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Some constraint modifications for linear integer programming problems are considered. These
modifications are aimed at maximal feasible solution set reductions of associated linear program-
ming problems (e.g. of original problems with ‘integrality constraints relaxed) while preserving
the set of integer solutions. The minimal description problem is formulatsd and the method for
determining approximate solutions for this problem by separate constraint modification. is pre-
sented. Existing methods for separate constraint modifications are surveyed and a new method
is introduced. Properties of these methods and their usefuluess in constructions of efficient linear
integer programming algorithms are investigated.

1. Introduction

In linear integer programming (LIP) problems. feasible solution sets are de-
scribed by linear constraints (equalities, inequalities) and nonnegativity of solutions.
By neglecting integrality conditions LIP.problems transform.to associated linear
programming (ALP) problems. Without loss of generality it can be assumed that
linear constraints are of inequality type. only. Geometrically this inequalities cor-
respond to hyperplanes which describe a. polyhedral set of ALP feasible solutions.

Many of solution methods for LIP problems exploit ALP’s relaxations to get
different types of easy computable bounds. It is intuitively clear that the closet
an ALP problem aproximates the corresponding LIP problem the stronger ar
bounds. Thus it is of a great interest to construct metods which would modify
descriptions of ALP polyhedral solutions sets in such a way that resulting sett
would be as small as possible or equivalenty, that resultng descriptions would
be minima L.

The first time this intuition was confirmed by numerical experiments described
in [1, 3, 15]. In all three cases only hand computations for problem reformulation
were applied. Thus, it was not possible to assess savings (if any) in total optim i-
zaticn time (including time spent on modifications) eventually caused by them.
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In this paper the problem of minimal description is formally introduced. It
turns out however that solving solving this pioblem is a task at least as hard as
solving I.IP problems. Therefore we seek sclutions of the relaxed minimel descrip-
tion problem. These solutions can be obtained by independent modifications of
separate constraints. In subsequent paragraphs two existing methods for separate
constraint modifications are presented and a new method 1s proposed. The pur-
ticular attention has been devoted to the constraint rotation method which is the
most efficient one.

The constraint modification methods are particularly useful in cutting planes
algorithms because a cutting plane can be always treated as an ordinary constraint,
thus it can be modified during cutting plane algorithm computations.

2. The minimal description problem

We consider the following LIP problem

maxime E ¢; X

JEN
Za”xjsaw, ie{i,2,...,m}=M
JeN
x€D (A4, a))=1x X320, je{l,2,...,n}=N @
x;€Z, jeN
where
c;eZ, jeN
a;6€Z,ie M, jeN
an€Z, ieM

Z—set of integer numbers.
It is well known that every LIP problem with rational coefficients can be trans-
formed to the LIP problem (1).
We assume that D (4, a,) is bounded and nonempty.
The following sets correspond with (1).

Za“xksam, ieM

D, (4, a0)= X | Gen
x;20, jEN

JEN
Di(d,ai0)=1x x>0,  JjeN
x;€Z, JjeN

. Zai.i X;<dio
D:(ﬂ',dm)"—‘—’ X

JEN
x.ir>’0’ JEN
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For the case M=m=1 we write D (a, @,) and D (a, a,) omitting constraint indices.
- * A %k A ~ . ’ "
Let A*, A, a,, 8o, where a;;, 4; 0;0,80€Z, i€{1,2,..,m}, jeN, ke{l,2,..
e ’ 1 < . » » %
...,m },m >=m be a priori unknown matrices and vectors (4, a, are given).
s 5 g

The minimal description problem (Problem 1)
For given m' find A*, o} satisfying the condition
D (4*, ag)=D (4, ao)

such that*)
l) Dc (A*> d;)CDC (A, ao)
ii) for each A, 4, others than A4*, aj, satisfying m'>m’" and
D (4, 4,)=D (4*, ag)
the relation
D, (4, 8,) <D, (4*, a})
does not hold.
The feasible solution set description for the LIP problem (1) given by 4*, a} is
called the minimal description and depends on m’. When m’ is sufficiently large
the solution of the minimal description problem is the hull of feasible points.
The number m, of convex hull inequalities is usually large when compared
with the number of inequalities in an original LIP problem. Moreover, rules for
convex hull constructing exists for a few particular cases of LIP problems only.
Thus there is an interest in seeking solutions for the minimal description problem
when m’ <m,. It is well known that any increase of constraint number is, from
computational point of view, very unpleasant. To avoid this we consider in what
ollows only the m=m'=m’"" case.
This assumption excludes the “most tight” feasible solution set descriptions for
1IP problems but it keeps number of inequalities unchanged. Taking this into
account we can formulate the following lemma.

