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Mathematical models are proposed for a description of the state of solid-liquid zones Cmushy 
regions") in a monocomponent thermally conductive medium and in binary alloys. 

Introduction 

In what follows we try to offer phenomenological models for a mathematical 
study of the creation and development of solid-liquid zones in the p.ocess of so­

lidification of monocomponent metals and binary alloys. Formulations of these 
models are prefaced by critical remarks to the problem treatment existing in the 

relevant liter1ture. These remarks motivate the approach to the problem consi­
deration which follows. 

The concept of a mushy region for a monocomponent thermally cor luctive 
medium is considered in §1. This consideration leads to introducing the "t. ;a-tem­

perature model" of a mushy region in a monocomponent medium. This model 
is derived in §2. Generalizations of this model for cases of binary alloys capable 
of forming a eutectic mixture and a continuous set of solid solutions are respec­

tively offered in §§3 and 4. The main point of these generalizations consists in di­
stinguishing between the concentration of a solute in the bulk of the liquid phase 
within the mushy region and the equilibrium concentration at phase-interfaces 
within this region. Appendix 1 is devoted to the rough estimate of possible values 
of heat exchange coefficients entering the models under consideration. Appendix 2 

constains some additional remarks to the treatment of §3. Collection of notations 
is presented at the end of the paper. 
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1. The concept of "mushy region" for a monocomponent 
thermally conducth•e mediu.n 

L. RUBINSTE IN 

The concept of "mushy region" in a monocomponent thermally conductive 
medium has been introduced by Atthey (4] in connection with the consideration 
of the process of the change of phase of such a medium where sources and sinks 
of heat an~ continuously distributed. 

Atthey considers the simplest ca~e of a medium of a constant density unchanged 
in the process of melting or solidification, so that no convection is involved. The 
mushy region is there described as a region where the solid and liquid phases co­
exist at a constant temperature equal to that of fusion. 

At the first step of his study Atthey formulates the problem as a classical Stefan 
one. Further, after introducing the local enthalpy, he reformulates it in terms of 
a weak ·solution. At this stage the mushy region is described as a region where the 
local enthalpy function has values belonging to the interval bounded by enthalpies 
of a pure solid and a pure liquid phase being at the same melting temperature. 

Numerical evaluations based on the use an explicit finite difference scheme, 
as it has been described by Kamenomostskaja (15], indicate, as · it is asserted by 
the author, the existence of a mushy region. However no theoretical proof of the 
existence of such region has been offere.d. 

Unfortunately the very concept of "mushy region" is introduced by Atthey 
without explanation of the sense implicated by the verb "coexist", which is a crucial 
point in the problem. Indeed, the concept of the coexistence may be understood 
in two difterent senses to which correspond two different mathematical models 
of "mushy region", namely 

A: ? model of a heterogeneous medium, and 
B: a model of a fictitious homogeneous medium. 

A. THE HETEROGENEOUS MEDIUM MODEL 

In what follows we consider a thermally conductive medium of a constant den­
sity, so that no convection is involved, and assume, tor the sake oi simplicity, that 
we deal with one~dimensional problems. 

We must, first of all, emphasize that each study of the process of heat transfer, 
which is based on the solution of a boundary value problem posed for the Fourier 
equation, is a macroscopic one, independently of the approach used-whether 
classical or any generalized one (weak, for instance). This means that very particle 
of a heterogenenous medium under consideration is a priori considered as large 
enough to apply to it the macroscopic equation of heat transfer. Only this allows 
us to operate with the usual heat conduction equation without introducing a ficti­
tious homogeneous medium by means of some averaging procedure. Such an em­
phasis is, in particular, necessary for understanding the real sense of the concept 
of "mushy region" as introduced in Atthey's paper. That concept may apparently 
be treated in the following manner: 



On mathematical modelling a solid-liquid zone 189 

Let G be a mushy region. Then, it consists of a subset Gs ot open regions occupied 
by a solid phase, and of a subset Gf of those occupied by a liquid phase: 

(1) 
Let 

be the set ot points belongi1Jg to the phase interfaces. Then the usual Stefan condition 

must be valid at every point x=s (t) of F. Since, by assumption, the temperature 
in both phases belonging to the mushy region G is identically equal to that of fusion, 
the right hand side of (3) is identically equal to zero. Thus, the set F does not vary 
in time. This means that if G* c G* c G is arbitrarily taken proper subregion of G 
then G* does not vary in time, either. But this conclusion contradicts the assumption 
that the sources of heat are continuously distributed within G. This means that 
the heterogeneous model of a mushy region is incompatible with the classical Stefan's 
approach to the description of the temperature field within multiphase monocom­
ponent media. 

Assume now that we deal with a medium '-Yhere the region Gs occupied by pat­
tides of a solid phase is surrounded by the regions a;. and a; occupied by these 
of the liquid phase. Assume that the initial temperature in Gs is lower and within 
G~uc; is higher than that of melting. The sources of heat of a finite strength are 
distributed continuously within the region under consideration. Evidently a new 
phase boundary may appear or the existing phase boundary may disappear both 
simultaneously and nonsimultaneously and their number may be arbitrarily large 
depending on the character <;[heat sc,urces and on the conditions on fixed boun­
daries. Let t0 > 0 be the first moment of the appearance of a new phase boundary 
or of the disappearance of an existing one. The temperature distribution and the 
location of phase boundaries may be determined in the interval (0, t 0) as a classical 
solution to an ordinary Stefan problem. Taking t 0 for a new initial moment and 
reformulating the problem as a classical one, we may prolong the solution till the 
second moment of the appearance of new phase boundaries or disappearance of 
existing ones. This process of prolongation, including the process of reformulation 
of the problem, is quite compatible '-Vith the classical Stefan's approach. At the 
same time at every interval of its e.xistence the cla.;sical solution of the problem 
coincides with the weak one*). Due to the uniqueness of the weak solution, we 
conclude that at each time it coincides with the classical one, if the latter is constructed 
after a proper reformulation of the problem, necessary in view of the appearance 
of new interfaces, or disappearance of the existing ones. However, the classical so­
u tion does not exhibit the existe1:ce of a mushy region if the latter is defined as 

*) This is true provided that the classical solution does not exhibit the appearance of 
undercooled/overheated regions. 
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above. This means that the mushy region, defined as a region where the local enthalpy 
function belongs to the interval bounded by its values for the pure solid and the 
pure liquid phases cannot appear either. 

It is to be emphasized that we do not intend to discuss there the question of 
the reality of the existence of mushy regions, but only to indicate the internal in­
consistency of the Atthey 's heterogeneous medium model and discuss the ap­
plicability of the classical Stefan's approach and its generalizations based on in­
troducing a concept of weak solution for describing the phenomena of creation 
and development of mushy regions. In order to tackle the last question, we shall 
propose the following approach. 

B: THE MODEL OF A FICTITIOUS HOMOGENEOUS MEDIUM 

Let us outline a possible approach to describing the temperature field in a he­
terogeneous medium composed of particles of different phases distributed chaotically. 

We assume that particles of different phases (or mc,re accurately at least of two 
different phase) are present in a very large number within every physical element 
of volume, but that the characteristic size of these particles is large enough in order 
to make macroscopic equations of mass, momentum and heat transfer applicable for 
the desc:t:iption of processes evolving in every individual particle. In such a hetero­
geneous region every pl1ysical element of volume which is, in a naturdl way, identi­
fied with a mathematically infinitesimal volume, contains infinitely large number 
of surfaces of \Veak or strong discontinuities*) of at least one of the fields under 
consideration, so that the usual description of these fields is, stric1ly speaking. 
impossible. Therefore the mathematical treatment of such heterogeneous medium 
is al\Vays based on the process of homogenization, consisting in introducing a fic­

·titious homogeneous medium instead of the real heterogenenous one. 

