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This paper discusses the problem of the identifiability of spatially-varying parameters in sys-
tems described by initial-boundary value problems for linear, one-dimensional parabolic partial
differential equations. For cases involving 'distributed, noise-free measurements, two questions
related to identifiability problem are considered: how to check whether the available input-output
data allows unique determination of the unknown system parameters, and how to chose the system
input to accomplish this with a priori knowledge? Under suitable assumptions, several identifi-
ability conditions are obtained.

1. Introduction .

This paper is in the line of previous papers by Chavent [1], [2], [3], Kitamura
and Nakagiri [5] and Pierce [7], and deals with the identifiability problem for systems
described by linear, second-order, one-dimensional parabolic partial differential
equations with spatially-varying parameters. The identifiability porblem in its de-
terministic version leads to iwo basic questions:

1) How to check whether the given noise-free observation of an input-output pair
allows unique determination of unknown system parameters?

2) How to choose the input signal in order to a priori guarantee uniqueness of
parameters determination?

The results presented in [3], [5] refer only to the first question and are obtained
for the case in which the spatially-varying coefficient preceding the time-deriva-
tive of the state is absent in the system equation. Moreover, the identifiability con-
ditions presented there contain requirements with respect to the spatial derivatives
of the observed output, which can lead to some difficulties in application.

The results presented in [7] refers to very important case of pointwice obser-
vations but they apply to the normal form of the diffusion equation and cannot
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244 Z. SUFLET»

be used directly in practical situation because the substitution of variables leading
to the normal form uses unknown parameters.

The general method for studying whether the inverse problem for an abstract
lirear operator equation is wellposed has been proposed by Romanov [8]; ho-
wever, to find the effective identifiability conditions for particular distributed sys-
tems using Romanov’s concepts, a number of detailed problems must be solved
in any case.

This paper extends the results obtained in [3], [S], [7] in rcgard to the first
question and formulates some identifiability conditions for the second question.

2. Statement of the problem

- Consider a class of systems described by the following initial-boundary value
problem:

000 D D sy 0y = ),
' , xe@,L), >0 (1)
¥ (x, 0)=u; (x), xe [0, L] )

=ligo (’), t>0
x=0 (3)
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Let us denote:’
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Ui'{u: uy (-)e€C? [0, L]; ugp (), ug, (+) € C?[0,.00),

duy (0) duty (L)
T«« ugo (0), oy uy (L) + ), v~ =g, (0), (5)

0 11 (0) ~fo

up (<, +)e C* ([0, L]0, w))}

AL{aia, (*),a;(-)eC* [0,L], a, (+)e C*[0,L];
day (%), a, (x)>0, a3 (x)=0 for each xe[0,L]}. (6)
It is assumed that o, fo. o5, fip are a priori known nonnegative constants such
that ol +f5#0, a7+ p2+#0. For each fixed we U and a € A, the solution of (1),
(2), (3) in the class Y-2.{y(-,1)eC?[0,L] for each =0, y(x,-)eC" [0, )
for each xe€ [0, L]} [6] will be denoted by y (-, - |a, u).
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The identification problem consists in determining an unknown paramcter
a* belonging to the known set A< A4, on the basis of the input vector # and the
output observation y (x, tla*, u) for (x, 1) e Q<[0, L]x [0, o<).

The ability to get a unique solution of the above identification problem depends
on the amount of a priori information given by the set 4, and the measurement
abilities defincd by the set . In this paper an empkhasis is put on the case in which
the set A, is irfinite dimensional, particulai']y when Ap=A4. In such a case the
solution of the identification problem can be nenunique even if Q=[0, L]+ [0, ov)
[3], [5], and it scems to be impossible to get the uniquencss when Q contains a finite
number of points. For that reason, the paper like the previous works [3], [5] deals
only with the case in which O==[0, L] [0, T], 0<T<co, and ecstabilishes a kind
of preliminary identifiability study in a view of practical nccds.

To consider precisely the two identifizbility questions mentiorned in the intre-
duction, let us introduce the fellowing definitions.