-

Lemma 1. If
v 3 Di (a*is a:o)=-Di (ai’ aiO) AD:- (a*i: aTo)CDé (ai> aiO)
ia*ﬂa&
then
D (A*, a;)=D (A4, ao) AD, (A%, a;) <D, (A, ag)

Proof. The straightforward proof is based on the following relation (4<B)N
N(Cc=D)=(ANC)c=(BND) where A4, B, C, D are any sets and the fact that D (4, ao)=
=(\D' (¢, aio) and D. (A4, ao)=("\Di(d, a;0) QED. R
i=1 i=1
Basing on the Lemma 1 we can find solutions for a relaxed minimal description
problem (condition ii) relaxed) by modifying separate constraints independently.

*) In this paper we use the following notation: < — set inelvsion, d¢-— negation of set in-
clusion, & — proper inclusion.
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This contrasts favorably with the fact the exact solutions require (implicit at least)
determination of feasible solution sets for LIP problems. Thus exact solutions
of the minimal description problem can not improve efficiency of any LIP prob-
lems solution method.

For separate constraint modifications we formulate now one-dimensional equi-
valent of Problem 1.

The boundedness assumption implies that any inequality '3, x,<#, can be
JEN
reduced to D' a; x;<ao, where a,, @, € Z, (Z,—nonnegative integers) and a;<a,,
JEN 3
‘e N. The nonnegativity of coefficients we achive by the following transformation

X;=U;—x;  when 4;<0,

Xy=x; otherwise,

where U; is an upper bound for x; variable. The variables for which a;>a, can
be eliminated (fixed to value 0). To simplify the notation we will assume in the
sequel that all inequalities under consideration have been reduced as above.
The one-dimensional minimal description problem (Problem 2).
Find ‘a*, a satisfying the condition
. A D (a*, a?)=D (a, d,)
such that
1) Dc (a*9 a;)ch (as [Io) X
ii) for each 4, 4, others then a*, a} and satisfying
D (éy é'0)='D (a*y a;) 1
‘the relation -
Dc (aa a0) CDc (d*, 0‘;) ’
does not hold.

The, feasible solution set description for the LIP problem (1) (|M|=1 caéc)’giVen
by a*, ay is called the minimal description.

The following three paragraphs present methods of separate constraint mo-
difications.
3. The parallel shifting method

This met’hod ihtroduced by Salkin and Breining [13] is based on the well known
theorem. a

TueorReM 1 ([13]).- A4 hyperplane with an integer coefficient equation

Zanj=ao.

JEN
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containes integer points iff g.c.d. (ay, ay, ..., a,) divides ao. If this hyperplane con-
taines one integer point it contains infinite number of them.

Given an inequality
Z a; x;<dg

JEN

then using theorem 1 we can check whether the corresponding hyperplane
Z aj Xj‘—_do
JEN

contains integer points. If not, the right hand side of the inequality can be decre-
ased by one without eliminating any integer point from the half-space described,
by it.

This procedure can be repeated as many times as possible shifting each tlme.
the hyperplane towards integer points until it touches them. Such an approach
has been alrelady suggested for cutting planes in the method of integer forms [13]
but it can be applied to problem constraints in the same way. For this method

D (a: a;)=D (05 ap)
and
Dc (0, az)CDc (aa aO.)'
The above relations are valid for aj<do. For ag<d, the last relation takes form:
D, (a, ap) D, (4, a).
This in turn guarantees that if for the case m>1 3 a}, <a;, then
D, (4, ag) $D. (4, ao).

The question is how often changes of right hand side coeﬂicnentq occur in prac-
ctice. The answer is given by the following theorem.