This fictitious homogeneous medium is obtained by means of averaging all 
the fields under consideration over the physical element of volume, or over the 
subset of its points belonging to the phase considered. The first method of ave­
raging introduces such characteristics of the fictitious homogeneous medium as 
the volume concentration and ~pecific surface of every phase as well as the average 
velocity of the phase motion per unit of volume of the heterogeneous medium. 
The second method of averaging introduces such chat acteristics as composition 
and density of every phase or hydrodynamic pressure within it. 

These two methods of averaging are well known and broadly applied for de­
scription of mechanical or chemical isothermal processes evolving in porous media 
[9], [5], and even in homogeneous solutions, although in the latter case being for­
mulated implicitly [14]. 

*)Let/be a function continuous in both one-sided vicinities of a surfaceS, as well as along s. 
but has a jump when crossecting it. Then S is called the surface of strong discontinuity off The 
surface of strong discontinuity of one of the derivatives of a continuous function f is called the 
surface of its weak discontinuity. 
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Usually, the averaging of temperature is performed over the whole physical 
element of volume, and leads to the standard one-temperature description of the 
heterogeneous medium with chaotically distributed particles of different phases. 
Incomparably less known is the multi-temperature approach, based on the second 
method of averaging. This approach associates to every point of the fictitious ho­
mogeneous medium as many temperatures as many different phases are present 
in the physical element of volume under consideration [19], [20], [10]. 

Equations of heat transfer within a heterogeneous medium, which does not 
tmdergo the change of phase state, contain the heat exchange terms proportional 
to the difference of the temperature of different phases under consideration. The 
coefficients of the heat exchange entering such terms are proportional to the square 
of the specific surface of the interphase contact. This means that the difference 
between temperatures of different phases is very small. However the influence of 
the interphase heat exchange on the temperature distribution may be significant, 
and it is definitely so in cases where the process of the change of the phase state 
develops due to the influence of the conditions imposed on fixed boundaries, rat­
her than by the impact of external sources or sinks of heat. However, in cases when 
there are continuously distributed sources (sinks) of heat of a relatively large strength, 
so that their impact on the temperature of both the phases is much greater 
that of the interphase heat exchange, one may neglect the difference between ave­
raged temperature of different phases within the same physical element of volume. 
Such a situation may be presupposed existing in the case which is considered in 
Atthey's paper. Thus, one may consider the problem of creation and development 
of a mushy region on the basis of the fictitious homogeneous model of a hetero­
geneous medium, but ;x,ith the use of the usual one-temperature approach. 

Let us recall that for the sake of simplicity, we restrict ourselves to considering 
the one-dimensional case where the mushy region is a single-connected one sur­
rounded by regions entirely occupied by the solid and liquid phase, respectively. 
Assume that the mushy region is characterized by 

s (t)<x<S (t) (2) 

and that the solid liquid phases are respectively located within the intervals O<x <s (t) 
and S(t)<x<l. Denote the temperature of the solid and of the liquid phase by 
u. and uf, and the concentration of the solid phase within the mushy region by a. 

Let the melting temperature be equal to zero. Then, neglecting convection created 
by the motion of the free boundaries s (t) and S (t), we find that 

a; Usxx+Fs (x, t)=Ust; O<x<s (t), t>O, 

aJ ufxx+Ff (x, t)=uft; S (t)<x< 1, t>O. 
(3) 

within the mushy region we evidently have 

y& (t)=- F (x, t) (4) 

where F is the power of the sources of heat located within that region and y is the 
latent heat of fusion per unit of volume*). 

*) Fr and F, are proportional to F. 
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Stefan-Iike conditions on the tree boundaries s (t) and S (t) take the form 

ks Usx=(l-a) ys for x=s (t) 

-kfufx=(l- a) yS for x=S(t) 

and also 
U5 =0 for X=S (t); 

We must add there the requirements 

U5 <0 for O<x<s (t); 

(5) 

(6) 

(7) 

and conditions on fixed boundaries x=O and x = 1, as well as initial conditions 

U 5 (x, O)=hs (x); uf (x, O)=hf (x); o· (x, O)=g (x) 
(8) 

s (0)=s0 ; S (0)=S0 

Tl 

aJ b) 
T 

T,. 

I 

To. 

~ ~ tc. 

Fig. 1 

I t 
a! b ) 

I T t 
I 

\ 
i I I I r--L i ~T 

I ~ Tm 
l Tn·· 

I 
LIT I . . : --r- . 

' I 
I 

t . 
0 

. 
' 0 

Fig. 2 



On mathematical modelling a solid-liquid zone 193 

There exists a serious difficulty in prescribing realistic values for s0 , S0 and g (x), 
when one considers the appearance of a mushy region in the course of the process 
evolution. Indeed, each process of the change of the phase state of the ·first kind, 
i.e. accompanied by the release or absorption of a latent heat, cannot evolve wit­
hout some undercooling or ·overheating [13]. Typical graphs of temperature plot 
time have shapes shown in Fig. I. The time At of exit from the undercooled (over­
heated) state is much shorter than the duration of the process of solidification 
(melting) of the undercooled (overheated) region. Therefore this exit may be con­
sidered as a spontaneous one, so that Fig. 1 may be replaced by Fig. 2. The depth 
AT of undercooling (overheating) must be prescribed phenomenologically or, 
better, with a direct use of experimental date. In any case it cannot be evaluated 
in the course of solution of any Stefan-like problem. 

As a first hypothesis, serving for determining the initial location of a mushy 
region, we propose to accept the following: 

1. The mushy region at the moment of its creation may be described as a region 
where the spontaneous exit takes place from the undercooled (overheated) state. 

2. At the moment of the spontaneous exit from this state the critical depth 
of undercooling (overheating) is reached at one point of that region. 

Thus, the exit from the undercooled (overheated) state is assumed to be im­
possible if everywhere in the undercooled (overheated) region the tem.perature is 
more (less) than Tm- AT (Tm +LiT), and such an exit is unavoidable if the 
temperature is less or equal to Tm- AT (Tm +LiT) at least at one point of the region 
under consideration. 

3. The solid (liquid) phase concentration in the mushy region is equal to zero 
at the first moment of its appearance, i.e. at the moment of a spontaneous exit of 
the system from the undercooled (overheated) state. 

Whether this model is realistic must be clarified by the comparison of nume­
rical evaluations with suitable experiments. In a11y case we believe that the critical 
remarks above may be useful for creation of a model of mushy region capable 
of withstanding comparison with experimental observations. 

2. A mathematical model for a solid-liquid zone in mono­
cnmponent medium 

The problem of appearance and development of mushy region within mono­
component media being under the action of continuously distributed sources (sinks) 
of heat is a special and rather artificially formulated version of a much more im­
portant problem of appearance and development of solid-liquid zones in course 
of solidification of monocomponent media. 

The most important theoretically case is that where no distributed sources 
(sinks) of heat are within the medium under consideration. In such a case in con­
trast to the case of the existence of distributed sources of heat the one-temperature 
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approach above is not applicable for description of the solid-liquid zone develop­
ment. Indeed, in such a case, the temperature within the solid-liquid zone would 
be identically equal to that of melting, so that the latent heat released in course 
of solidification cannot be utilized, or respectively, there is no source of heat to be 
absorbed by solid particles changing their phase state. Hence the mathematical 
model of the appearance of the solid-liquid zone and its development may be pro­
posed only on the basis of a two-temperature approach. 

