Control
and Cybernetics

VOL. 11 (1982) No. 1-2

A Phase Transition Problem with Delay

by

AUGUSTO VISINTIN®*)

Istituto di Analisi Numerica del C.N.R.
Corso Carlo Alberto, 5
27100 Pavia, Italy

A delay is introduced into the jump function in the weak formulation of the Stefan problem
similarly to what happens for super-cooling and super-heating effects. An existence result is proved.

Introduction

Let us, u, € R (u; <u,) be given. Let the variables u, w: [0, T]—R be related
by a “jump condition with delay” according to the following conditions: for a ge-
netic r€[0,7] .

If u(t)<uy (respect. u (¢)>u,), then w (f)=—1
(respect. w (£)=1)
if uy <u(f)<u,, then —1<w (1)<l

¢y

if u; <u (t)<u,, then w(¢) is constant in a neighbourhood of u ()

if u (#)=u, (respect. u (t)=u,), then w (¢) is non-increasing
(respect. is non-decreasing). (see fig. 1)
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Fig. 1. uy, up €R, uy <u, Arrows indicate direction of movement of (v (z), w (¢)) as ¢ increases.
&el—1,1] is generic

(*) — This work has been realized during a stay supported by the Polish Academy of Sciences
at the Systems Research Institute of P.A.N. in Warsaw in September-October 1981.
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Therefore w is controlled by the function u, but the specification of the latter
is not sufficient to determine the former.

Let D be an open bounded subset of RN (N>>1), T>0. Set Q=D x [0, T].

Relation (1) is assumed to hold in Q and is coupled with the equation

ai(u+w)—Au=fin 0. ©)

(where fis a datum, 4= 2 ) ), with suitable initial and boundary conditions.

If uy =u, then (1) degenerates into the usual jump condition and we get the weak
formulation of the Stefan problem (cf. [4], pag. 196-204, e.g.).

This last is a model for several phase transition phenomena; an example is
given by change of state (transition between water and ice, say), with u temperature
and u+w enthalpy. In this physical setting generalization (1) corresponds to a water
freezing temperature u; strictly less than ice melting temperature uz, as it arises
in super-cooling and super-heating.

The transition set is characterized by u, <u<(u, and it is to be expected to have
the same dimension of the space.

Also here free boundaries are present, corresponding to u=u; (i=1, 2); formally
the following jump conditions hold

wl-v,=[Vul ¥. on §;={(x,)eQlu(x,)=u} (i=1,2) 3

(where ¥=(¥,, v,) is normal to S;, which is assumed regular enough, and [ ] denotes
the jump across S;), with

-2<[w]<2  on S (i=1,2) 4)

and w decreasing (increasing) w.r.t. time across S; (S, respect.).

ou
Still formally the diffusion equation 5 Au=f holds in O\ (S; U S,), in par-

ticular in the transition set I ={(x, 1) € Q|uy <u(x, t)<u,}. However notice that
this setting does not correspond to so-called “’three-phase problem”.

The above relation between u and w has the features of hysteresis: for every
instant ¢ in order to evaluate w (¢) the value of u (¢) is not sufficient, but information
about the preceding evolution of the process in a neighbourhood of ¢ is required
(short-memory effect).

Mathematical models of hysteresis have been studied by Krasnosel’skii and
co-workers (e.g., cf. [2] and [3] for a survey of their results and for a large collection
of refeiences).

In [6] the author has dealt with a long-memory effect in which at any instant ¢
the “output parameter” w (¢) is completely determined by its initial value and by
the evolution in [0, 7] of the “input parameter” u. This does not hold for relation (1).