THEOREM 2 ([9]). If u and v are randomly generated numbers then the probability
of g.ic.d. (u,v)=1 equals (6/7%) 0,61. ,

The fact that g.c.d. (a;, a,;)=1 impliés g.c.d. (a4, a5, ..., a,)=1, so g.c.d. (¢4, da, ...
..., @,) divides «o. Therefore parallel shifting method might not change right hand
side coefficients very often. On the other hand there exists efficient algorithms for
finding g.c.d. of n integers. They are based on the following relations

‘g.c.d. (ay, a5, a3)=g.cd. (g.c.d. (ay, a,), a3)

gied. (ay, s, . @)=gecd: (gcd. (ag, a, ., @y_1)s ay)

The g.c.d. of two numbers can be found by the Euclidean algorithm [10].

THEOREM 3. ([10]). The number of iterations of the Euclidean algorithm for two
integers is never greater than five times the number of digits in the smaller number,
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Let a, be the smallest number among n positive integer 4y, ..., «.. Then, when
the above scheme of computing the g.c.d. of » numbers is used, the following the-
orem holds.

THEOREM 4. ([2]). The iteration number of the Fuclidean algorithm for n integers
is never gredater than n-2 plus five times the number of digits in the smallest number.

4. A new method for separate constraint modifications

Jn the parallel shifting method right hand side coefficients can be decreased
only when the corresponding hypsrplanes do not contain integer points. Let us
note that because of the LIP problem formulation (1) we are interested in those
integer points which are in R", (the nonnegative orthant of R"). This gives rise to
the following method for constraint modifications.

Find the smallest value k=k*, k=0,1,...,a0—1, such that a hyperplane
Ya; x;=a,—k contains at least one integer point in R".

jen A
An algorithm for finding k* is based on results from [11]. By so called gene-
ralized Euclidean procedure we find a general solution of an (diophantine) equation

Da;x;=ao—k in the following form x=x* (k)+Fy, where x* (k) is a parti-
JeN

cular solution, F~—a fundamental (integer) nx (n—1) matrix, y—any integer vector.
The condition x>0 implies x* (k)+ Fy>0. Then the Fourier-Motzkin elimination
is applied to check whether there exists a vector y such that the set of inequalities
is satisfied. The Fourier-Mortzkin method must be slightly modified for only in-
teger values ol v,s are acceptable. Then in the substitution phase of Fourier-Motzkin
method some values of y,s may lead to inconsistency and to avoid this the simple
branch and bound precedure must be applied. For determination of k* it sufficies
to apply the Fourier-Motzkin elimination only once. This results from the fol-
loving theorems.

THEOREM 5 ([11]) Let ko, k| \k1> ko) be the two smallest nonnegative integer values

of k such that an equation > a;x;=ao—k has integer solutions. Then this equation
JeN

has integer solutions only for k € K={klk=ko+1mq, t a nonnegative integer}, where

Mo =k i k 0

THEOREM 6 ([11]) Let ko, k, (ky>ko) be the two smallest nonnegative integer va-

Iues of k for which an equation > a;x;=ao—k has integer solutions, denoted by
JeEN

x (ko) and x (k,), respectively. Then, there exists an integer solution vector x (k)

of the form

x (k)=x (ko) —(k—ko) f

only for those k=k,+tm, where fis a constant integer vector, called the difference
vector, mo=k, —k, and ¢ is any positive integer.
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By the two above theorems there is no need for solving > a; x;=ao—k for
JEN

all values of k. After finding k, and k, the difference vector
f= “(x (ky)—x (ko))/(kx ~ko)

and k-dependent particular solutions

x (k)=x (ko)—(k—ko) f

can be constructed. With x (k) and f known, the presented method can be reduced
to the problem of finding the smallest & for which the set of inequalities

x (ko)y—(k—ko) f+Fy=0
has integer solutions y.

The analysis of relaticns between D (4, ao) and D, (a, a,) sets before and after
constiaint modifications given for the parallel shifting method is also valid for the
method just described. The gain, in the later case, are greater possible changes
of right hand side coefficients.

