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The paper deals with a problem of partitioning a set of entities into subsets. The decompo­
sition is performed by taking into consideration the reciprocal dissimilarities between the entities. 
Both the number of subsets and the way of partitioning are determined. First, the goal function 
is defined and interpreted. The problem is to generate a partition such that it maximizes the value 
of the function mentioned. Then some basic properties of the goal function are formulated and 
proved. These properties provide a basis for decomposing the probleminto two disjoint subprob­
lems. One of them consists in consecutive enumeration over a smaller space of partial solutions. 
The second one is to generate the next solution on the basis of the previous result. The exact so­
lution of the second subproblem is given and a fast heuristical procedure which generates (sub) 
optimal results is proposed. The procedure makes it possible to obtain an approximate solution 
of the general problem in time proportional to n2, where 11 denotes the number of entities in the 
set considered. 

I. Introduction 

In many real life situations a non-trivial mathematical description of any real 
problem under consideration leads to a multidimensional and large scale model. 
Investigations performed on such a model are very complex and time-consuming. 
For simplification we often decompose the model into several pairwise disjoint 
parts (submodels). The way of the decomposition depends upon the kind of in­
terconnections assigned to respective pairs of parts of the model and to pairs of 
entities. We propose a general classification of these interconnections, which divides 
them into two groups. To the first one we assign interconnections, which have 
the nature of similarity. The second group consists of interconnections with the 
opposite natur~, i.e. the dissimilarity. To obtain a "good" decomposition oi the 
model with interconnections of the first type we have to fulfil the two following 
conditions: every pair of entities with a relatively high value of similarity should 
belong to the same part, and two objects with a relativel) small mutual similarity 
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Now, it is obvious that the maximization proceeds over both aspects of the de­
composition, i.e. the number of subsets in the optimal partition and the way of 
partitioning the entities of X into the subsets mentioned. 

3, Some properties of the global partition index 

By the definition of partition and due to the formula (7) we obtain 

M(P)=S (X, X)=M=const ., (9) 

for each P E f!i> (we omit here the subscript k, because it is out of interest. This same 
will be done in some further formulae) . Hence, a simpler form of the formula (6) 

is as follows 

(10) 

Now, we construct a partition PJ..+ 1 on the basis of the partition Pk, IX\ >k;?: 2. 
Let Pk+l ={..-Yi: i=1, 2, ... , k+ 1}. We also assume that the following conditions 
hold 

Xi=Xi, for each i=l, 2, ... , k, i=J:-q; 

XquXk+ 1 =Xq, 

(I 1) 

(12) 

where X; E Pk for each i= 1, 2, ... , k. The index q is chosen in such a way that \Xq \;?: 2, 
q= 1, 2, ... , k. Since 

(13) 

then one obtains 

1 
G(Pk+ J)-G(Pk)= 2 (k- 1)k(k+ 1) [(k+3) V(Pk)+2(k+2)(k-l)S%-4M], 

where we denote S~=S (Xq, Xk+ 1 ), for short. In the similar way one can show that 

1 
G (Pk)- G (Pk-1)= 2 (k-

2
) (k-l) k [(k+2) V(Pk -1 )+2 (k+ 1) (k-2) S~_ 1 -4M], 

for 3,;;k,;; \X \, t=1 , 2, ... ,k-1, Pk_ 1 Ef!i>k- t · Here Pk _ 1={X;:i=1,2, ... , k-l}, 
X;=Xi for each i=l,2, ... ,k-1 , i=f:-r and Xr=XruXk , XnXkePk. Then , we im-
mediately have the following theorem. 

THEOREM 1. Let Pk-uPk and Pk+ 1 be as defined before, 3,;;k< \X !. If 

G (PZ)=max {G (P): PE f!i>} (14) 

then the two following conditions must hold 

4M;?:(k+3) V(Pk)+2 (k+2)(k-1) SL 
4M,;;(k+2) V(Pk-1)+2 (k+l) (k-2) S~_ 1 . 

for each q=1, 2, ... , k and r=1, 2, ... , k-1. 

(15) 

(16) 
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Let a partition P~ + 1 ={ x;: i = 1, 2, ... , k +I} be given, which is defined as fol­
lows: for each i=I,2, ... ,k, i#r, we have x;=X;EPk and X~uX~+ 1 =XkePk. 
The index r is here arbitrarily chosen, but r= 1, 2, .. . , k. Thus, one can calculate 

k+2 
G(Pk+l) -G(P~+l)= k(k+l) [S(X,pXk+l)-S(X~,X~+ 1 )} 

Then, we have the following theorem 

THEOREM 2. Let Pk and Pk+ 1 be in the same form as in Theorem I, 2~k<1Xi. Mo ­
reover, let Pk maximize G over &k. The partition Pk+ 1 fulfills the relation 