In this work we give a weak formulation of (1), (2) (§1); for this formulation
we prove an existence result by approximation, at first by time-discretization (§2),
then by smoothing the jumps of (1) and using a result of [6] (§ 3). Finally we show
that letting u; —u,—0, we get the usual Stefan problem (§4).
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1. Variational formulation

We introduce some notations:

«(O)=C~u)*~(E~u)", VEeR (L.1)
u, if &<u,
BO={¢ if uy<&<u,, VEeR (1.2)
U, if E>u,
iy if £<0
S@=1-1.1] it £=0, VEe R (1.3)
{1} if £>0
[—o0,0] if E<uy
RO=1{0} | if u;<E<u,, VEER (1.4)
' [0, +oof if Ezu,

all of these being maximal monotone graphs, and

{O} ]f E#ula uZ .
v (&)=][—o0, 0] if E=u,, VEeR, (1.5)

[0, + o] if E=u,

this graph being non-monotone.
By (1) we get

wesS(«@) inQ ' (1.6
ow ‘
v g a.7n
the last yields
ow .
5 € R(B(w) inQ; (1.8)

notice that in this deduction no information has been lost, as the behavior of %:—
for u ¢ [uy, u,] may be obtained by (1.6).

Both So« and Rof are non-monotone graphs; as subsets of R? they have
a non-empty interior, which corresponds to a lack of information. However it is

ow
meaningful to compare (1.6) with (1.8), as the relation between w and s is one-

-to-one (at least for “smooth” functions); moreover the informations given by
them are complementary, in the sense that.S o « is single-valued where R o £ is multi-
-valued and conversely, with the exceptions of u=u; and u=u,.

Therefore (1.6) and (1.8) seem to describe suitably the relation between u and w.
The fact that they are expressed by means of maximal monotone graphs (as S, «,
R, f are) will be useful for the study of a weak formulation.
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Set V=H, (D), Hilbert space with the norm [o|ly=| V2|2 py~. Let
fel2 (0, T; V') (1.9)
u®eL?(D), w°eL® (D) be such that w®eS(«(u°) ae. inD (1.10)
and

g=[f@ de+u+w° in H' (0, T; V). (1.11)
0

The problem under consideration takes then the form
(P): — Find ue L* (0, T; V)N H' (0, T; V') (= C° ([0, T]; L* (D))) such that

ff{u [v—a(u)]+vfu(x,f)dfﬁ[v-a(u)]}dxdr+

Q 0

+ff [{fvl—]oc(u)l]dxdtzf,,, (g, v—a W)y dt, YoeL?(0,T; V). (1.12)
Q 0

T a r
T <_§ o—p ) yydi+ [ [ TurVlo—p@ldsdr> [ fro—p @)yt
0 Q "

VoelL? (0, T; V) such that u;<v<u, a.e. in Q (1.13)
u(0)=u® a.e. inD. (1.14)
S is the subdifferential of the convex functional L? (0, T; ¥)—R defined by v

> f f |v| dxdt; therefore (1.12) can be written in the form
e

u—Afu(x, 1) di+S(xW)sg in L*(0,T; V') (1.15)
J .

which can be justified by integrating (2) w.r.t. ¢ and using (1.6).
By (2) and (1.8) we get

Ju

E—Au—R(ﬁ(u)) of inQ " (1.16)

which formally corresponds to (1.13).

2. An existence result

THEOREM 1: Assume that (1.10), (1.11") hold and

: weV 2.1
f=fi+f,, with fi e L*(Q), /e W1 (0, T; V). 2.2

Then (P) has at least one solution such that moreover

ue H* (0, T; L* (D)) N L™ (0, T; V). 2.3)
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Proof: i) Approximation:

T
-Let meN, k=—. Set
m

1
A=t e fl =% J Atsnd aeind,

(n=1) 2.4
fiw=f2 (nk) in V’.. for n=1, ..
{=1} if §<u1
[_19 77] lfz =U;
K (& m=\{n} if uy<E<u,} VeR, Vpe[-1,11. (2.5
[’73 1] if 6—1«!2 l
{1} i sy

We introduce a time-discretized problem (P,): — Find u’, eV, w' eL® (D) for
n=1, ..., m such that — setting u>=u®, wd=w® a.e. in D—

wh—utt ot —
X 2 —dul=fr in V', forn=1,..,m, (2.6)

whe K@, wi') ae. in D, for n=1,..,m. 2.7)

For every me N we solve (P,) step by step. Fix ne{l, ..., m} and assume that
w,~* and wj~* are known. K (., wl, ! (x)) is a maximal monotone graph a.e. in D,
therefore there exists a convex, lower semi-continuous functional L7 :L' (D)—R
such that K (., w, !)=0L}, a.e. in D.

