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We examine a class of the interception problem for two players under the asswnption that 
-each knows only his own kinetic model and the other player's state. Models of the players are 
linear. Heuristic strategies are proposed. If aims of the players are opposite we consider a pur
suit-evasion game in another case we call it a cooperative game. 

1. Introduction 

There are two players I and II whose dynamic S)'Stems are given by equations 
(1) and (2). 

.X 1 (t)=A 1 (t) x 1 (t)+B1 (t) tt (t), x 1 ER", .(1) 

x2 (t)=A2 (t) x2 (t)+B2 (t) V (t), x 2 ERn. (2) 

The player I uses a sequence of controls 

u (t)={u0 (t), u1 (t), .. :, uM (t)} 

where ui(t)EUcR' foriJ'~t~(i+l)J ' , i=0,1,2, ... , M-l, J' IS a sampling 
interval; the player li uses another sequence of controls 

v (t)= {v0 (t), v 1 (t), ... , vN- 11 (t)} 

where v1 (t) E V eR• for jo"~t~(j+l) J", j=O, 1, 2, ... , N-1 , J'' is a sampling 
interval. Each u; (t) and v1 (t) are admissible controls associated with general linear 

*Visiting research associate at the University of' Hiroshima, Hiroshima, Japan from October 
1979 tmtil September 1981. 
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systems. The game starts at time t = O, x1 (0) and x2 (0) are given, and is defined 
over the period [0, T]~ Integer numbers M and N indicate numbers of observations 
of player II by player I and player I by player II, respectively. The game runs 
under the following assumption: 

Assumption: The player I does not kno\\- the model of the player II and vice versa. 
Each player can observe the other player's state vector continually. 

After having divided the period [0, T] into M equal subperiods the player I 
builds his controls ui (t) between observations using both his own and the second 
player's actual state vector and properties of his reachable regions, similarly the 
player U builds his controls 'Vj (t) . 

let the condition of interception be 

(3) 

where tf~T and F, G are row vectors. We shall consider two kinds of the inter
ception problem. The first kind-when aims of both players are opposite, it means 
the player I (P-pursuer) wants to execute the condition (3) in minimum time, 
while the player II (E-evader) attempts to maximize the time of interception. ln 
this case we have a differential game of pursuit-evasion, called the Game of Kind 
subject to the Assumption. The interception problem of the second kind occurs 
when both players want to execute the condition (3) in minimum time-we can 
talk also about a team problem game subject to the Assumption. 

:Because of the Jack of knowledge of the models it seems that the performance 
index for the problem c<:n be 

I!Fx1 (t) - Gx2 (t)l!, (4) 

which determines a distance between the players at each time instant t e; [0, T]. 
Such stated interception problem is quite new ?.nd the authors could not find 

any similar one . Small similarity can be found with problems of keeping the tra
jectory of one system sufficiently clvse to the prescribed target trajectory. 

Sirtce the pioneer work on differential games of R. lsaacs (1] and many valuable 
works (for instance Friedman (4], Varaiya and Lin [6]) the main attention has 
been paid to games in which players know both models of the motion and the lull 
history of the game. Our game is different. 

In section 2 the interception problem is shown briefly, in the next section the 
heuristic strategies are introduced, the section 4 contains a numerical example 
and the section 5 contains the c0nclusions. 

2. Interception problem 

The players de~cribed by equations (1) and (2) want to optimize, according to 
. their own choice, the following performance index 

I!Fx1 (t)-Gx2 (t)ll (4) 

at each time instant t E [0, T]. 
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Two cases of the interception problem can be distinguished: 

(i) Pursuit-evasion game 
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The player I, called Pursuer, uses his admissible controls u0 (t), u1 (t), ... , uM-l (t) 
to attempt the capture of the player II, called Evader. Evader uses the controls 
v 0 (t), v 1 (t), ... , vN-l (t) to attempt to avoid the capture. This problem can be ex
pressed as 

J=min max 11Fx1 (t)-Gx2 (t)ll 
V 

at each time t E' [0, T] subject to the equations (I) and (2) . 
(ii) Te·:l.m problem. . 