G (Pk+ 1)=max {G (P): PE &k+J.} 

if and only if the following condition 

S~~ S (X~, X~+ 1) 

holds for each P~+ 1 E &k+ 1 , where P~+l is as described above. 
Theorems I and 2 give us a simple method for seeking the solution of the prob­

lem considered. Initially we look for the partition P~={X1 ,XJ of the set X such 
that it maximizes S (X1 , X 2 ). Then, we compute two new subpartitions (v.hich 
will be called bipartitions), namely {x:, X~'} and {x;, X~'}, where x; u X~' = X1 , 

1Xd~2, and x; ux;' =X2, IX21 ~2. The former one maximizes sex;, x:') and the 
second one maximizes S (X~, X~') . Then, we choose the greater number out of 
these two values obtained and the corresponding bipartition. Thus, we have P; = 
={X,, X2 , X3 }, which fulfills the formula (14) for k=3, etc. If we do not want 
to attain the global maximum, then we stop when the inequalities (15) and (16) 
hold for some k. Otherwise we continue up to k= IXI . 

It seems that the above described idea for solving the problem is very natural 
and simple. It is obvious that the most important problem is here to obtain an 
effective and efficient procedure for seeking a bipartition of any specified set X, lX I ~ 3, 
into two subsets Xv X 2 that maximizes S (X1 , X 2 ). This bipartition is said to be 
the bipartition with the greatest value. Next sections of the paper are mainly de­
voted to the derivation of a procedure for seeking the bipartition considered. 

4. Maximal bipartitions 

From now on we consider partitions of a set X into two disjoint and nonempty 
subsets, i.e. bipartitions. Let a partition P={X~> X 2 } be given, and its value, i.e. 
S (X1 , X2 ), be equal to S. If there exists no X~, X~ #X~> such that 

(17) 

and for every XcX1 we haveS (X, X -X)~S, then the ordered pair of sets (X1 , X2 ) 

is said to be a maximal bipartition. Moreover, a bipartition {Xt> X2 }, where (X1 , X2 ) 

is a given maximal bipartition is called the bipartition corresponding to a maximal 

.. 
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bipai'tition. (Note that the bipartition corresponding to a maximal bipartition and 
a bipartition with the greatest value can be, but need not to be the same!). The 
set of all the maximal bipartitions for the considered X is denoted by f!lJ 0 • 

In order to simplify later notations we write 

S; (x) = S({x}, X; - {x}) , i= l , 2; (18) 

S (x) = S (-tx}, X-{x}) (19) 

It is evident that for any fixed bipartition {X1 , X2 } we have 

S 1 (x)+S2 (x) = S(x) (20) 

LEM.'Y[A 1. Let (Xl> X2 ) E f!lJ 0
• The necessary and sufficient condition for x E X 1 

is to fulfil the inequality 

(21) 

Proof. We assume that X E xl. Let sl (x) >S2 (x). Then, we haves (Xl -{x}, Xz u 
u{x})= S(Xl , Xz)+S1 (x)-S2 (x)>S(Xt.X2 ), which is a contradiction, because 
(X1 , X 2 ) E P/0 • 

Now, let the inequality (21) hold. We assume that x E X2 . Then S (X1 u {x}, X 2 + 
- {x}) =S(Xl, X2)+S2 (x)--S1 (x)>S{X1 , X 2 ), hence a contradiction which com­
pletes the whole proof. Q.E.D. !I 

In a similar way we can prove the next Jenuna. 

L EMMA. 2. Let (X1 , X 2 ) be a maximal bipartition . The relation x E X2 is equivalent 
to .the following inequality 

S; (x)>S2 (x) (22) 

Now, we formulate a more general property of maximal bipartitions. 

THEOREM 3. P=(X1 , X2 ) is a maximal bipartition, if and only if the formula (21) 
holds for each X E xl' and each X E Xz satiifie~ the inequality (22). 

Proof. The necessity for P E & 0 directly results from Lemmas 1 and 2. 
Now, we consider the sufficiency. We deal with a bipartition {XJ> X2 } and as­

sume that the relation (21) holds for each x E X1 .• Moreover, let the inequality (22) 
be fulfilled for every x E X 2 • We consider a set A, A c X 1 , A#X1.. We have S (X1 + 
-A,X2uA)=S(X1 ,X2 )+[S(X1,A)-·S(X2 ,A)]-S(A,A). We observe that for 
some C, CcX, 

(23) 
XEC 

In this case we obtain [S (X1, A) - S (X2 , A)]~O, due to (21), and then the bipar­
tition {XJ- A, X2 u A} has the value not greater than S (X1 , X 2) . Next, we con­
sider a set B, BcX2 , B# X 2 • By a similar argument we obtain the following ine­
quality S(XluB,X2 - B)<S(X1 ,X2 ), which accomplishes the proof. Q.E.D. ~ 

Then, we will investigate the following algorithm. 
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ALGORITHM 1. 