However even after accepting such an approach a foundamental difficulty re­
mains unsolved. There are two characteristics of a heterogeneous medium which 
determine its main physical properties: the concentration of phases and the spe­
cific surface of their interface. Equations determining the concentration redistri­
bulion and based on a phenomenological approach of fictitious homogeneous me­
dium models must obviously contain terms dependent on that specific surface. 
Even as the growth of solid particles evolves preserving their geometrical similarity, 
the specific surface cannot be expressed in function of the phase concentration 
without prediction of the number of these particles as a function of time. Such 
a prediction cannot be done without a direct reference to concrete experimental 
data concerning, for example, the distribution of the stable centers of nucleation 
capable of growing into the solid particles of a macroscopic size. In what follows, 
we .assx1me that one may use such an information. Hence the model which we are 
intending to propose is no more than . a semi-empirical one. 

Thus, let (x, y, z) be the Cartesian and (x, rp, p) the cylindrical coordinate sys­
tem. Consider the cell 

(9) 

so that 
2n Ro (e, <~>) 

J drp J p dp=4ab . (10) 

0 0 

and within it a body 

G,={(~. rp,p): x<~<x+dx, 0<rp<2n; O<p<R(C,, rp,t)}. (11) 

Assuming that the solid-liquid zone has a periodic structure and that oG is a strip 
which is cut out from the element of periodicity vf this struc!ure, ~ve refer _to l3G, 
as a solid phase and oGf=oG "'... oG. as a liquid. Let 

2n R (x, <P, t) 

a=mesoG, """mes3G=(4ab)- 1 J dp J pdp 
0 0 

(12) 
2n x + dx 2rt 

S=(mes oG)- 1 .f drp f R (1 + R:)l d~=( 4ab)- 1 f R (1 + R~) drp. 
0 X 0 

We call a-concentration of the solid phase, and 
S-specific surface of the solid-liquid phase interface. 
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In what follows we average functions of interest over Gf> G. and th';!ir boundaries. 
Everywhere we assume that the average of products may be replaced by the product 
of averages of all factors. This is admissible if the deviation of one of two factors 
from its average value is uniformly bounded, and the standard deviation of the 
second factor is small [20]. 

Integrating the equation of heat transfer 

over G1 we obtain 

where 

we have 

Jdx= J k1 81nd(J; 
a (oa1) 

J=J* 

J*dx= J c1 p1 81tdw, 
oGf 

x+dx 2n 

-k, f df, f R (1 +R:)t 81 , d<p 
X 0 • 

where '!_ is a vector normal to o (JG1 ) inward to JG1 . Thus 

21t 

-k1 J R (x, <p, t) (1 +R; (x, rp, t)):!- 81, (x, rp, R (x, rp, t)) drp 
0 

where 

is the melting temperature. 
Let 

21t 21t 

k1 f 81, R (1 +R_;)t drp=J{. J R (1 +R;)t drp=4abSJ{. 
0 0 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

where J{, is a flux of heat from the liquid phase into the solid one per unit of the 
phase-interface surface. 

Define analogously the average temperature u1 by the equality 

2" R 0 21t R 0 J drp J p81 dp=u1 J d<p J p dp=4abu1 (1-(J). (20) 
0 R 0 R 

Then 

(21) 

or, taking into account that 8111 is a constant, 

(21a) 

• 
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Consider J*. We have 

x+dx z, R 0 

J* dx=cf Pf I d(, I drp I (,:Jf, dp (22) 
X 0 

Using definitions (12) we obtain 

1*=4abcf Pf ((1-o') uf,-(uf-:Jm) a,). (23) 

Introducing (21) and (23) into (14) we obtain 

which may be rewritten in the divergent form: 

div (kf (1- a) grki.duf )- div (kf (uf- 9m) grad a)- SJ{, = (25) 

=cf Pf ((1-a) uf,+(uf-3".) a,) 

Quite analogously, considering heat transfer within oG8 we obtain 

(ks ausx)x+ (ks (u.- 9m) ax)x+ SI~= c. Ps (au.,+(u.- .9"') a,) (26) 

or in the divergent form 

. div (k. a gradu.) +div (k. (u.-1J.m) grad a)+ SJ~=cs Ps (au.,+(us- .9111 ) a,) (27) 

Usual conditions of the dynamic~! compatibility (i.e. thermal Stefan conditions) 
may be written in the integral form 

x+clx 2n R (.;, <P, t) x+dx 2n 

YPs( J d(, J dq; J pdp )= J d(, J (ks 980 -kf 9f11 ) R (1 +R~)t dq; (28) 
X 0 0 X 0 

which is equivalent to 

YPs a,=S (J~-J~) 

It remains to define fluxes J~ and J~. We take 

J:,=rt.s (9m-Us); J{,=rt.f (uf-9m) 

·(29) 

(30) 

with codficients of the heat exchange o:. and (/.f which have to be determined ex­
perimentally or by the use of additional heuristic considerations. A possible version 
of determining coefficients (/. 5 and (/.f is offered in Appendix 1. 

Now let us make the following remarks. Equations (24) and (26) are obtained 
for an element of the periodic structure, or more precisely for its crossection by 
the strip x < (, < x + dx. However, these equations include only ·such characteristics 
of the heterogenenous medium as concentration of one of the phases and its specific 
surface. At the same time, re\\oritten in the divergent form (25) and (27), these equa­
tions do not indicate anything on the orientation of that strip, i.e. of the crossection 
where the temperature of a real heterogeneous medium is averaged. Therefore 
we consider the system (25), (27), (29), (30) as the system of equations describing 
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a three,dimensional homogeneous medium, modelling the process of development 
of a solid-liquid zone in a real monocomponent structure*). 

·We have to add initial conditions, conditions on fixed boundaries and on in­
terfaces: solid- (solid-liquid mixture) and liquid- (solid-liquid mixture). Concerning 
conditions determining the initial location and the size of the liquid-solid zone 
in the case of development ofa solidification process of an initially homogeneous 
one-phase medium one may accept assumptions fonimlated in the first section. 
If, however, one begins with consideration of the system where the solid-liquid 
zone exists at the very initial moment, the temperature of both solid and hquid 
phases, as well as their concentrations must be prescribed. 

Conditions on free boundaries s. and Sf separating the solid-liquid zone fro~1 
these of a pure solid and pure liquid ones must express the continuity of heat fl.uxes 
over those parts of s. and Sf which intersect particles of the same phase in a real 
heterogeneous medium as well as the equality of the temperature to that of fusion. 
However, .on those parts of s. and Sfwhich intersect particles . of different phases 
of a real heterogenenous medium the Stefan conditions must be imposed. Hence 
in a fictitious homogeneous medium boundary conditions on free boundaries are 

and 

u-'=uf=u. =Sm 
• ks u:, -ks llsn=O 

k 5 u~ -kf Ufn=YPs lit 

uf=Uf;;_Us=Sm 

k~ u~ -kf u~ =ypsn1 

kf Unf- kj u{ = 0 

on Ss .(31) 

(32) 

Here ,u• and uf are the temperatures respectively in the pure solid and pure liquid 
zones. 