Both players have the same aim to minimize the distance 

J=min min IIFx 1 (t)-Gx2 (t)ll 
U V 

at each time t e [0, T] subject to the equations (1) and (2). 

3. Heuristic strategies 

(5) 

(6) 

Let the time period of the game [0, T] be divided into M equal subintervals 
for the player I and into N, also equal, subintervals for the player II. Without loss 
of generality we can assume that M=N. 

The player I observes the second player's state vector x 2 (t) at each discrete 
time i :d::kt5, where k=O, 1, 2, ... , N, and (5 is the length ot the subinterval, viz. T=lvt5. 
Simultaneously the second player observes the first player's state vector x, (t) at 
t=kt5. The game begins at an initial time t=O with an initial distance between 1 
and II player 

Let x (ko)=x (k). 

D o=IJFxl (O) -Gx2 (0)1! . 
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At each time-interval [ko, (k+ I) o] the player I minimizes the following distance 

Dpk=min IIFx1 (k+1)-Gx2 (k)ll (8) 
uteu 

and the player II 
for the pursuit-evasion · game, maximizes the distance 

n;k=max IIFxl (k)-Gxz (k+l)ll (9) 
J<ev 

or for the cooperative game, minimizes the same distance 

D~~=min IIFx1 (k)-Gx2 (k+l)ll. (9a) 
J<ev 

The sets of admissible controls · U and · V are defined as follows 

U={zt(t): l!uk (t)IIP 1 =C7l)o;~ !u~ (t)!P 1 dt) 1 1P 1 ~CP, forl~pl<oo 

= ess sup !u~(t)!, for pl=oo} (10) 
M <;; r.;(k+l)o 

where 1/pl+l/ql=l 

and 

f (k + l)o r 

V=\vk(t):llvk(t)llp2 = J J; J v~ (t) l pZ dt)1 1P2 ~Ce, for l~p2<oo 
1<.6 1=1 

= · ess sup l v~(t)J, for p2=oo} (11) 
6k .; ;.;(k+ 1)1; 

where l jp2 + ljq2= 1. 

The game terminates if 

O~IIFx.L (k)-Gx2 (k)ll~c:, for some k=O, I, ... , iv. (12) 

Examining the expressions (8) and (9) it may be noticed that properties of re
achable regions can be applied to find both zf and vk. (For definition of reachable 
regions see [10, 11 ]). 

Let us consider the following maximization problem 

(13) 

which is connected with a linear differential equation 

x (t)=A (t) X (t)+B (t) u (t), X ER", x (0), (14) 

and A is a nonzero .fixed vector in R" and u E u an admissible control associated 
with general linear systems. 
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The solution of (14) is following 

t 

x (t)=<P (t) x (0)+ J <P (t, r) B (r) u (r) dr. (15) 
0 

Fig. 2. Dlustration: R- reachable region, JR- boundary of the reachable region, P (A)-sup
porting hyperp!ane, s (A.)--<:ontact function. 

Defining the difference 

xd (t)=x (t)- <P (t) x (0) (16) 

and applying properties of a supporting h)'perplane P (A.) to the reachable region 

R (0, t)={xd (t): xd (t)= j <P (t, r) B (r) u (r) dr}, (1 7) 

and next using Holder inequality for integrals with the condition 

sgnu(r)=sgn A.<P(t,r)B(r), O::::;r::::;t (18) 

the (13) may be written as follows 

A_xd (t)=(j!A.<P (t, r) B (r)l qdr Yfq C, (19) 

where C is expressed as l!ui!P and 1/p + lfq= 1. Finally it is easy to obtain the well-
-known expressions 

(20) 

for 1 <p<oo, 
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where 

\),4) (t , t io) B (t io) \ = max ).4> (t , r) (B(r), 
l::S;j =::;; m 
O~r~ t 

u;(r)=C sgn ),4) (t, r) B (r), for p= oo, 

(21) 

for p=l, 

(22) 

where hi is the jth colmnn of the n x r matrix cjjB and the vector 2 is such that 

).xd (t) . 
max t r . =C, 

( )

1 /q . ! i?; )..lz j (t, fJ) qdfJ 

(23) 

for j= 1, 2, 3, ... ,m. 