DeFINITION 1. Let a* € Ay. The system described by (1), (2), (3) is called {1 Ala*>-
-identifiable if for each ae A, the identity y (. tla, wy=y (-, tla*, u), 1[0, T]
implies a=a*.

DEFINITION 2. The system described by (1), (2), (3) is called {u, Ap)-identifiable
if it is {u, Agla*)-identifiable for cach a* € Ap.

3. The sufficient conditions for (u, A, |c)-identifiability

The results presented in this section refers to the first question formulated in
the introduction, i.c. they can be applicd to check whether the given input-output
pair determinc a unique system paramcters. Let us denote:

1’115{(( €A: dy (.\‘1):/)1_}, Azg{a €d: 75} (Xz):l)g} (7)

where x, v, €0, L] and by, b, >0 are fixed known numbers. The necessity to
consider the cases of Ay=A{ or Ap=A, becomes clear when the system to be iden-
tified has no distributed input, i.e. u(-,-)=0 (when, for instance, the equation
(1) describes the heat diffusion in an onec-dimensional medium, this means the
lack of internal heat sources). In the above casc the system is ot {u, A|ay-identi-
fiable for cach uwe U and cach a& A.

THEOREM 1. Letue Uanda® € A. If there exist t,, ts, ty € [0, T'] such that uy (-, t;)==
=iy (, L)=u, (*, t:3)=0 and the functions y (-, t;1a*, u), y (-, tzla*, w), y (-, t3l
la*, u) are linearly indcpendent then the system described by (1), (2), (3) is:
(T1) <u, A,|a*y-identifiable and {u, A,|a*>-identifiable.

If, moreover, uy(+,*) is nonzero function then the systemi is:

(T2) {u, Ala*>-identifiable.
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Proof. Note that since for each a € 4 we have a, (x)>0, x € [0, L], the cquation
(1) can be rewritten in the form:

oy (v, 1) a(x) @y a,(x) oy (x,1)
ot @y (%) dx* a; (x) ox

s (x) _up(x0)

a, ()y(a)— Cll()»’) ;XG(O,L), >0 (8)

where the prime stands for a derivative with respect to x. Consider an arbitrary
ae€ A suchthat y (-, 11a, u)=y (-, tla*, u) for te[0, T]. Taking into account (8)
we can write:

[(12 (x) (%) ] 0% y (x, tla*, u) R [ a,(x) B a5 (x) ] y (x, tla*,w)
a4 (x) d ox? a (x) () ax

3 30 1 1
[ZI Eig Z;‘-Eg]y(x,t[a u) = [al x) p ()]uv(x ), (x,1)e . | ©)

By assumption there exist 7y, t,, 73 € (0, T) such that uy (-, #;)=0, i=1, 2,3, ie.
the functions y (-, t;]a*, u), i=1, 2,3 are the solutions of the equation:

4 (¥) a5 (%) M EACEE ORI
i o ) o
a; (x) @ (x) ay (x)  a; (%)

{@m_@@

a; (x) a} (%)

which is a linear, second order, ordinary differential equation (homogeneous one)

having no more than two linearly independent solutions. But the functions y (-, 7]

la*, u), i=1,2,3 are assumed to be linearly independent and they satisfy (10).
1t is possible only if:

@mz%m,@mz%m;%@ ﬁ@m ©.0) an

ap(x)  a; (0’ a; (x) ai(x) 7 a (x) i (x)

which implies a=ca* with a certain c € R.

]v(x)=0, xe(0,L) (19)

v X . o
If a,a* e A; then a; (x,)=da] (x;)=b, and c——_i( ) i.e. a=a*. Thus, the

(\1) )

system is {u, 4,|a*)-identifiable.
Similarly the <u, 4,|a*)-identifiability holds. Moreover, if @=ca* then the left

< 1 1
0,
a4, (x) mu]%“”

(%, £) € Q2 For nonzero uy, (-, -) this implies @, (x)=47 (x) for a certain x € (0, L)
and as a comsequence c=1, i.e. a=¢*. Thus the system is <u, Ala*y-identifiable.