B-esid,es these thermal conditions those determining the phase concentration 
on thefree boundaries must be prescribed. In the case when the solid-liquid phase 
appears in the course of cooling of a homogeneous medium after the system has 
left its undercooled state, the most natural assumption is that of continuity of the 
solid phase concentration, \\hich gives 

ul5,=a.=l; (33) 

Let us point out that ks and V entering conditions (31) and (32) are physical 
coefficients of thermal conductivity of the medium under consideration in its solid 
and respectively liquid state. At the same time coefficients ks and kf entering equa~ 

*)Actually, our choice of the method of derivation of equations (25), (27) has been motivated 
by its simplicity and clarity. Applying that technique of averaging which is described in Chap. II, 
paragraphs 1-3 of [20], one may derive these equations without use of the assumption that the 
solid-liquid zone has a periodic structure,. and without a preliminary derivation of equations of 
a one-dimensional heat transfer. 
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tions (25), (27), (31) and (32) are no more effective parameters, dependent appa­
rently on the phase connectedness, i.e. on the structure of the solid-liquid zone. 
It seems obvious that if both phases occupy connected region then one may suppose 

ks=ks; (34) 

On the other hand, it is sometimes accepted to define the coefficients of thermal 
conductivity of a porous medium by formulas similar to the Kirchhoff law for 
a system of electric conductors (18), namely 

Taking this into account, we accept as a working hypothesis equalities 

k 5 =ks kf/(ks (1-Ps)+kf Ps) 

k1 =k· kf/(k• (1-Pf)+kf Pf) 

(35) 

(36) 

where coefficients Ps and Pf must depend on the structure of the zone so that*) 

3. A mathematical model for a solid-liquid zone in · a binary 
aHoy capable of forming a eutectic mixture 

(37} 

We know only four papers where the problem of appearance and development 
of a solid-liquid zone in a binary alloy capable of forming eutectic mixture is trea­
ted mathematically, namely the papers by Tien and Geiger [23], Cho and Sunder­
land [8], Cannon and Alexiades [7] and Alexiades [3]. Of all these papers only 
that by Tien and Geiger contains formulation of the assumptions basic for the model 
under consideration as well as their motivation. Cho and Sunderland have only 
demonstrated that the problem formulated by Tien and Geiger may be sblved 
in an analytically closed form being a self-similar one, but they do not discuss the 
e.ssence of the model. Both Alexiades and Cannon [7] and . Alexiades [3] refer in 
turn to the paper of Cho and Sunderland with the only aim of motivating their 
mathematical study but they do not consider the .essence of the model, either. Thus, 
the only paper really offering a model to the process under study is that by Tien 
and Geiger. 

Let us enumerate their basic assumptions. 
1. The process of solidification is considered as a thermal one. The field ·of 

concentration within the liquid phase is not studied. 
2. The solid-liquid zone is the only zone where the process of solidification 

evolves. This means that the only free boundaries entering the problem formulation 
are the interfaces: solid- (solid-liquid mixture) and (solid-liquid mixture)-liquid. 

"') Concerning the method of averaging, which leads to introducing the fictitious homogeneous 
multiphase medium, see also [5]. 
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3. Concentration of solid particles within the solid-liquid zone varies linearly. 
It is equal to zero on the interface liquid- (solid-liquid mixture) and equal to the 
eutectic concentration of the more refractory component A of the alloy at points 
of · the interface solid- (solid-liquid mixture). 

4. The temperature of the free boundaries are those of "solidus" and "liquidus", 
and are taken as constants. 

Other assumptions concretize the problem ar:d have a technical rather than 
princip?.l significance. 

Let us try to decipher the real sense of these assump1ions. The authors of [23] 
have not made any statements concerning the ma~s transfer conditions. Therefore 
one may only guess what a real process is under study there. Apparently one must 
presuppose that Tien and Geiger's model does not contradict the main postulate 
of the thermodynamics of irreversible processes according to which the state of 
local thermodynamic equilibrium holds at every point of the system~ If so, then the 
concentration of a more refractory component of the alloy in its liquid phase~ being 
in a contact with solid particles, must be equal ·to the equilibrium concentration 
defined by the diagram of the phase equilibrium. Since at the same time every point 
of the solid-liquid zone is considered in [23] as a point where the state of phase 
change takes place, we must conclude that the concentration within the bulk of' 
the liquid phase is equal to the equilibrium . concentration at every point of the 
solid-liquid zone. Moreover, since Tien and Geiger consider the problem as a ther­
mal one, and do not consider the diffusion or the convective mass redistribtltion, 
their main assumption may only be understood as the assumption that the heat 
transfer, but not the mass transfer, determines the physical state of the system at 
eyery moment of the process evolution. However, this assumption contradicts 
the leading principle of chemical kinetics, according to which the evolution of the 
process is mainly determined by the slowest subprocess involved [12]. Apparently, 
coefficients of the thermal diffusivity in melted salts, for instance, are of order 
10...; 2 cm 2/sec., while those of diffusion are of order 10- 5 cm2/sec. [6] For metals 
the. nrst 0:11e is of order 1. Thus, the. thermal diffusivity coefficients are more then 
103 times larger than those of diffusion*). Hence the slowest subprocess involved 
into the whole process of the heat and mass transfer within the .mushy region is 
the mass transfer rather than the heat transfer. Thus Tien and Geiger ac.tually 
have' ignored the above mentioned principie of chemical kinetics. . . · 

In order to get an idea concerning the possible consequence of this neglect let 
us consider rather unrealistic case of a binary alloy, having infinitely large coeffi­
cients of diffusivity within both phases and the coefficient of diffusion equal to 
zero. For the sake of simplicity we eql!alize coefficients of thermal conductivity 
of the solid and liquid phases, so that in a steady state the temperature distribution 
is a linear one, and, following Tien and Geiger, assume that the concentration · 

*) D . S. Wollkind and L. A. Segel [24] estimate the ratio of these coefficients as being of order 106
• 
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of the solute within the liquid phase of the mushy region coincides with the equili­
brium value. 

Assume that the alloy occupies the region 0 < x <L, and that the temperature 
T at the ends x=O and x=L is respectively equal to T 0 and T1 • Denote by u the 
concentration of the solid particles in the solid-liquid zone, and by c-the fraction 
of a more refractory component A in the liqu id phase. Let the equation of solidus be 

(38) 

where the subscript e refers to the eutectic temperature and concentration, and Ta 
is a fusion temperature of pure A . Let the initial concentration c be equal to cf, 

and the corresponding equilibrium temperature be Tf. 
We assume that 

(39) 

Since the coefficients of diffusivity are assumed to be infinitely large, the steady 
state temperature distribution will be reached instantly. Let Xe and xf be the boun­
daries of the solid-liquid zone. Then 

(40) 

and according to the assumption by Tien and Geiger 

(41) 

Let p be the density of the component A. Then it follows from the definition 
of x., x f, .T (x) and c (x) that the mass of A within the region 0 < x < -'j is equal to 

"J ' 

M=p (xe+ J (u+(l -u) c) dx) 
· X e 

(42) 

On the other hand the initial content of A · in this region is 

and no material exchange is assumed to occur between the region (0, xf) and the 
external region (xf, L) since the coefficieiJt c,f diffusion is equal to zero. 

Computing integral (42) with the use of (38}-(41) one finds 

(M -M0 )/M0= - (cf - c0
) c; I. (1-(Te-T0)(Tf-T0 ) -

1 ( 1- c0)(cf - c0)- 1 ) {44) 

where 

(45) 

Let, for instance, 

] 
-r=-

2 
(46) 
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then 
(47) 

so that · 

0.03 <(M0 --M)JM0 <0.39. (48) 

The equality ( 44) measures the degree of violation of the mass concervation 
law caused by the assumptions that a) tl1e bulk concentration in the liquid phase 
and the temperature of both the phases are associated by the diagram of the ther­
modynamic phase equilibrium, and b) the coefficient of diffusion is equal to zero. 
Since the equality (44) characterizes the steady state on.ly, it is independent ot the 
assumption that the diffusivity coefficients are infinitely large. 