It should be mentioned that some difficulties arise in the case when corners 
and flat portions occur [J] ]. 
Strategy for the player I 

For the given system (l) with the initial state x 1 (k), k=O, l, 2, ... ,.N -1 and the 
terminal target x 1 (k+ 1) E R1 (k, k +I) and the control set U the player I chooses 
an admissible contrvl uk• (t) which transfers the state x 1 such that 
(i) it x 2 (k) E R1 (k, k+ 1), then uk • (t) transfers the state of the system to a point 
x, (k + l) such that 

subject to 

Fx1 (k+ l)=Gx2 (k) 

)_k [x2 (k)-4> 1 (k+ I, k) X 1 (k)] 

(J 1 

;~ l"k h11 (k+ I, r) I q 1dr) 

(24) 

(25) 

Notice, that the equation (25) is similar to (23) and if C~=CP (from (10)) then 
x 1 (k+ 1) E bR1 (k, k+ I)-the boundary of the reachable region for the player I. 
(ii) if x 2 (k) f/; R1 (k, k + 1), then uk• (t) transfers the state of the system to a point 
x1 (k+ 1) such that 

min 11Fxdk +l)-Gx2 (k)ll. (26) 
x, e6 R 1 (k ,k+ 1) 

The solution of the problem (26) requires to solve the following nonlincar 
progralillliing problem 

max ),k [x2 (k) - cP1 (k+l, k) x1 (k)+s~ (A.k)] (27) 
IJ.ki=l 
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where 

k+l 

s~ (J.k)= J cf> 1 (k+ 1, r) B (r) uk (r, J,.k) dr eoR1 (k, k+ 1) (28) 
k 

denotes the contact function. In general (27) is a strongly nonlinear function of 
).k and iterative methods have to be applied to :find the solution [7, 10]. The optimal 
},k• found from (27) allows us to find the optimal control using the expressions 
(20- 22). 

Strategy for the player Il 

Similarily, or the given system (2) with an initial state x2 (k), k=O, 1, 2, ... , N -1 
and a terminal target x 2 (k +I) e= R2 (k, k + 1) and a control vk E V the player ll 
chooses an admissib1econtrohl• (t)wb.ich transfers the state to the point x2 (k+l) 
such that 
(i) for the pursuit-evasion game 

max IIFx1 (k) - Gx2 (k+ 1)11 
XzERz (k,k+ l) 

which correspondens to the following programming problem 

max <!'k-f - x1 (k)+(jj2 (k-f-1, k) x2 (k)+s; (~k) ] 
W l=t 

(ii) for the cooperative game 

min IIFx 1 (k) --Gx2 (k+l)ll 
X , e R , (I< ,k+ l) 

or equivalently 

min (" [x1 (k) -(_[12 (k+l, k) x 2 (k)+s; (~k)], 
1<·1 = 1 

where c;k is a nonzero vector in R and s; (<!k) is ·a contact function. 

(29) 

(30) 

(31) 

(32) 

Remarks are similar-the solution of(32) requires the usage of iterative methods. 
Again applying (20-22) it is easy to find the control for the player II. 