Q.E.D. ]

Note that the identifiability conditions obtained in Theorem 1 are expressed
in terms of the pair u, y (-, t|a*, u), 1€ [0, T] which, in spite of the fact that a*

hand side of the equation (9) vanishes and we have [
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s unknown, is known from the experiment. To check these conditions the linear

mdependence of the functions w; (*)=y (-, #;Ja*, u), i=1,2,3 must be verified

which can lead to some numerical troubles. However, the conditions presented

seem to be checkable more easily than those proposed in [3], [5], because no.pro-
ies of the spatial derivatives of the output nced be verified. '

4. The choice of imputs warranting system identifiability

r The second important problem refers to the question of how to warrant
Su, A gla*>-identifiability before the experiment by means of a suitable input design.
Since the appropriate requirements with regard to the input vector # may generally
depend on the unknown parameter «*, the satisfactory choice of u must make the
system {u, Ag|a)-identifiable for all parameters expected to appear in the system,
i.e. {u, A;)-identifiable. Several sufficient identifiability conditions for solving the
above problem can be found using Theorem 1. To this end let us write the solution
f (1), (2), (3) for given ¢ and u in the form [9]:

n=1

y(x, tla, = N by (tla, u) gu (xla), x€(0,L), >0 . 45
E"here: '

hy, (tla, u)= f dy (x) up (x) gy (x]a) dx exp [~ 2, (@) ]+ |

t

+[[ f p (¥, 1) g (xla) dx+85 ttpo ()+8% 1z, (5) | exp [~ 4 (@) (t-9)ds  (13)

(4]

| I.I-Jd:
2 (0l@)+ 9, (Ola) ou (Li@)— g, (L|a)
%o+ fo ur+fr

Here /4, (a), ¢, (" |a), n=1,2, ... are cigenvalues and eigenfunctions, respectively,
- obtained as a solution of the Sturm-Liouville problem:

H (") 2 (L)

gP= —g, (0) (14)

d [ dp, (x )J o
() g [Pl @ =6 Wl (=0, xe @D (19
40 9 (O)=Po 7, (O)=0, o ¢ (L)+5, 9, (L)=0 (16)

L k A )
with the condition [ ¢2 (x) dx=1, n=1,2, ...
(0]

LemMMA 1. Let y (-, |a, u) be expressed by (12) with an arbitrary a€ A and ue U.
If there exist ny, ny, ny such that the functions f; (*)=h, (*|a,u), i=1,2,3 are
linearly independent on (0,T) then there exist t,, t, t; (0, T) such that the functtons
2, ()=y(-, tila, w), i=1,2, 3 are linearly independent. *
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Proof. If /; (+), i=1, 2, 3 arc Li. (lincarly independent) then there exist f,, 75, #5
such that th=s vectors [ f; (£;), /> (t:), f5 (1;)], i=1, 2, 3 are Li. and, hence, the sequences
{h, (t;la, u)} are 1.i.. Since for cach £>0 the sequence 4, } defines a unique
decomposition of y (-, f|a, 1) with respect to the model basis {g, (- |a)} [4], the

functions z; (* )=y (-, t;la, u), i=1,2, 3 are also Li., Q.E.D.. |

LemMMA 2. Let v (-, |a, u) be cxpressed by (12) with an arbitrary a € A and 1€ U,
If there exist ny, ny, ny such that for each t, t,, ty € (0, T) the wectors [h, (t;la, u),
h, (8@, u), hy, (ti]a, w) i=1,2,3 are linearly independent then the functions
y (-, tla,u), i=1,2,3 are linearly independent for cach ty, t,, t3 € (0, T).

The proof of Lemma 2 is similar to that of Tcmma 1.

LEMMA 3. If 4, (a) is a sequence of eigenvalues corresponding to an arbitrary a € A
and v (-)e L' [ty, T] is nonzero function then for cach ny, n,, ny the function,

t
wa, (+), i=1,2,3 given by : w, ()= [ v (s) exp [~ Ay (a) (t—35)] ds, 1 € [to, T],n=1,2, ...