1. START. 

2. Initialize the value of bipartition S: =0. 

3. For each x EX calculate S (x). 

4. For eacli x e X take a (x): =S (x) . 

5. Initialize the working lists Y: = X , Z: =0. 
6. Take any x E Y and the corresponding a (x). 

7. S: = S+a (x). 

8. Y: =Y-{x}, Z: =Zu{x}. 

9. For each y EX substitute a(y): =a(y)-2/(x,y). Moreover, if a(y)<O, 
then Y: = Y-{y}. 

10. For all the elements y from the list Z test, whether a (y) <0. If so, then 
Z: =Z-{y}, S: =S-a(y) and, moreover, for each zeXsubstitute a(z): = 
=a (z)+2f(z, y). Otherwise, go to Step 12. 

11. Test, whether a(z);::;O for any zeX-(ZuY). If so, then Y: =Yu{z}. 

12. Check," whether Y=0. If so, then X,: =Z,X2 : =X-X1 • Otherwise pass 
to Step 6. 

13. STOP. 

In the above description we use the symbol of substitution: =. Its meaning 
is here a11alogous as in ALGOL. 

A simple numerical example for the above algorithm is given later in this sec­
tion. The following lemma concerns one of the most important properties of Al­
gorithm 1. 

LEt.tMA 3. Let (X1 , X 2) be et'! ordered pair of sets generated by Algorithm 1. Then, 
for each x E X 1 the condition (21) holds and each x e X 2 fu(fills. the inequality (22). 

Proof. Due to the 4th, 9th, lOth and 12th steps we notice that 

a (x)=S (x) -2 }; f(x, z)=S (x)-~S1 (x) (24) 
z E X1 

From (20) and (24) it follows that a (x)=S2 (x)- S1 (x). 

According to Step 12 we have X 1 =Z. From Steps 5, 8, 9, 10 and 11 it foilows 
that the list Y contains the elements x EX such that x tf= Z and a (x);?:;O. Due to 
Step 12 the procedure terminates, if and only if Y=fb. Hence, after having perfor;:ned 
Step 13, there is uo element x EX outside the list Z, such that a (x)?O. T-hus, 
we have a (x) <0 for each x E X2 =X -X1 (Step 12). Pue to Steps 6, 8, 10 and 11 
each element taken from X1 has a nonnegative a (x). It is obvious that the last 
property is equivalent to the formula (21). From the relation a (x) <0 there fol­
lows the formula (22). Q.E.D. ID 

Lemma 3 and Theorem 3 immediately imp ly the follov:ing property of 
Algorithm 1. 
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THEOREM 4. Algorithm 1 generates a maximal bipartition. 
There can exist more than one maximal bipartition. Moreover, they may have 

distinct values. It is shown in the following simple example which also gives an idea 
how Algoritm 1 works. 
Example. 

Let X={l, 2, 3, 4, 5, 6, 7}. 1he values of/are given in the matrix below. 

-0 1 ] ] 2 3 1 
1 0 1 2 1 0 1 
1101101 
1 2 1 0 1 1 1 
2111011 
3001101 
1111110 

Algorithm 1 is initiated in this case with S=O (Step 2) and a= [9, 6, 5, 7, 7, 6, 6] 
(Step 4), where in the xth element of the row vector a we store the current value 
of a (x). Let x =1 be taken in Step 6. Then S=9, a=[9, 4, 3, 5, 3, 0, 4], Y={2, 
3, 4, 5, 6, 7} and, Z={J }. We pass to Step 6 again and let x=2. Then S= 13, a= 
=[7, 4, 1, 1, 1, 0, 2], Y={3, 4, 5, 6, 7}, 2={1 , 2}, and we go to Step 6. Let x =3. 
Thus S=14, a=[5, 2, 1, -1 , -1, 0, 0], Y={6, 7}, Z={l, 2, 3}, and we pass to 
Step 6. Let x=6. Hence S=14, a=[ -1, 2, 1, -3, - 3, 0, -2], Y=0, Z={1, 2, 3, 6}, 
but now 1 E Z and a(!)= -1. After having performed Step 10 and Step 11 we 
obtain S=15, a=[-1, 4, 3, -1, 1, 6, 0], Y={5, 7}, Z={2, 3, 6}. We pass to Step 6 
again and take x=5. Thus S== 16, a=[ -5, 2, 1, -3, 1, 4, -2], Y=0, Z={2, 3, 5, 6} 
and the procedure terminates. We obtain the maximal bipartition <{ 1, 4, 7}, {2, 3, 
5, 6}) with the value S = 16. In this case we have 

s, (1)=2:!(52 (1)=7' 
sl (4)=2:!(Sz (4) =5, 
sl (7)=2:!( Sz (7)=4, 

· and S 1. (2)=4>S2 (2)=2, 
s~ (3)=3>S2 (3)=2 ; 
S 1 (5)=4>S2 (5)=3, 
S 1 (6)=5 >S2 (6) = 1 . 