It is quite obvious that in reality the mush:y region does not exist in a steady 
state at all. Therefore one should consider a quasi-stationary state in which the 
distribution of temperature is close to the stationary one, but the concentration 
distribution corresponds to a relatively short duration of the process evolution. 
However, it can be shown that such a consideration cannot lead to any essential 
correction of the estimate (44), if the bulk concentracion of the solute within the 
mushy region is equalized with the equilibrium one. A proof of this assertion is 
given in Appendix, 2. The example considered there corre~ponds to a model in which 
coefficients of heat conduction, density and specific heat capacties have no jumps 
at the phase boundaries, and the specific latent heat of fusion is constant. However 
values of all these parameters are taken close to those for the alloy Pb-Bi. The 
value of (M0 -M)/M0 calculated for this example is equal to 0.22 with M 0 =37.5 g. 
Correction due to the diffusion mass transfer up to the moment when the tempe­
rature distribution differs from the stationary one by 1 /~ is equal to 0.1 %- This 
demonstrates that, indeed, the correction due to diffusion into the mushy region 
from the pure liquid melt c2m:ot change the above conclusion. 

Let us point out that the assumption coiJ.cerning the coincidence of the bulk 
temperature of both the phases and the bulk concentration within the liquid phase 
coincide with those · connected by the diagram of the phase equilibrium is equi­
valent to the assumption that in the absence of any spatial gradients of concen­
tration and temperature the phase· change process evolves with infinitely large 
velocity, and just this assumption strongly violates the above mentioned basic 
principle of chemical kinetics. 

Using Frank-Kamenetski terminology [12] one may say that the real process 
of creation and development of a solid-liquid zone in course of a binary alloy soli~. 

dification evolves in the "exterior diffusion kinetic" region, what means that the 
limiting subprocess, determining the rate of the whole process of solidification 
is the process of the material exchange between the bulk of the liquid phase and 
the phase interfaces. In this sem:e the process under consideration is analogous 
to the process of absorption ot a solute from solution saturating the external po­
rous space of a porous absorbent . Therefore the phenomenological theory tnay be 
analogous to that underlying the theory of sorption-diffusion process. Such a theory, 
dealing with the exterior diffusion kinetics, has been proposed in papers by A. A. Zu-
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chovitski et al [26], A. W. Tichonov et al (22], and Ja. L. Zabezinski et al [25], 
and has withstood the comparison With many experimental evidences.*) Prior 
to formulating the model, we have to point out that, unlike to the case of a mono­
component isobaric melt, we may now use the one-temperature approach. Indeed, 
in contrast to such a system the process of solidification of alloys is not an isother­
mal .one. Hence, there is the heat flux along the solidifying melt, which means that 
there exists a receiver for the latent heat, released in course of the process evolution. 
However, the one-temperature approach does not allow to consider the limit case 
of alloy degenerated into a monocomponent melt. Taking this into account we 
introduce first a two-temperature model, and only after formulating it pass to 
its one-temperature simplification. 

The model which follows is based on the same method of averaging which has 
been used in §2. **) Let G.1 be the solid-liquid zone, s. and S1 be the free boundaries 
separating G.1 appropriately from the pure solid and pure liquid zones G. and G1 . 

Using the method based on replacing the real heterogeneous medium by the ficti­
tious homogeneous one, we characterize the state of the system by: 

u• and u1-temperatures in G. and G" respectively; 
v1-the concentration of the more refractory component A of the binary alloy 

capable of forming a eutectic mixture in G1 ; 

vr----concentration of A within the liquid phase of G.1 ; 

u. and u1-temperatures of the solid and liquid phases in G.1 ; 

u,. and vm-average equilibrium temperature and concentration of A on the 
solid-liquid phase interfaces within G,1 ; 

a .-concentration of the solid phase within G.1 ; 

S -the specific surface of the solid phase within G.1 . 

Functions um and "-'111 are associated by the solidus equation 

v;,, =F (u,,). 

Quite similarly to the equations of §2 we have 

div (k1 (l-a) grad u1 )-div (k1 (u1 -u111 ) grad a)-SJ{,= 

· =c1 pf ((1-a) u1 ,+(u1 -um) a,); 

div (k.a grad u.)+div (ks (u.-um) grad a)+6'J~ = 
=Cs Ps ( aust + (u.- Um) at); 

ypp,=S CJ:r -J~); 
J~=Cf.s (um-uJ; 

*) See also [21) and [17). 

(49) 

(50) 

**)In what follows, we neglect the dependence of the thermal conductivity, specific heat ca­
pacity and density of the. liquid phase upon its composition, the same concerns the specific latent 
heat. Taking into account the variation of the density and its jump on phase interfaces requires 
considering equations of motio.n of the particles of both phases. These equations coincide, in prin­
ciple, with those of motion of every component of a heterogeneous system with particles of all 
phases distributed chaotically, which a:re derived in [20] under the assumption that the change 
of concentration of every phase is only the result of motion, but not of the process of the change 
of the phase state. 
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We must add equations of the mass transfer. Evidently 
&. 

div (D (1-(J) grad vf )-div (D ('i)f- F(um)) grad (J) - Sin= 

=(1-(J) Vfr+(vf-F(um)) (Jt. 
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(51) 

Here I,, is the flux of the component A from the bulk of the liquid phase to the phase 
interfaces within Gsf· Quite similarly to the thermal fl.uxes and to diffusion fl.uxes 
from the solution to the adsorbent in the Tichonov's theory [22] we take 

(52) 

Thermal conditions on free boundaries s. and Sf coincide with those of §2, i.e. 

(53) 

Further we must add there conditions of the dynamical compatibility for the 
mass transfer. They evidently are 

~~f=F (u~.); (1-(J) n1= -D-;;fn on s. · 
(54) 

Concerning the boundary conditions determining the solid phase concentration (J 
one may accept those by Tien and Geiger [23], i.e. to assume that 

(J=vf on s •. (55) 

We de, not formulate here the initial conditions and conditions oi1 fixed boun­
daries. Concerning the initial conditions we may -repeat what has been said in §2. 

Finally we must emphasize again that we have no othet way of determining the 
specific surface S than an empirical one. Now we may pass to the one-temperature 
simplification of the above model. Setting 

k ((J)=k. (J+kf (1-(J); c ((J)=cs Ps (J+ cf Pf (1- (J) 

and assuming that 

we obtain, after adding equations (50) by sides, 

div(k((J)gradz:.)+yp.(J1=c((J)U1 in Gsf 

Analogously, conditions (53) turn into 

u.=u; yp.n,=k• u~ -kun on s. 
u=uf; yp.n,=kun-kf u~ on sf 

(56) 

(57) 

(58) 

(59) 

Thus, equations of the one-temperature approach are (58), . (51), (52), (54) and (59), 
to which the relevant initial conditions and those on the fixed boundaries as well 
as an empirical definition of the function S ((J, t) must be added. 
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4. A solid-liquid zone in a binary alloy capable of forming 
a continuous set of solid solutions 

We know only one paper devoted to mathematical modelling of the development 
of the solid-liquid zone in course of solidification of a binary alloy capable of for­
ming a continuous set of solid solutions. This is the paper by M. K. Licht and 
S. B. Kuzminskaja [16]. Considering the one-dimensional process of solidification, 
they reduce the problem to that of determining the temperature of the system, 
the concentration of the solid phase and its specific surfaces. The authors of [16] 

write equations of diffusion within the solid and liquid phases of the solid-liquid 
zone, but assume at the same moment that the solute concentration at every point 
of that zone may be equalized with that of equilibrium, determined by equations 
of solidus and liquidus of the diagram of the phase equilibrium. After this the dif­
fusion equation is used for determining the solid phase concentration. 