Ty
are linearly inc/ependmt.

LEMMA 4. [f g and g"” are defined by (14) for an arbitrary a€ A then gi+#0 and
g #0 for each n=1,2,.

LEMMA 5. Let Vo< CU [0, L) be the set of nonzero functions each of which vanishes
on «a certuin subinterval of [0, L). If {p, (- |a)} is a sequence of cigenfunctions cor-
responding to an arbitrary a € A then the sequence {p,} given by

L

,u,!:f (X)) ezl dy, n=1,2,3, .. (17)

(8}
with v (+) € Vo contains an infinite number of nonzero elements.
The proofs of Lemmas 3, 4, 5 follow from the knomt properties of the eigen-
value problem [4] and arc omitted.

THEOREM 2. If the input ’uec—wr ue U takes one of the forms:

(F1) u=[0,9 ("), 0,0] or u=[0,0,2(*), 0] where v (+)e C?[0,T] is an arbitrary
nonzero function

(F2) u=[0,v0 ("), o, (), 0] where v, (), v, (+)&C?[0,T] are such that there
exist 11,1, €(0,T), t,<t, for which

feyon (0) for te[0, 1]

le2 @y, (2) for t€[ty, T
and vy () is nonzere in each of intervals [0, t;], [ta, T

(F3) u=[v(-),0,0,0] where v ()€ V, (Vo being defined in Lenuna 5)

then the system described by (1), (2), (3) is {u, A, y-identifiable and {u, A,)-identifiable.

with certain ¢y, ¢, € R, ¢1#¢;

7o ()=
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-ﬁoof For the proof it is sufficient to express the solution y (-, |a, u) in the
form (12) and show by Lemmas 3, 4, 5 that the corresponding functions 4, (- la, u),
i=1,2,3 are linearly independent for a certain triple n,, n,, ny umformly with
respect 10 a € A. The final step follows from Lemma 1 and Theorem 1.

TaeoreM 3. If wu={u; (* ), ugo (* ), ey (* ), 11y (+, )] where u; (+) is an arbitrary
Sfunciion from C* [0, L] and:

ln

(Al) uw = }“ Py (D= N 4P, 1€[0, 7]
0

r= 0 r=

(A2) up (x, t)—- \ v (¥) | \' v xel0, L], 1e€[0,7],

f=o
2.()e VD, =1, 2, ..., my and there exist #4, 1,, 13 € (0, T) such that uy ( -, ;)=
. =0, 7=1,2,3
(A3) one of the following conditions holds:
BCL) m >mp+3, m>2pe+3, k=1,2,....mp, "0
(C2) mo=my+3, mo=p+3, k=1,2, ..., m, o0,
(C3) there exists r, 1<r<mp such that p.>m +3, p=2my+3, p2p+3, k=
=1,2,..,r=1, r+l, .., mp, v?I#0
~ then the system described by (1), (2), (3) is:
(T1) {u, A )-identifiable and <{u, 4,>-identifiable.
If. moreover u, (-, +) is nonzero function then the system is
_ {1‘2) {u, AY-identifiable.
Proof. If ue U satisfies (A1) and (A2) then for each a € 4 the functions A, (- |a, u)
‘appearing in the series (12) are of the form:

) 3 )
hy (t]a, w)=x8) exp [~ 2, (a) 1]+ f 68 3 e
r=0
my, mp
48 \1 w4 3 ™ v grlexp [—2, (a) (1—s5)] ds, 1>0 (18)
P O 2 r%ZO ]

where:

K(n)_fal () 1y (x) @, (x) dx, KO= fq;h (x) @y (x]a) d\f,

()

k=1,2, .., mp. (19)
Let us note that for each Ze R we have:

t

. ) 4
ofs ex?[~l(t—s)]dSw(_—])’+1 o [exp (=20 —1]+

r!
+2( =t — T r, >0 (20)

i=1
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Assume that, for example, (C1) holds. Hence, for each terle M1, By, By WE Can
write:

mp

7 1 i ’1 i i
I, (tla, u) = [l\g”)+g(") 7 ,)+a(r ) n(:,,_}_ Z "'Sc”) ch’é)] exp [~ 2, (a) 1]+

no. mp

+ g ‘;" 20D g7 gl V : (")Ir,{_ i 2 o0 g1 4
r= O r= 0 k 1
n'l% my, ¥ e
gl Z [Z 0 (= 1yr=t i ()r "“l" tel0,T], i=1,2,3 « (21)
k=m+1tr=k
where: )
mo rl
(n r N
bk ).. Z yg‘) =1 W’ ==}, 1 cus Ml (22)
k=r
1 .|
(n)___ 2 - W wscssanmnsss e sy -
7y Z Y a1 A @ I (e (23)
k=r
e L
o N0 (= (), 1,
a g,: a Kkt 2, (a)F—rr1 »Pas 24)

g=1,2, ..., mp

and m=max {Mo, P1, . P}

Formula (21) expresses the decomposition of the functions 74, (- |a, 1), i=1,2,3
on the basis composed of exp [—4,, (@) ()], exp [—2,, (@) ()], exp [ 2, (@) (* )]
L () ()% ..., (- )"". Let us consider three vectors, cach of which is composed
of the three last coefficients in the decomposition of the function by, (@, u) on
the mentioned basis.

Since m>m+3, these vectors are of the form:

b —— (mp—2) _1_m (mp—1) ‘ml‘_] - gyCmr) My (mL— 1)
2 I 7 R 7 R
my,
(np—1) (n;_) ) (myp) . pua . 9.3 95
My, }"i ((I) My )n,( )2 1, /7,"._ (CI)] 4 s &y ( )

It is easy to calculate that the determinant of the matrix composed of these vectors
can be expressed by the formula:

o(m) Q«(nz) ,,(na)

N (26
@ & @ @ @9

= =Ll may (g~ )
where:
An, @P 2, (@) 1
Wi=|2,,(a)?2,, (@ 1
Ay, (@7 4y, (@) 1
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Since W, is the Vandermonde determinant and 4, («), i=1, 2, 3 are different values
[4], we have W,#0. Moreover, gi"?#0, i=1,2,3 by Lemma 5, and #{"?#0 by
assumption (Cl). Thus W#O and consequently the vectors b, b,, b5 are linearly
independent. Since the basis considered for the decomposition of 7, (- |a, u),
i=1,2,3 is composed of exponential and power functions, this implies that for
each triple #,,7,,15€(0,T) the vectors [h, (t]a,u), h, (tla,u), h, (t;]a, ©)1,
4=1, 2, 3 are 1.i.. Hence, the assumptions of Lemma 2 are satisfied (for each a € 4)
and (71) follows from this lemma and Theorem 1. Assuming u, (-, )#0 we
obtain also (72). Q.E.D. |

The proof of the theorem under assumptions {C2) or (C3) can be performed ana-
logically.

Theorems 2 and 3 formulate only sufficient conditions for » to warrant the
system identifiability. The fundamental problem is a practical realization of inputs
belonging to the obtained classes. Some restrictions can appear due to the zero
initial conditions required in Theorem 2, which can be nonrealistic in some cases
or quite natural in other ones. Choosing, however, the boundary and distributed
inputs as polynomials of time-variable (see Theorem 3) it is possible to warrant
the identifiability for an arbitrary initial condition.

5. Coaclusions

A number of results for identifiability of a certain class of systems described
by partial differential equations with spatially-varying coefficients have been pre-
sented. The results which refer to the problem of checking whether the given in-
put-output data allow unique determination of system parameters enrich the list
of identifiability conditions presented in [1], [2], [3], [S]. These results refer to a more
general case in which the coefficient a; (-) is considered, and seem to be more
convenient in application because no requirements with respect to the spatial de-
rivative of the output signal are stated. An attempt is made to solve the problem
of the choice of identifying inputs. The results show that it is possible to propose

_a number of simple inputs sufficient for the identifiability.