If we take the consecutive xs in Step 6 in the order 3, 4, 6, 7, then we obtain 
another maximal bipartition <{3, 4, 6, 7}, {1, 2, 5}) with the value S= 14. Here 
we have 

sl (3)=2:!(S2 (3)=3, 
sl (4)=3~s2 (4) = 4, 
sl (6)=2:!(S2 (6) =4 , 
sl (7)=3~s2 (7)=3, 

and S1 (1)=6>S2 (1)=3, 
sl (2)=4>S2 (2)=2, 
sl (5)=4>S2 (5)=3. 
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5. Bipartitions with the greatest value 

There are some situations when we have more than one bipartition with the 
greatest value. As a simple example we can investigate such bipartitions in the 
case when to each pair {x, y} of distinct elements of X we assign f(x, y)=fo= 
=const >0. Similar situations appear in the set of maximal bipartitions for a given 
X, i.e. :?J0

• There can exist two or more maximal bipartitions with distinct value&, 
as it was shown in the preceding section. Now, we try to estabilish a relation bet­
ween maximal bipartitions and bipartitions with the greatest value. Initially, we 
formulate some properties of bipartitions with the greatest value. 

LEMMA 4. Let {Xl, X2} be a bipartition with the greatest value. If X E x1, then the 
inequality (21) holds. If S1 (x) <S2 (x) , then x E X 1 . 

Proof. The proof of the first part of th~.., lemma can be accomplished in the same 
way as used for proving th~ Jlrst part of I emma 1. 

Now, let S 1 (x) <S2 (x) and let x E X 2 • Then S (X1 u {x}, X 2 -{x})=S (X1 , X2)+ 
+ [S2 (x)-S1 (x)] >S (XI> X 2 ), hence a contradiction, which terminates the proof. 
Q.E.D. • 

In a similar way we obtain the next property. 

LEMMA 5. Let {X1 , X2 } be a bipartition with the greate:,t value. If x e X 2 , then the 
inequality 

(25) 

holds. Further, if the relation (22) is satisfied, then x E X 2 . 

The above lemmas are analogous to Lemma 1 and I emma 2. Let S ({x}, A)= 
=S({x},B), AnB=f/J, AuB=X-{x}, for some xeX. It must be pointed out 
that if (Au{x},B) is a maximal bipartition, then <A,Bu{x}) cannot be a maxi­
mal bipartition due to its definition given in Section 4. On the other hand, if {A u 
u { x}, B} is a bipartition with the greatest value, then {A, B u { x}} is also a hi­
partition with the greatest value, because S (A u {x}, B)=S (A, B)+S ({x}, B)= 
=S (A,B)+S (A, {x}) (due to the above assumptions and the symmetry of S ( ·, · )), 
and hence S (A u {x}, B)=S (A, Bu {x}). This is the reason for differences in 
weak and strict inequalities in Lemma 4, Lemma 5 and the Lemmas 1 and 2. 

Here the question arises, whether any maximal bipartition is a bipartition with 
the greatest value. The following theorem gives the answer. 

THEOREM 5. For each bipartition with the greatest value there exists a maximal 
bipartition with the same value. 

Proof. Let P={X1 , X2 }. Due to the lemmas 4 and 5 the condition (21) is satis­
fied for each X E xl. For X E Xz the inequality (25) also holds. If for every X E »z 
we have s1 (x) # s2 (x), i.e. the relation (22) rather than (25) is satisfied, then p 
is also a bipartition corresponding to a maximal bipartition which results fwm 
Theorem 3. This terminates the first part of the proof. 
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Now; we make further assumptions. Let A, A c X2 , A =1- f/J , be the set of all the 
elements for which we have 

(26) 

Let B,BcA, be a set, such that S(B,B)=O. Since A=f.f/J, then this set is also non­
empty. Indeed, if x E' A, then it is sufficient to take B={x}, and obviously we have 
S ({x}, {x}) =f(x, x)=O. Furthermore, let B be maximal in this sense that for 
each proper superset C ofF there is S re, C) =t-O (do not confuse it with a maximal 
bipartition !). Then, using the formula (23) we obtainS (X1 u B, X 2 - B)=S (X1 , X2 ) . 

It means that the bipartition considered is not a bipartition corresponding to a n<a­
ximal bipartition. Moreover, the bip::~rtition {X1 uB, X2 -B} is also a bipartition 
with the greatest value. It remains to prove that the new bipartition is maximal. 