4. Illustrative examples 

In this section sqme numerical results are presented to illustrate the method 
explained in Section 3 ~ -

As an example let be considered a pursuit-evasion game governed by ihe fol
lowing equations 

[
-1 

xi= o 0] [1 0] [0. 0] _ 1 X1 + O 2 U, X1 (0)= O. O (33) 

0] [2 0] [0. 4] _ .1 x2 + 0 1 v, X2 (0)= O. 6 
(34) 
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and controls of both players are assumed to be constrained in amplitude llukll oo :( 3.0 
and 11-z,kiLx,:( 1.0 (equations (10-11)). The initial time t=O and the :final tim10: T= 1.0 
are assumed. The results: 

0.1 

0.0~--~~----~----L-----~----~----~~ 
0.001 0.003 0.005 0.01 0.03 0.05 0.1 d 

Fig. J. Termination time as a function of length of sampling. 

(i) Termination time versus the sampling length (s=O.I in (12)). The first de
creasing part of the curve is effected by computation errors and the rising part 
shows errors resulting from the applied heuristic strategies. 

000~ 
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L 
~ 0.40 ~ 
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n. 
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0.00 

E 

0.20 0.40 0.60 0.80 1.00 '1.20 1.40 
XP1 • XE1 

Fig. 4. State trajectories (Pursuer wins). 

(ii) Figures (4-6) show trajectories of both players, Fig. (7-8) show strategies 
. used by the players. Notice that the player I (Pursuer) from time t ~0.4 does not 
use his full control because the state of the player II (Evader) lies within his rea
chable region. Fig. 9 shows the decreasing distance between the players versus time_ 
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0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 
Time 

Fig. 5. Time trajectories of Pursuer. 

I I I 

0.00 0.08 0.16 0.24 0.32 040 048 0.56 
Time 

Fig. 6. Time trajectories of Evader. 
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Fig. 7. Control of Pursuer. 

Fig. 8. Control of Evader. 

0.16 0.24 0.32 040 0.48 0.56 
Time 

Fig. 9. Distance between players. 

In the above case Pursuer wins. 

(iii) Figures (10-12) show the case when Evader wins. In this case the constraints 
are different than in previouse example, namely:. 1Jukl! co ~3.0 and Jlvk l/ "'~ 1.5. 
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N 
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Fig. 10. State trajectories (Evader wins). · 

Fig. 11. Control of Pursuer. 
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Fig. 12. Control of Evader. 

5. Conclusions 
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The purpose of this paper is to present the heuristic approach to some kind 
of the interception problem of two players descirbed by linear differential equa-
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tions with limited controls under the assumption of lack of knowledge of opponent's 
model. 

The statement of this problem seems to be new but applied methods to solve 
it are already well-known. During each period of time [kJ, (k+ 1) c5], k=O, 1, 2, ... 
... ,N- I the players use optimal open-loop controls and after exchanging infor
mation at t=kc5 the players can build their new controls. 

It is expected that if e (in (12)) is chosen much larger than the size of reachable 
regions R1 and R2 the complications near the end of the game can be avoided. 

It seems that the technique presented in this paper could be used in tracking 
problem with incomplete information. 
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Heurystyczne strategie dla pewnego problemu przechwytywania 

Rozpatrywany jest problem przechwytywania, w kt6rym bierze udzial dwu graczy. Ka.Zdy 
z graczy zna sw6j liniowy model oraz korzysta z informacji o aktualnej pozycji oponenta. Wyr6z
niono dwa rodzaje problemu przechwytywania- problem ucieczki oraz grt< kooperacyj114. 

EspncTH<t:eCKHe cTpaTernu HeKOTopoii npo6neMhl nepexBaTbmaHHH 

PaccMaTphrnaeTCH npo6neMa nepexBaThiBal!HH, B KOTopoii .n.Ba nrpoKa. KIDK.noil HTfOK 3HaeT 
CBOlO JU!ReHRYlO MO.n;em,, a TaKlKe aKTyaJihHOe UOJIOlKel!He )J;Byror o HrpOKa. llpH)J;J(OlKeHhi eBpH
CTH'!eCKHe CTpaTennr. BhiAeJUIIOTO! .n;Ba po.o;a npo6neJ\>thi - nrpa y6eral!Hll R KoonepaTHBWlH mpa. 
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