Only the one-dimensional spatial domain and a distributed type of observation
are considered. Also the coefficients in boundary conditions are assumed to be
known. These are the main restrictions of the results.
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Warunki identyfikowalnosci dla pewnej klasy obiektéw
o parametrach rozleZonych ze wspélezynnikami zaleznymi
od poloZenia

Praca dotyczy zagadnienia identyfikowalno$ci zaleznych od poleZenia parametréw w obiek-
tach opisywanych liniowymi, jednowymiarowymi réwnaniami rézniczkowymi czastkowymi typu
parabolicznego. Dla przypadku bezszumowego pomiaru wielkosci wejSciowych i wyjéciowych
obiektu rozwazono dwa podstawowe pytania wiazace sie z zagadnieniem identyfikowalnodei: jak
sprawdzi¢ czy pozostajaca w dyspozycji informacja pomiarowa pozwala na jednoznaczne okre$-
lenie parametréw obiektu i jak wybraé sygnal wejSciowy obiektu dla zapewnienia takiej mozli-
wosci a priori?

Przy odpowiednich zalozeniach okreslono szereg rezultatow dajacveh odpowiedZ na powyzsze
pytania. Warunki wystarczajace identyfikowalno$ci wiazgce sie z pierwszym pytaniem wyraZono
w postaci wymagann w stosunku do mierzonych sygnatéw wejsciowego i wyjsciowego, podezas
gdy odpowiednie warunki wigzgce sie z drugim pytaniem definiuja pewne klasy sygnalow wejécio-
wych zapewniajacych identvfikowalnosc.

Venopus BIeBTHGUOUPYEMOCTH IS HOKOTOROr0 Kiacca
00BEKTOB ¢ paclpeeieHubIME HapaMeTPaME,
€ Ke3Q@HIBEHTAMH 32BHCHMBIMI OT HNOJIOMKEHS

Pabota xacaercs mpobieMbl MACHTHOUIMPYEMOCTII 33BHCHMBIX OT IIONOKEHUS IIaDaMeTpoB
B 00OBeKTax ONHCHBAEMBIX ' THHEIHHEIME, OXHOMEPHBIME IHQOEpCHITIATBHENE ¥ paBHEHAIMI
B 4YacTHbIX NPOM3BOIHEIX Hapabomudeckoro tuma. J[s cnydas GECIIOMEXOBBIX M3MEPCHHIT BXOM-
HBIX M BBIXOIHBIX BEMYHH OOBEKTA PACCMOTPEHBI IBa OCHOBHBIC BONPOCR, CBA3AHHBIE C IPO-~
6rmenvoli MOEHTHGUUHPYEMOCTH: KaK IPOBEPHTH, MO3BONSET JIM MMEIOWascs M3MepHTeIbHas HE-
GopManEs OHHO3HAYHO OUPENeNETEH MapaMeTpsl 06beKTa 1, Kak BHIOPATs BXOOHOM curHan o6bexTa
IS aIPHOPHOro obecreyeH st Takoi BO3MOXKHOCTH ?

TIpr COOTBETCTBYFOLINX LPEMTIOCHUIKAX ONPENENeH pSX DPE3YIbTATOB, NAICHIMX OTBET Ha
BBINIE YKa3aHHBIC BOMPOCHL. JJOCTaTOYHBIC YCIOBHS MICHTHOHUMPYEMOCTH, CBS3aHHBIE C HEPBBIM
BOIPOCOM, BLIDAXKEHBI B BHIE TpeGoBaHumil IO OTHOLIEHHIO K HM3MEPSEMBIM BXOIHOMY M BBIXOJ-
HOMY CHIHAJIaM, a COOTBETCTBYIOIINE VCIIOBHS, CBH3aHHbBIE CO BTOPBIM BOIPOCOM, ONPENENAIOT
HEKOTOpbIE KJIACCEI BXORHBIX CHTHATOB, ODECNEYHBAIOLINX WACHTHOMUMPYEMOCTD.
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