Let us denqte for simplicity X 1 uB=X: and X2 -B=X~. We calculate 

S ({x}, X7 - {x})=S: (x)=S1 (x)+S ({x}, B), 

S({x}, X~-{x})=S~ (x)=S2 (x)-S({x},B), 

(27) 

(28) 

Case I. Let x EBcx:. Then, according to (26) and to the previously assumed 
properties of the set B, we haveS ({x}, B)=O. It implies that s: (x)=S~ (x} which 
confirms the condition . (21). 
Case 2. Let x 6 X1 c x;. Since the bipartition { x:, X~} is that with the greatest 
value, then Lemma 4 results in s; (x),;:;;S~ (x), which also agrees with the con~ 
dition (21 ). 
Case 3. Let xEA-B=t-f/J. Since B is a maximal set in the sense that S(C, C)=t-0 
for every C, C#B, C-::JB, then S ({x}, B) >0. It follows that S~ (x) >51 (x)):S2 (x) > 
> S~ (x), due to (25), (27) and (28), as well. Hence, s; (x) > S~ (x) which confirms 
the inequality (22). 
Case 4. Let xEX~-A. We notice that X~ -A=X2 - A. From the description 
of A it results that the condition (22) holds. Since S ({x}, B)):O then S~ (x) >S~ (x) 
as in the previous case. 

We see that the bipartion {X;, X~} fulfills the assumptions of Theorem 3. Thus, 
there directly results from this theorem that <X;, X~) is also a maximal biparti­
tion, which completes the whole proof. Q.E.D. Ill 

As a natural consequence of the above theorem we obtain a simple idea for 
the generation a bipartition with the greatest value. It is sufficient to seek this hi ­
partition in the set of maximal bipartitions for a given X. Let &* be the set con­
sisting of all the bipartitions corresponding to maximal bipartitions with the gre­
atest value, i.e . .9* = {{Xl.,X2 }:X1 =A,X2 =B, <A,B) E& 0

, S(X1 , X2)=max 
{S (A, B): <A, B) E &0}}. By &~* we denote the set of all the bipartitions with 
the greatest value for a given X, i.e. &~* ={{C,D}:{C, D}E.92 , S(C,D)= 
=max { S (A, B): {A, B} e fj' 2}}, and by .9; we denote the set of all the bipartitions 
maximizing the value of G (P2 ) over &2 • Then we have the following corollary .. 
COROLLARY 1. 

(29) 
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Proof. We notice that the maximization of G (P2 ) over 9 2 means the search of 
the minimal value of V(P2 ) over 9 2 , due to (10). The last problem is equivalent 
to seeking the rt1aximum value of M - V(P2 ) on 9 2 . If we denote P2 ={X1 , XJ , 
then the equality M- V (P2 )= S (Xu X2 ) directly follows from the formulae (7) 
and (8). It means that 9; =9~*. Then, there is evidently no possibility to construct 
a maximal bipartition with the value greater than the greatest value. Q.E.D. 11 

In the general case Corollary 1 gives the best result in this sense, that the inclu­
sion cannot be replaced by the equality. It follows from the proof of Theorem 5. 
However, it should be mentioned that there exist s some class of ordered pairs <X, f> 
(i.e. some class of problems defined by the set of entities X and the functi on of 
dissimilarity), for which such a replacement is possible. 

6. Algorithm for the determination of a bipartition with 
the greatest value 

Let us consider Algorithm 1 again. It is evident that the content of both sets 
forming a maximal bipartition depends on the method of choosing the elements 
from the list Y in Step 6. It seems that to be sure to obtain a maximal bipartition 
with the greatest value we have to generate all the permutations over the set X, 
i.e. lXI! permutations. But this is not true. Let us assume, that the first permu­
tation has been constructed. It results in a maximal bipartition, say <X1 , X2 ). Due 
to Theorem 3 and Theorem 4 it is evident that for each X E xl the inequality (21) 
holds and for each X E x2 the relation (22) is satisfied. According to the formula 
(24) the sign of a (x) = S 2 (x) - S 1 (x) does not depend on the order of the elements 
in the set X 1 and the same holds for the points of the set X 2 • Since any permutation 
on the set X 2 gives us a bipartition with the same value, then the above mentioned 
permutation represents the equivalence class of permutations with the same value 
of bipartition. From these remarks it follows that the cardinality of this equiva­
lence class is equal at least to 21X1 1! IX2 1!. Then, the next permutation we have to 
inspect should be taken from outside of the mentioned class . This new permutation 
implies a new bipartit ion and then another equ ivalence class, etc. This gives the 
idea of exact algorithm for searching a bipartition with the greatest value. The se­
arch is based on the controlled inspection of equivalence classes of permutations 
rather than on the examination of the set of all the permutations. To obtain a sys­
tematic way of inspection, we can apply the method of enumerating all the per­
mutations proposed by Even (1]. But his algorithm is not sufficiently fast for our 
purposes, because its efficiency is proportional to lXI!. Hence, we must consider 
some heuristic method. 