As we have seen in §3 equalizing the solute concentration within the hulk of 
a liquid phase to the equilibrium value leads to an essential violation of the mass 
concentration law, even as the solute out:flux (or, which is the same, the solvent 
influx) into the mushy region due to diffusion is taken into account. Therefore 
the critical remarks above concerning the Tien and Geiger's model remain valid 
with respect to that by Licht and Kuzminskaja, as well. 

In what follows we write out equations of a model identical in its essence with 
that proposed above for alloys capable of forming a eutectic mi.x:ture. Equations 
of heat transfer within the solid and liquid phases of a mushy region i.e. equaticns 
(46) and (47) remain unchanged. Now let wf and ws be the concentrations ofa so­
lute respectively within the liquid and solid phase of a mushy region, whereas 111 

and H's be those in pure liquid and pure solid zones. Then instead of (51) we obtain 

div (JJf (1-a) grad wf )+div (JJJ' (lflf (u"') - wf) grad a) - SI~= 

=(1 - a) H'f r - (lflf (um)- Wf) at· 
(60) 

Analogously, within the solid phase of the mushy region 

= w_, + (ws -If!. (um)) at · 
(61) 

H ere 

'(62) 

are equations of solidus and liquidus lines, and 1~, I~ are :fluxes defined by 

(63) 

Equation (52) must now be replaced by 

(64) 
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Finally, the relevant boundary conditions become 

and 

{

W
5 = Ws = lf/s(um), 

ns w~-Ds Ws/1 = 0; 

l

wf = H'f=lflf (u,,); 

Df w{; - Df wf,.=O; 

ll's= lfls (um); 

a= O on Sf; 

Nqtuntlly, the approximation 

D 5= 0; 

O" = lf/s (um) on s,. 
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on S, (65) 

(66) 

(67) 

(68) 

is admissible provided the process evolves under temperature not too high, otherwise 
the diffusion coefficients of solids could be quite large*). 

Equations of a one-temperature approximation may be obtained similarly to 

those in the case of the system capable of forming a eutectic mixture. 
As eveTywhere above the specific surface, entering the equatiom, must be pre­

scribed empirically. 

5. Additional remarks 

We have to emphasize again the character of the models derived above. Being 
ph~nomenokgical macroscopic models in their nature, they cannot give any de­
scrip~ion of such important process as, for example, deJidrite growth. Such a theory 
may pretend to no more than predicting, by the use of certain experimental data, 
the rate of solidification, the size and location of mushy region, and the concen­
tration of solid within it. However, one cannot expect obtaining any information 
·Concerning for example the crystallbgraphic structure of mushy regions or any 
other properties d~Cpendent on the process evolution at the microscopic level. 

We do not present there either results of numerical computations, or describe 
the possible nmperical ·algorithm. We only point out here that in the case of cre­
ation and development of mushy region in a monocomponent medium the standard 
.algorithms of discretization, proposed for the classical Stefan problem, are appli­
,cable (see, for example, f20 a]). One only has to use explicit finite difference ap­
_proximations for computing a, and the values (uf-UnJ and (u.-u,), entering equa­
tions (25) and (27). Values uf and U8 , entering these equations (except fo r brackets 
above) may be computed by the use of implicit finite-difference approximations. 
The initial location of the mushy region will be determined from the numerical 

'')For example the coefficient of diffusion of Au in Pb at 285° is equal to 4.6·10- 6 cm2/sec 
[11] what is only one order less than the characteristic values of the coefficients of diffusion for 
liquids. 
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solution of the standard Stefan-like problem (or even from one of heat conduction 
in a monophase medium), including determining the moment t0 when the critical 
depth of undercooling is reached at least in one point of the region under consi­
deration. By calculating the distribution of the temperature at t= t 0 , we define 
the initial location of the mushy region. After this all computations will follow in 
a standard v..ay. 

In the case of solidification/melting of binary alloys similar ideas seem to be 
applicable. Since, however, one has to determine there the melting temperature 
at all time steps, the algorithm will include solution of some algebraic (generally 
speaking non linear) equations, .what requires more careful consideration. 

The pure mathematical problems of the existence, uniqueness and stability of 
the solution, as well as all numerical aspects, have to be subject of special studies. 

APPENDIX I. On the estimaie of the coefficients of heat exchange 

. Coefficients rxs and ocf of heat exchange, entering equations (30) may be esti ­
mated in the following way. 
Cor,tsider the problem 

(a; Urr+u,/r)=u,; O<r<R=const. (a;=kslcsp.)=const. 

1l8 (R, t)= () 111 ; lusl <oo; Us (r, O)=J~ (r) · 
(69) 

Using Fourier expansion we obtain 
00 

us (r, t)=9m+ }; ·rx" exp (-a;" t) !o (J,n r) (70) 
li :;;::: 1 

where ),n is the n-th root of the Bessel function J0 (XR) and a,11=a; A., fJ.. 11 are coeffi­
cients of Fourier-Bessel expansion of f(r)-()m· 
Expansion (70) gives 

00 

-ks Usr (R, t)=ks}; ),11 IY.n exp (-a;,. t (J! V•nR)))=A' (71) 
n = l 

On the other hand 
R oo 

2R- 2 J (U8 -9m)rdr=2}; R.:. 1 C~-11 A,;- 1 ~xp(-a:nt)Jl (A11 R)=B. (72) 
0 Jl = l 

Using definitions (11) and (22) we obtain 

~=A~ 03) 

where A anct B are defined by (71) and (72). 
Considering the process in the stage of a regular regime, i.e. when the initial 

irregularities of the temperature distribution are eliminated, one may omit all terms 
of series entering (73) except for the first ones. This gives 

1 
Cl-•=2ksR).i (74) 
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It is known [1] that 
(75) 

Thus 
rt.5 ~2.88ksfR~l.5k5 S/a (76) 

since in the case under consideration (see definitions (12)) 

S = 2nR/4ab; t77) 

Now let us consider the problem 

(78) 

imitating the temperature distribution in a liquid particle. We have 

00 

uf=fJm+}; j],exp(-a;1-1~ t)Z0 (fl,r) (79) 
n=l 

where 

(80) 

(10 and Y0 are Bessel and Neumann functions) and fi, is the n-th root of the equation 

Hence 
00 

kfufr/r=R=-}; p,j],exp(-a;l-l~t)Z1 {1-t,R)=A*, 
n = l 

Ro 

2 (R~-R2)- 1 J r (uf-9m) dr= 
R , 

00 

= -2 (R~-R2)-l}; Rp,~ 1 Pn exp (-a; 1-l~ t) zl (p, R)=B* . 
n-1 

Hence in the regular regime 

1 
rt.f=A*/B*=-(R 2 - R 2

) tt 2 k IR 2 0 r 1 f, · 

In the case under consideration 
,_ 

(R!Ro)=Va; R=af2S. 

At the same time approximately [2] 

p 1 R~n (R 0 /R - l)- i . 