The characteristic feature of the Fourier-Motzkin method is a fast grow of
number of inequalities in the elimination process. It can be proved however that
by triangularizing fundamental matrices of single diophantine equalions (nXx(n—1}
size) number of inequalitics at each step of the elimination process decreases. It
should be noted however that because of the backtrack procedure which at the
‘worst case requires exponential in » number of additions and comparisions, the
new method presented here might be much more time consuming that the previous
‘one.

5. The constraint rotation method

Any LIP problem with additional constraints 0<x;<1, j€ N, is called a linear
binary programming (LBP) problem. Every LIP problem can be reduced to
an LBP problem. We confine ourselves tor a while to L BP problems and we extent
the results ot this paragraph to LIP problems, at the end of it.

As it was mentioned before each constraint of a LBP problem treated sepa-
rately can be reduced to the form

Zai x;<dy, x=00r1l, jeN (2)
Jen
‘where 0<¢,;<a,.

If the following condiiion
V 3 Z dj xj“‘a,.'——-do (3)
reN xeD(a,ag) Je(NJ{ry)

‘holds for (2) then without eliminating any point from D (g, a,) no stronger con-
straint can be obtained (we call a constraint ax'<b’ stronger than a'x<d" if
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Va,>d;, b’<b" and at least one inequality is strict). Constriants satisfying (3)

t
are called the strongest constraints [14].

The constraint rotation method constructs the strongest constraints (Kianfar
[7D).

For any r e N we, can write (2) in the form

Z aj xj=(lo—b,

Je(Niry)
The following relation holds
v b,<ag—a,
xeD(a,ag),x,=1

Let

bi= max S’ a; x; 3
xeD(a a,,) ,]E\V/(r‘) ( a)

As a new value of @, we can take a;=a,—b, for (3a) implies that the constraint

a; xj+a!’: X, <o
JE(N[(ry)
does not eliminate any element o1 D (a, ao). In the case when b} <a,—a,, what
implies @' >a,, the hyperplane

a; xj—i-af X,=dy
Je(N[(ry)
containes at least one feasible integer point more than the hyperplane Y a; x;=a,.

JEN
The value of b is computed as the maximal element of the set

B={blb,= > a;, JS(N\{r}), b<ao—a,}
JeJ
The sets B,, r=1, 2, ..., n are built by a dynamic programming procedure [7, 14].
If at the step r of this procedure b° <a,—a, then af=a,— b, otherwise b} =d,—4,
and @;=a,. In both cases we proceed to step r+1. As a result we get a constraint

Zajxjgao, Xj=0 or ]., jEN (4)

JeN
which has the following properties
1. D (a, ap)=D (a*, a,).
2. a;<a;<a,, jeN.

3. If Ma;%=a, and X€D (g, a,) then > d} %;=a,.
JEN JjeN

4. Let K={x€eD (a*, a,)| Za X} s
K"—{xeD(a* ao)!Zaj Xi=tho} -

JEN
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Then |K*|>|K| and it is proved [14] that |K*|>2.
The property 2 implies

D, (a*, do)=D. (a, ay)

and in the case when 3a; #q,
j

-Dc (a*s ao) gD‘ ([l*, ao)

Thus the constraint rotation method solves the relaxed minimal description Prob-
lems 1 and 2 (condition ii/ relaxed).

THEOREM 7. The constraint rotation method gives the minimal description for Problem 2.

Proof. See [5].

For the first two constraint modification methods presented here; modified
constraints are uniquely determined. For the constraint rotation method the re-
sult depends on coefficients ordering. B

Let us assume that we always start to modify coefficients from the most left
one and we proceed to the right. Forther let a s, and a s, denote the coefficients
after constraint rotation with a coefficients ordering s, and s, respectively.

LemMa 2. If for any two poeﬁcients ordering s; and s,
| 3 a} (s1)#4d; (s,)
then
D, (a*(s5), ao) $D, (a* (s1), ao)
Proof. See [5].

The problem of choosing the most suitable (from computational point of view)
coefficients ordering was investigated in [14].

Each change of a coefficient by the constraint rotation method means that
a modified equality constraint (a hyperplane) constains one nomnnegative integer
solution more than the original constraint. The question arises what are the con-
ditions which assume that a modified equality constraint containes A< such points?
Let {I}; be any s element subset of W, |[N|=n>2.