We start with some remarks giving the possibility of preliminary diminishing 
the dimension of the problem. One can observe that if for some pair of di stinct 
x,y the equality S(x)=f(x,y)=S(y) holds, then surely either xEX1 and yE X 2 

or X 6 x2 and yE xl. Hence, for example, we can arbitrarily assume that X .E xl 
and yE" X 2 , and remove x, y from X. The other special case appears when for some 
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x EX the relation S (x) = O holds. The definition of maximal bipartition yields 
that such an element must belong to X 1 • It means that we can start the algorithm 
by including this x in X 1 • 

Furthermore, each element x must belong either to X1o or to X2 , for any bipar­
tition {X1 , X 2 }. Then, we can arbitrarily choose the first element for testing. For 
example, we can assume that this is the element x 1 , which maximizes the value 
of S (x) . Man:y reasons support this choice. The most important one is that it makes 
very probable the exclusion of some elements from Y (see Step 9) in the first ite­
ration. 

The above remarks are taken into account in the construction of a heuristic 
algorithm. It is based on Algorithm 1. The problem of choosing the element from 
the working list Y is solved by taking that 'A-hich maximizes the current value of 
a (x), x e Y. It assures the property of local maximum. In other 'A-ords in each 
iteration we achieve the greatest possible increase of the value of the bipartition 
generated. This idea is similar to the concept of gradient methods. It also results 
in an increase of efficiency and speed of the algorithm. In the case when we have 
more than one x , x E Y, with the greatest value of the current a (x) we proceed 
as follows . We arbitrarily choose any x, say Xu and save the other ones in the com­
puter memory. Then, we continue the algorithm until the determination of a ma­
ximal bipartition. If some element saved before belongs to the computed X~> then 
we delete it from the memory. If no element is saved, then we terminate the com­
putations. Otherwise, we go back to the situation described before, choose a new 
element, say x 2 , delete it from the computer memory and proceed as above, etc. 
After the inspection of all the possibilities we take that of the greatest value. 

Let us now assume that the elements of X are distinct natural numbers. Then 
the above described concept can be presented in a more formal way, as follows. 

A HEURISTIC ALGORITHM . 

1. START. 
2. Compute S (x), for each x eX. 
3. Substitute a (x): = S (x), for every x eX. 
4. Q: = )x.xeX, a(x)=O}. 
5. T: = X - Q. 
6. K0 : ={x:x,y~T, a(x)=f(x,y)= a(y), x<y}. 
7. K1 : = {x:x,y e T, a(x)=f(x,y)=a(y), x>y}. 
8. Sx: = }.; a(x). 

X E Ko 

9. T: =T- K0 -KI. 
JO. p: = 0; t: = 0; w: = 0. 
11. Yp: = T; Z: = f/J, Zp: = f/J. 
12. SP: =0; nP: = 0. 
13. B0 : ={x: x e Y0 , a (x) = max {a(y): y e Y0 }}. 

14. q: = min{x : xeB0 } . 

15. Go to Step 26. 
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16. B": = {x: x E Y", a (x)=max {a (y): y E' Yv}}· 
17. If p=O, then go to Step 20. 
18. Determine L,: =B, nB", for each r=O, 1, ... ,p-1. 
19. Br: ==Br-Lr; nr: ==n,- ILr l, for each r=O, 1, .. . ,p -1. 
20. q: =min {x: x EB"}. 
21. Bp: =Bv-{q}. 
22. Substitute bP: = IBp l· 
23. If bP=O, then go to Step 26. 
24. nP: =bP ; nP+l: =0 ; t: =t+1 ; and for each y ET define aP(y): =a(y). 

25. Y~+l: = Yp; Zv +l : =Zv; Sp+l: =S"; p: =p+ 1. 
26. Yp: = Y"-{q}; Zv: =Zpu{q} ; Sp: =S"+a(q). 
27. For each y ET substitute a (y): =a (y)- 2f(q, y) and if the new a (y) <0, 

then Yv: = Yv- {y}. 
28. For each yE Z" test whether a (y) <0, and if so, then Z": =Zv-{y}; S": = 

=S"-a(y); for each zeT substitute a(z): =a(z)+2f(z,y), and if also 
zrf=Zv and a(z)~O, then Yv: =Yvu{z}. Go back to checking further ele­
ments of ZP. 

29. If Yp#f/J, then go to Step 16. 
30. If w>Sv, then S": = wand Zv: =Z. 
31. If p#O or t#O, then go to Step 33. 
32. X1: =ZvuK0 uQ; X 2 : =T-Z,uK1 ; S: =Sv+SK; go to Step 41. 
33. w: =Sv ; Z: =Z,. 
34. If nv=O, then p: =p -1 m~d t : = t-1. 
35. nv: =nv-l· 
36. Substitute a (x): =av (x), for each x E T. 
37. q: =min {x:x EBv}· 
38. B": =Bv-{q}. 
39. If nv >0, then go to Step 25. 
40. Go to · Step 26. 
41. The bipartition has the form {X1 , X2 }, and its value is equal tu S. 
42. STOP. 