Therefore 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

Evidently these estimates of the possible values of the heat exchange coefficients 
are no more than heuristic ones. 
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APPEJ'..'D IX 2. Correction to the estimate ( 44) 

As it has been said in §3, one has to introduce a correction to the estimate ( 44) 
on the mass deficit. We remind the reader that this estimate has been obtained in 
the framework of the Tien and Geiger's theory with applying the assumptions: 
1) there is no mass transfer, so that the thermally stationary state of the system 
coincides with its true steady state, and 2) the bulk concentration of a solute wit­
hin the liquid phase of the mushy region coincides with the equilibrium concentration. 

Now we are going to introduce a correction to the estimate (44), taking into 
account the mass influx into the mushy region due to diffusion from the pure liquid 
zone within the time interval, when the stationary temperature distribution may 
be reached with a prescribed accuracy. In order to do this let us consider two pro­
blems, related to the thermics and the diffusion om:!s. 
A. The thermal problem 

Assume that the whole latent heat q is released in the region (x., xf) (i.e. m 
the mushy region defined in §3), so that 

q= yp (xe+ r ~dx). (97) 
. Xe 

Assume further that this amount of heat is released by the instant source of heat 
located at the moment t=O in the 1= oint 

1 
Xo = 2 (xe+XJ') . (88) 

Let 9 (x, t) be the temperature within the zon~ O<x<L defined by the conditions 

9 (0, t)=T0 ; O<x<L. (89) 

For the sake of simplicity, we shall assume that all the thermal parameters of 
both phases coincide and that the specific heat of fusion is a constant. Then, the 
stationary temperature T will coincide · with that defined in §3, i.e. 

T=T0 +(T1 -T0 ) xjL. 

Denote by f its average value over the interval (Xe , xf), so that 

T=T0 + (Tl-To) (2L)- 1 (xe+x.r). 

Let 
Xf 

§. (t).=(xf-xe)- 1 J 9 (x, t) dx 

. (90) 

(91) 

(92) 

be the average temperature of this layer at the moment t. Define t 0 by the condition 

( §.- f)/f ~ (3 for t?; t 0 (93) 

where P> 0 is a prescribed number, and call 9 (t0 ) the quasi stationary average tem­
perature of the solid-liquid zone (xe, xf), and t 0-the moment to which this qua­
sistationary temperature can be reached. 
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We have 
00 

:J (x, t)=T (x)+2/L}; c.'Xp ( -n2 n2 a2 t j£2) a" sin (nnx jL) (94) 
n = l 

the diffusivity coefficient and 

L 

~ =)/fit! ({-xo)-(Tj-70) (/L) sjn (mr?/L) dt= 
0 (95) 

= qsin (nnx 0 /L)-(TJ-T0 ) ( - l)"fL. 

e ce 

00 

- =T + 1 (xs - xe)- 1 L a" n- 1 e~\) (-tt2 'ltz a2 t(V) CIJ'i'> (nnx.(L)-
, ~ 1 (96) 

-cos ()nz::<J/L) . 

• ssume that t0 > 0 is large enough. Then we may omit all terms of the series on 
the right hand side of (96) except for the first one. 

Thus 

3 (t0)-f~2 (xf- Xe)-
1 exp (- n2 a 2 t 0 /L2

) a 1 (cos (nxe/L) -

-cos (nxfjL)), 
(97) 

so that 

t0~L2 n - 2 a- 2 In (2Ta1 /3- 1 (cos (nxefL)-cos (nxf/L)). (98) 

B. The diffusion problem 

Assume that the whole mass deficit defined by the equality (44) is uniformly 
distributed at the initial moment t =:=O within the region (xJ> xA, and that the boun­
daries of the region (xc, L) are impermeable. Then the diffusion redistribution of 
the mass deficit within the region (xe, L) would be defined by the conditions 

Dcn,= c, O< y<l=L-xe, 

, fO for 0<y<l0 = xf-x., 
Ci r=o=lc0 =mf/0 for l0 <y < l. 

(99) 

Here 

(l OO) 

is the mass deficit defined by (44) and (43). 

The part 
I o 

i5m = J c (y , t0 ) dy (101) 
0 

of the whole mass m may becons1dered as the correction to the mass defici t, fc m1d 
in §3 by means of consideration of the stationary state. 
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We have 
I 

c(y, t)=c0 J g (y, tf, t) d17 (102) 
lo 

where g is the Green function of the problem (99) 

00 

g=l- 1 +21- 1 _), exp(-n2 n 2 l- 2 Dt)cos(mcy/l)cos(nn1Jfl). (103) 
..::....; 
n=l 

Hence 

c (y, t)=c0 (1-10 /1)+ 

00 

- 2n- 1 ..}; n- 1 exp (- n2 n 2 1- 2 Dt) cos (nny/1) sin (nnl0 fl) 
(104) 

11 =1 

so that 

00 

m=c0 10 (1-l0 /l)-2c 0 n- 2 };. n- 2 sin2 (nn/0 /1) exp ( - n2 n2 l- 2 Dt), . (105) 
11= 1 

Consider an example. let 

k=0.09 calfcm.s. ° C; c=0.03 calf g. ° C; p= 10 g(cm3
; 

ce=0.50; cf=0.75; Te=125° C; T4 =300° C; 
(106) 

T1 =400° C; T0 =25° C. 

In this case 

(107) 

and 

M 0 =37.5 g; . (M0 -M)jM0 =0.20; q=325 cal. (108) 

Take 

/3=0.01. (109) 

Then the quasistationary state may be reached to the moment t=98.7 s., so that 
we take 

t 0 =1C0s. (110) 

Then we :find from (1 05) that 

m=0.0384 g. (Ill) 

Hence 

m/M0 =0.001. (112) 

Let us remind that in the example under consideration 

(M0 -M)/M0 =0.22. (113) 
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Hence the correction due to diffusion into the mushy region from a pure liquid 
zone in negligible. 

The data (106) are chosen close to those for Pb-Bi alloy. This means that one 
may consider results obtained as characteristic enough. 

Notations 

G-region. 

G. (G1)-subset of G, belonging to the pure solid (liquid) rhase. 
G.1-subset of G-the mushy region. 
u and 11 are symbols of the operations of taking sum and crossection of sets. 
D-closure of the set D. 
Superscripts s and f refer to values defined in G. and G1 , respectively. 
Subscripts s and f refer to values defined in solid and liquid phases of the mushy 

region G.1 . 

Subscript m refers to values at phase interfaces. 
u (with an appropriate sub- or superscript)-temperature 
v, w ( -,- -,- -,- - ,-)-concentrations of the more refrac-

tory component A of alloy A : B. 
a- con<:entration of the solid in mushy region . 
2a, 2b- periods in y- and z-directions of the periodic structure, considered in §2. 
k•, k1-physically defined coefficients of the thermal conductivity. 
k., k1 , k-effective coefficients c,f thennal conductivity in mushy region. 
c•, c1 , c., er-specific heat capacities per unit mass. 
c-effective specific heat capacity within the mushy region in one-temperature 

models. 
s f _rl "t" p, p , p., p~.ens1 tes . 

p-density (effective) of the mushy region in one-temperature models. 
a;, a;-coe:fficients of thermal diffusivity. 
o:, f3 (with an appropriate subscript) coefficients of the interphase heat and mass 

exchange per unit of the interface surface. 
S-specific surface of interfaces in the mushy region. 
Ills (um), lj/f (um)-equilibrium concentrations of A, defined for solidus and liquidus 

lines. 
Letters x and t used as subscripts denote derivatives with respect to x and t, re­

spectively. 
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Note 

After this paper had been written we had the opportunity to read N. A. Avdonin's book: Ma· 
thematical description of processes of crystallization: 1980, R iga, Zinatne (in Russian). The con­
tent of the chapter 4 of that monograph is very close methodically to that of the §4 of our paper. 
However, there is a principal distinction. N . A . Avdonin puts the bulk concentration of the liquid 
phase ·within the mushy region equal to the equilibrium concentration on phase interfaces, what 
violates, as it has been explaned in §3, the basic principle of chemical kinetics. 

l\1odelowanie matematyczne strefy przeJscwwej w pewnym 
dwofazowym · ukladzie jednoskladnikowym oraz w stopie 
binarnym 

Proponuje sice modele matematyczne opisuj<tce stan stref przejsciowych (,obszar6w miesza· 
nych") w jednoskladnikowym osrodi<u przewodz<tcym cieplo oraz w stopach binarnych. 