THEOREM 8. If

‘l 5
Vo Dap>a,
Wse2¥ ey,

then the rotated constraint contains at least k={ : ] nonnegdtive integer points,
e

where [x]—the least integer not less then Xx.
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Proof. See [5].
Let us note that if a constraint cuts off a part of solution unit hypercube i.e. Z a;>dy,

JenN
what is always assumed, then 2a}‘>a0. Thus s=n and
JeN
[.?.]:2 for n=2

k=

[ " ]+1=2 for n>2.
n—1

The Theorem 8 is therefore a generalization of a theorem given in [14] which says
that any rotated constraint contains at least two nonnegative integer points.

The worst-case behaviour of an algorithm for rotation of constraints (con-
structing the strongest constraint) is 0 (n? a,) additions and comparisions. Methods
for improving the average efficiency of the algorithm given in [7] have been pro-
posed: [S, 8].

The constraint rotation method can be made applicable for integer (not binary)
variables either by an obvious generalization of the strongest constraint construc-
tion or by binary expansions of integer variables. It must be stressed however that
although the binary expansion of an integer variable is always possible the oposite
transformation after coefficients modifications may be not.

In [5] the following problem has been considered: what could be the maximal
number of different constraints generated by rotation of a separate constraint with
different coefficient orderings

TueorEM 10. A single constraint with n variables modified by the constraint rotation
method can generate maximum R (n) different constrainis:

R()=1, R(2=2, R(3)=4, R(4)=4, R (k+a)=3*a
where k=1,2,..., ae{2,3,4}.

Proof. See [5].
The bound established by the theotem is sharp what can be easily verified by
an example (see [S]).

6. Formal relations between constraint modification methods

There exist close connections between the parallel shifting methods and the
constraint rotation method. To show this relation let us note that if for a given

constraint »'a; x;<d, it is possible to decrease ¢, We can try to increase one of
JEN
coeffcients instead. The condition a;<a,, je€ N (paragraph 5) generates bounds

for integer variables
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where |x|=|x|—1

For each k=1, 2, ..., n we compute

by =max {Za,- X;

x-integer, Xgx #0

N, x,.gae}.

JeN JEN
xj<‘]1> J€ N

*
.__.bk
Gk

We can select an index, say index k and if only ¢,#0 and ek=[a° ]#O increase

a, to 4,=a,+¢, without loss of any integer point satisfying the original constraint.
It may happen that &=0 for all k€N so only the parallel shifting methods are
applicable. For PBL problems we get always &,>0 for each k£ € N (recall that in
the case considered the corresponding equality constraint does not contain any
integer point from R” and g,=1 for all k € N). This procedure repeated at most
n times constitutes the constraint rotation method.

The construction just described gives rise to the following conclusions. Suppose
that an inequality constraint is given.

Case A. The corresponding equality constraint does not pass through any in-
teger point from R;.

i) xe Z . When the parallel shifting is possible the rotation may not be possible.
ii) x€ {0, 1}". When the parallel shifting is possible the rotation is also possible.

Case B. The corresponding equality constraint passes through cne or more in-
teger points from R”.. This does not exclude the possibility that >0 for some k.
i) x e Z". When the parallel shifting is impossible the rotation may be possible.
ii) x € {0, 1}". When the parallel shifting is impossible the rotation may be possible.
The last conclusion follows also from the fact that the parallel shifting method
(the new one) guarantees that after modifications the corresponding equality con-
straint passes through at least one integer point from R’ but the constraints ro-
tation method guarantees at least two such points. Thus the constraint shifted
might be rotated. As it was mentioned before for LBP problems each coefficient
modification calculated by the coastraint rotation method increases number of
integer (binary) points from R the corresponding equality constraint satisfies.
For LIP problems number of such pomts increases only when we increase a selec-
. ap—b"
ted coefficient, ¢.g. k-th, by ;= .
G

Finally, we come to the conclusion that the constraint rotation method is more
efficient for solving the relaxed minimal description problem. For this method
the worst-case computational complexity is encouraging too. This is why it was
selected to numerical experiments described in [5, 6].
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7. Maedifications of cutting planes

All this what was said about constraint modifications can be applied to cuttin
planes e.g. the cutting planes used in the method of integer forms of Gomory. It i
well known that if only a LIP problem has integer coefficients each Gomory cut
ting plane can be transformed to original variables and then it is in the form o
inequality with integer coefficients [4]. Any modification method applied to con
straints can be applied to cutting planes as well.