Now we present a co_mputational example. Let X={l , 2, 3, 4, 5, 6, ..,, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}. The values of fare shown in Table l. 
The first run of Algorithm is shown in Table 2. The current values of a (x) for the 
elements actually belonging to the list Z are given in brackets. The asterisk means 
that it is possible to have another choice than it has been made. If the elements 
labelled with the asterisks are finally included in xl , then the asterisks disappear. 
In our example this situation refers to the 19th entity. As the result we ·obtain the 
following bipartition: {{1, 4, 7, 8, 10, 11, 12, 13, 18, 19, 20, 22}, {2, 3, 5, 6, 9, 14, 
15, 16, 17, 21 , 23}}, with the value S=595. Since we have still two asterisks, then 
the algorithm has to take into account two additional possibilities. First, it returns 
to the lOth iteration of the previous run. Now, in this iteration there is chosen the 
14th entity instead of the 12th one. It results in the bipartition {{1, 4, 7, 8, 10, 11, 
13, 14, 17, 19, 20, 22}, {2, 3, 5, 6, 9, 12, 15, 16, 18, 21, 23}}, with the value S=600. 
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We notice that in the case considered we delete from Z the 18th entity, which was 
previously included in Z (see the 12'th and the 12~ th iterations in Table 3). Then, 
we return to the conflict, which' occurs in the 4th iteration of the initial run. Now, 
we include in Z the 16th element instead of the 13th one. The solution takes the 
following form: {{1, 4, 7, 8, 10, 11, 15, 16, 18, 21, 23}, {2, 3, 5, 6, 9, 12, 13, 14, 17, 
19, 20, 22}}, with the value S=601. Hence, this result is the best one. The algo­
rithm terminates, because there is no asterisk. Let us notice that the final result 
was obtained after 23 iterations. The performance of the algorithm in two additional 
cases is shown in Table 3. 

7. Some remarks on the efficiency 

First, let us consider the heuristic algorithm. If in each iteration we find in the 
set YP only one element with the greatest value of the current a (x), then we have 
no more than n-1 iterations, where n denotes the cardinal number of X. Let us 
assume that to each pair of distinct x, y we assign the same weight, i.e. f(x, y)= fo = 
=const. >0. Thus we have no more than n iterations (neglecting the fact, that in 
this case we can determine the partition beforehand and with no computer algo­
rithm). The case when for each p the inequality /BP-{min {x: x e BP}}/ >0 holds 
is less probable in practice. This fact is confirmed by the results of many compu­
tations we have performed. Then, we can assume that the number of iterations 
is proportional to n, say is equal to bn, where b is some nonnegative constant. 

Now, we return to the main problem defined in Section 2. It is solved in no more 
than n-1 steps labelled by the consecutive natural numbers starting from k=2. 
If k=2, then we search only one bipartition. In the kth step, 2<k<n, we gene­
rate two bipartitions referred to some specified subsets of X, as it was mentioned 

M 
in Section 3. For the last, nth, step we have in explicit form G (P,) = n (n-

1
) , 

and then we can omit this step in our considerations. Hence, we have to perform 

n-1 

m=bn+b .2; (nk, +nk) (30) 
k=3 

iterations of the heuristic algorithm. The symbols nk, and nkz denote the cardina­
lities of subsets of X, which are divided in the kth step. It is obvious that in the 
worst case nk, + nkz =n- k. Thus, from the formula (30) one can obtain that 

n2 -3n+6 
m~b-----

2 

It means that in practice the number of iterations of the heuristic algorithm in­
creases no faster than with the second power of lXI. We should note that this esti­
mation was obtained making many simplifying assumptions. They concern the 
heuristic algorithm (see the beginning of this section) and there were given some 
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average estimations corresponding to a practical rather than the worst case. In 
this sense this quadratic estimation of the efficiency of the algorithm solving the 
whole problem has to be meant as an estimation for the most probable situation 
rather than the worst one. 

