
Temepb 3a/aua 3aKIIOMACTCS B TOM, YTOGLI HOJYYHTH TAKYIO ACKOMIIOSHIHIO, sl KOTOPOI Le-
JeBast QYHKIHS NPAHEMAET MaKCHMAaIbHOE 3HAaYeHue. BBOIATCS ¥ JOKA3BIBAXOTCS OCHOBHBIC CBOM-
cTBa 3TOM (yHKUMU. DTH CBOCTBA IO3BOJSIIOT IPOBECTH CKOMIIO3WIMIO 3a/aYi Ha JIBE 10134~
navd. O HA W3 HUX 3aKJIIOYAETCS B CPABHMBAHME HEOOIBIIOTO YMCIA YACTHLIX peluenuii. Bropas
moa3azaya CBOAMTCS K OIPEHEIICHUIO OYEePEOHOTO YACTHOTOQ PELISHHAS Ha OCHOBe TIOJ1Y Y€ HHBIX
VIKE DPE3YJIbTATOB.

ABTOpBI NPEJCTABISIFOT TOYHLIA METOZ pPeLlieHns BTOPOH moa3aZayu, a TaKKe IpeiIararoT
OLICTPYIO IBPUCTHYECKYIO TIPOLEAYDPY, KOTOPas TeHepUpyeT (TIOYTM) ONTUMAJIBHBIE DPE3YIbTATHIL
C noMOIIbIO 3TON MPOLEAYPHl MOXKHO TMOJYYHTh NPUOIM3UTENBHOE PEIIeHHE IEPBOHAYATLHOMN
33044 3a BpPeMs, KOTOPOE IPOHOPUHONAIBHO #Z%, THE /4 — YHCIHO OOBEKTOB PACCMATPUBAEMOrO
MHOXKECTBA,
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