This will result in problems descriptions much closer to the minimal description
than in the case of modifications of constraints only.

8. Conclusions

The minimal description problem introduced in this paper is a formalization
of a very important practical problem: how to formulate optimization problems
to get their formal descriptions most suitable for given optimization method? Intui-
tions and computational experimences point to minimal descriptions of problems
or to descriptions close to them. All three methods presented in this paper may
be used in this context.

The question as practical efficiency of such an approach has been studied ex-
perimentally, in [5]. The results of a large numerical experiment with the constraint
and cut rotation method combined with the method of integer forms fully con-
firmed its practical effectiveness. It was shown.that rotations of constraints and
cuts reduce simultaneously total computation time, number of cuts and number
of simplex iterations and all this three values for tested problems were reduced
significantly. Thus at least the constraint/cut rotation method may be reccomended
to be built into existing optimization codes.
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Metody modyfikacji ograniczen prdgramowania finiowego
calkowitoliczbowego

Rozpatrywane sa pewne modyfikacje ograniczen zadan programowania liniowego calkowito-
liczbowego. Modyfikacje te maja na celu maksymalna redukcje zbioru rozwiazan dopuszczalnych
zadania zwiazanego programowania liniowego (t.j. zadania bedacego ostabieniem zadania wyj-
Sciowego o warunek dyskretno$ci zmiennych) przy zachowaniu wszystkich dopuszczalnych roz-
wiazan calkowitoliczbowych. Sformutowany jest problem minimalnego opisu oraz wskazany sposéb
znajdowania rozwiazan przyblizonych dla tego problemu poprzez modyfikacje pojedynczych ogra-
niczen. Przytacza si¢ znane metody modyfikacji pojedynczych ograniczen oraz wprowadza metode
nowa. Badane sa wlasnosci tych metod oraz ich przydatno$¢ do konstruowania efektywnych al-
gorytmoOw rozwiazywania zadan programowania liniowego catkowitoliczbowego.

Meroabl MOAbIGHKANMH OrpRBMYMeHMl 3axa4 JIHHEHHOro
HEJIOYHC/IEHOr0 HPOrP2MMHPOB AHKS

PaccMOTpeEb! HEKOTOphle MOIM(HKALKMW OTPAaHHYCHHH 3a/lad JIMHEHHOTO TEJIOYHCIIEHHOrO
TIporpaMMHpoBaHus. LIEnbro 9TuX Mogubukaumii sIBIAETCS MaKCHMalbHAS DEAYKIUS MHOXKECTBA
JOIyCTMMBIX PEIIeHril CONPsKeHHOM 3amad JIMHEHHOTOo IporpaMMEpOBanud (T.€. 3aJayu, sSBisS-
roulejics ocimabneHrneM HavYalbHOM 3aJavud, 3a CYeT YCIHOBHS ITUCKPETHOCTH TEPEMEHHBIX) IPH
COXpaHEHHM BCeX JOIYCTHMBIX LEIOYHCIIEHHBIX Pemnenuit. PopMysmpyercst mpobiieMa MUHEMATb-
HOTO OITUCAHMS ¥ IIPEJICTABIIEH CIIOCO0 HAXOXKIEHUS MPUOIIMIKEHHBIX pEIleHnit I 3TOM IPOoGIeMBl,
nyTeM MOAH(UKAMKA OTIENBHBIX OrpaHuyeHmii. TIpUBEICHHI W3BECTHBIE METOJBI MOoaubHKanun
OTACHbHbIX OrPaHUYEHUl ¥ BBOAUTCS HOBBIK MeTo. VCCirenyroTCs CBOMCTBA 3THX METOJOB M HX
TIPUTOMHOCTE ISt pas3paboTku IBdEeKTHBHBIX AJIrOPATMOB PEINEHWS 3aja4 JIMHEHHOTO LEeI0YM-
CIIEHHOr0 NPOrpaMMUPOBAHUSL.
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