0 MaTeMaTH'ICCKOM MO)J.C.'Uip0B8HHII TBCJ;I,li.O- IKH)J.IWU 30Hbl 

B HCKOTOpOH O)J.HOKOMllOIIeHTHOH CHCTCMC H B fiHrlapHOM 

pacnJiaoe 

ilpe,liJiaraeTCH MaTeMaTlf'feCKHC Mo.n:emr OUHCh!BafOII.\Jle COCTOHHJ1e TBep;IJ,O-)!'Jf)J,IGIX 30H (,ne· 
pexo.n:HhJX o6nacTei1'') B O.n:HOKOMnoHeliTHoi:t Tenno-npoBO.l\Hll.\eii cpe.n:e rr B 6nna.pHhlX pacrmaBax. 

The postscriptum 

· After the paper had been submitted to the journal, a number of new results 
became known to the author. These results must be mentioned and discussed in 
connection with the main text of the paper. 

1. M. Shillor (1982) has considered the frontal motion of phase interfaces of 
each of two components, composing a h~terogenous medium with chaotically 
distributed particles. His study was based on the use of the two-temperature ni.odel 
in its classical . and weak formulations. Numerical computations1 performed by 
him~ have shown that the classical solution exhibits the appearence of an under­
cooled zone in a one-side vicinity of one of free boundaries, if the source term, 
describing the interphase exchange, is large enough. The weak solution exhibits 
the existence of a mushy region in this vicinity. These results are similar to those 
pointed out by N . Avdonin (1980) in connection with his study of the process of 
a directed crystallization. 

2. In connection with these numerical results M. Shillor (1982) has proved 
that the classical solution of the problem, subject to Atthey's (1974) study, exhibits 
the generation of an overheated/undercooled zone at the time moment when the 
sourceS/sinks of heat become so great that their influence cannot be eliminated by 
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the efflux/influx of heat by means of thermal conductivity and by the absorption/re­
lease of the latent heat. At such a moment the existing free boundary changes the 
direction of its motion. 

3. A. Meirmanov (1981) has indicated conditions of the generation of a mushy 
region in the weak solution of the Stefan problem for a nonhomogeneous Fourier 
equation, which coincide with those of the generation of an overheated/under­
cooled zone in a classical solution as indicated by M. Shillor (1982). 

4. M. Primicerio (1981-1982) has constructed a "classical" model of generating 
the mushy region. His "classical" solution coincides with the respective weak so­
lution. M. Primicerio, in his study, declines any discussion of the physical sense 
of the very concept of the mushy region referring only the reader to the shortened 
version of this paper (L. Rubinstein, 1982). His result is based, in its essence, on 
the use of the fundamental assumption that the local enthalpy may be a smooth 
function of time in the region remaining an isothermal one during a finite time 
period./ As far as it is known to me this assumption has been first used by Gelder 
and Gue (1975) and further by Crowley and Ockendon (1977). In all these papers, 
including that by M. Primicerio, this fundamental assumption was accepted as 
a not formulated postulat without any discussion. Probably this reflects introducing 
the local enthalpy as a principal unknown and the temperature as its function; 
this approach has become usual in papers dealing with weak solutions to the Stefan 
problem./ 

Considering all the above mentioned results one may see that there exists a ser­
ious inconsistency in papers dealing with classical and weak concepts of the solution 
of the Stefan problems. M. Primicerio's very important and mathematically com· 
plete study neither reduces nor exp1aines the nature of this inconsistency namely 
because of a non-critical acceptance of the above-mentioned fundamental assumption. 

In order to understand the source of this inconsistency one has to point out 
that a serious inaccuracy of the definition of the local enthalpy exists in all mathe­
matical papers dealing with a weak solution of the Stefan problem beginning with 
that by Kamenomostskaja (l961) Indeed, in all these papers the following defini­
tion is used. 

Let T be the temperature, s and f be subscripts referring to the solid and to 
the liquid states, T, be the melting temperature. Then, assuming that specific heat 
c. and cf are constant as well as the specific latent heat y (all per unit of volume) 
and that there is no jump of density, the local enthalpy is defined as 

h (T)={c• T 
CjT+y 

whereas the accurate definition is 

if T<Ty 
if T>Tm 

in the solid phase 
in the liquid phase. 

(1) 

(2) 

Evidently the definition (1) excludes any possibility of considering the undercooled/ 
overheated state of the material subject to the phase transform. From the other 
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hand the definition (2) allows us to deal with an overheated/undercooled state, 
which is quite compatible with the classical treatment of the melting/solidification 
problems in the presence of distributed sources/sinks of heat, but evidently cannot 
be used for introducing the concept of a weak solution. 

From the other hand the enthalpy of a system of material particles, occupying 
a region D, so that its subsets D., and Df, belong at the time moment t to the solid 
and respectively to the liquid phase, is equal to 

H(t) = J c. Tdw+ J (efT+ y) dw 

and this function may be considered as a smooth function of time even when the 
temperature remains constant, if there exists transform of P., into Df, or inversely 
due to th.e action of distributed sources or sinks of heat. If, now, D is considered 
as a physical element of volume, identified with mathematically infinitesimal one, 
then the method of homogenization enters in force, the medium under consideration 
becomes not a real heterogeneous one but a fictitious homogenous medium, de­
scribed by properties of two phases and their concentrations at every point of this 
medium. Under such an interpretation the local e'nthalpy h may become a smooth 
function of time even in isothermal conditions since in this case 

h,= - )JC1 

where c is the volume concentration of the solid phase. 
This indicates the way for undestanding the real sense of all papers dealing with 

the mushy regions on the basis of considering the weak solutions to the Stefan-like 
problems, including the above mentioned Primicerio's one. 

However the principal question remains open. As it is emphasized in the main 
text of the paper the overheatingjundercooling unavoidably precedes the melting/so­
lidification if this process is accompanied with absorption/release of a latent heat. 
Theoretically the processes of melting and crystallization are symmetric /Frenkel, 
1945/but practically the overheating of solids is almost unobservable due to the 
greater instability of their overheated states. Therefore one may expect that pre­
dictions based on the weak solutions to the problem of the mushy region creation 
and development may be quite reasonable. However this is considerably less ob­
vious when one deals with the process of solidification or recrystallization. In these 
cases the undercooling may be very deep and its duration may be very long. There­
fore it is quite unclear whether predictions based on neglecting the unavoidable 
-undercooling, i.e. based on the usual definition (1) of the local enthalpy, are rea­
sonable ones. The answer may be obtained by means of a broad series of compu­
tations having their goal in the comparison of the temperature distribution pre­
dicted by a classical approach as it was done in the above mentioned M. Shillor's 
work and those based on considering the weak solutions to the problem. 

We recall that our present work shows that the undercooled zone and respec­
tively the mushy region appear at the same time and place. However the influence 
of input data on the duration of the overheated state/existence of the mushy region 
and their sizes remain unstudied. 
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