8. Final remarks 

The problem considered in this paper concerns a large family of problems con­
sisting in partitioning a set into mutually disjoint subsets. There is a rich literature 
devoted to this subject, but there is no general method for solving this family of 
problems. It is a result of different nature of interconnections joining each pair 
in the set of entities under consideration, what was emphasized in the introduction. 
The solution of some problem with the interconnections of similarity type was 
proposed in previous papers of one of the authors [2, 3]. This paper is devoted 
to the problem which we partially solved. It means that we do not give any efficient 
and exact algorithm determining the solution, because we do not know any good 
exact algorithm generating a bipartition with the greatest value. We hope that 
the lemmas and theorems developed and proved in this paper would help to obtain 
an exact algorithm, which would be efficient enough from the practical point of 
view. The other way is to derive a fast heuristic algorithm, which gives also the 
estimation of exactness of the solution. 
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Podzial zbioru obiektow z uwagi na ich wzajemue 
niepodobienstwo 

W artykule rozwa:i:amy zagadnienie podzialu zbioru obiekt6w na podzbiory w oparciu o zna­
jomosc wzajemnego niepodobienstwa mi~dzy obiektami. Wyznaczamy zarowno liczb\'; podzbio­
r6w jak i spos6b dokonywania podzialu. W tym celu formalizujemy zadanie przez wprov.adzenie 
funkcji celu, a przy okazji podajemy jej interpretacj~. Zadanie sprov.adza si~ do wygenerowania 
takiego podzialu, kt6ry mak.symalizuje wartosc tt<_i funkcji. Wyprowadzamy i dowodzimy pod-
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stawowe wlasciwosci funkcji celu. Wlasciwosci te pozwalajl! na zdekomponowanie problemu na 

dwa oddzielne podproblemy. Jeden z nich polega na kolejnym por6wnywaniu niewielkiej Jiczby 

rozwil!i;an cz~sciowych. Drugi podproblem dotyczy sposobu tworzenia kolejnego roiWii!zania 

cz~sciowego na podstawie uzyskanych juz rezultat6w. Autorzy podaj"l scisl"l metod~ rozwil!zania 

drugiego zadania, a takZe proponujl! szybkl! heurystycznl! procedur~ generuj"!C"! rozwi"lzania (sub) 

optymalne. Przy uzyciu tej procedury mo:i:emy otrzymac przyblizone rozWiqzanie pierwotnego 

zadania w czasie proporcjonalnym do n2
, gdzie n oznacza liczb~ obiekt6w w rozpatrywanym 

zbiorze. 

,ll;eKOMfl03H~IIH MHOX(eCTBa 06'heKTOB Ha OCHOBaHIUI IIX 

B3aHMHOrO pa3JUI'IHH 

B CTaThC pacCMal'pHBaCTCH pa36HeHHe !VIHO)KCCl'Ba 06'bCKTOB Ha TIO,ll,MHO)KCCTBa Ha OCHOBaltlili 

HX B3aHMHOTO pa3JIH'l!UI. Onpe.n;eJUieTCli 'HfCJIO TIO,li;MHO)KCCTB H MCTO,[( OC)'ll(CCTBJlCHHli pa36HCHlill. 

C :noif l(CJlblO 3a)la'la <)lopMaJlli3)'CTCli nyTeM BBC,[(CHHH l(CJICBOH <)lyHKl(Hll H ee HIITeprrpeTal(Hll. 

Tenepb 3a,[(a'la 3aKJ1!0'1aCTCl! B TOM, 'IT06bi llO!lY'HfTb TaKy!O ,[(CKOMU03Hl(H!O, ,[(J1H KOTOpOH l(C­

JICBaH <)lyHKl(HH llPHHHMaeT MaKCHMa!lbHOC 3Ha'!eHne. BBO)lliTCli H ,[(OKa3hiBa!OTCH OCHOBHbiC CBOH­

CTBa 3TOH <)lyHKl(HH. 3TH CBOifCTBa ll03BOJIHIOT npOBCCTH ,[(CKOMTI03Hl(HIO 3ap;a'lll Ha p;se TIOP,3a­

p,a'!ll. O.n;Ha n3 HHX 3aKJJ!O'IaeTCl! B cpaBHHBaltHH Ke6onhmoro '!acrra 'IaCTHbrx pemeHHif. BropaH 

ll0,!1,3a)la'!a CBO)lHTCH K onpe.n;erreHHJO O'lepe,D;HOTO '!aCTHOTO pemeHHll Ha OCHOBe TIO!lY'lCHHbiX 

Y'A\C pe3yJ1hTaTOB. 

ABTOpbi npe;ucraBJUllOT TO'!HbTH MCTO,[( peUICHHH Bl'Opoi1 TI0,[(3a,[(a'Ill, a TaK)KC ITpC,li.JJara!OT 

6biCTpyro 3BpHCTH'ICCKYIO llPOllC,ll.ypy, KOTOpaH fCHCpHpyeT (TIO'Il'H) OITTHMailbHhTC pe3yilbTaThl. 

C llOMOll(b!O 3TOH npOl..\C)lypbi MO)KHO TIOJTY'illTb npH6JUI3HTCilbilOC perneHHe nepBOHa'laJTbHOH 

3a,l.\a'!H 3a BpCMH, KOTOpoe nponopl(HOHa!lbHO 112, f ,li.C 1l- 'IHCJ10 06'bCKTOB paCCMaTpHBaeMOTO 

MHO)KCCTBa. 
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