Introduce the coercive, strictly convex, lower semi-continuous functional
Jn: V—R, defined by

1 k
oo S lolE oy P L @F S o~ [ @ Hwim ) e de—ky. (o by, (2.8)
D

which has a unique minimizing argument, denoted by u). We have
oIy (up)=ul+ K (uh, wo =@ 1+ wi ) —k (duf+fm) 50  in V75 2.9)

therefore defining wi, by means of (2.6) we get (2.7).

Solution of (P,) is unique. Numerical resolution of (P,) can be performed by
standard space-discretization methods.

ii) Estimates:

Fix a generic /€ {1, ..., m}; multiply (2.6) by u},—ul~* and sum for n=1, ..., l.
Notice that

n—1

Zl f(” _:’" (! — 1) dx= kZ

n=

n n=.1
m u

y (2.10)

L2 (D)

Z f(—k )(u —urNdx =0 (by (2.7)), (2.11)

D
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1

2 (=t sty = 3 [ Gl G~ d >
n=1

n=1 D

i
> PG = Ve, I )=l [ uz—inuouz (2.12)
=9 < m [Lz(P)]N m [L2 (D). 2 mlly o v .

: :

2 ffl"m(ufn“u"m—l) dx<||f1 Hﬁ(o)'(.k Z
D

n=1 n=1

n n—1
Uy~ Uy

k

2\
)2, (2.13)

L2 (D)

!
2 Vs <f2nms unm_‘ u:ln_ 1>V=V’ <f2!m’ vu,ln>V vy <f21ma u0>V R
n=1

1
= ZV' L SR 2",;,_1, Uy, 1%y <Const. 1 2m llwrs, « o, 1,v7y "~ Max leglly. (2.14)
n=1

n=0, ... 1
Thus we get
) m ‘u;:l_u::t-—l 2
k 2 < Const. (indep. of m), (2.15)
k
n=1 L2 (D)
max  ||u} |ly<<Const. (indep. of m). (2.16)
n=0, .., m

Denote by u, (x, ¢) the function obtained interpolating linearly the values u,, (x, nk)=
=ul, (x) for n=0, ..., m a.e. in D; define w,, similarly. Set 4, (x, )=u}, (x), W, (x, )=
=w" (x) a.e. in D and £, ()=f" in V"’ if (n—1) k<t<nk, for n=1, ..., m.

Then (2.6) becomes

]
E(um+wm)—dﬁm=fm in ¥/, a.e. in [0.T]; 2.17)

(2.15) and (2.16) yield

“ Uy ”51 (0, T; L2 (D)) A L® (0, T; V)<Const. (1ndep of m) 5 (218)
” ﬁm ”Hr (0, T: L3(D)) A L® (0, T} V)<Const. (lndep of m) A4 <E 5 (219)

moreover
Wil (<1 (2.20)

iii) Limit:
By (2.18) and (2.20) there exist », w such that — possibly taking subsequences —
up,—u in H' (0, T;L*(D))NL>(0,T; V) weak star, 2.21)
Wu—w in L® (Q) weak star (2.22)

whence

- 1
dw—u in H*(0, T; L? (D)) NL*® (0, T; V) weak star, Vr<—, (2.23)
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and, as « and f are Lipschitz-continuous,

1
« (dn)—o () in H*(0,T; L2 (D))NL* (0, T; V) weak star, Vr<—, (2.24)

2 b
. 1
B @)—p @ in H (0, T;L>(D))NL*®(0,T; V) weak star, Vr <3 (2.25)
Notice that .
fu=f in L2 (0, T; V') strong ; (2.26)
integrating (2.17) w.r.t. ¢ and taking m—oco we get
t
u+w—Af u(x,v)dv=g in V', tel0,T]. (2.27)
(0]
(2.7) yields
Wm €S (« (&) ae.in Q, (2.28)
that is for every v € L? (Q)
[f U@ =100 dx dt < [ [ [ (@) —2] dx dt, 2.29)
Q . “a
whence takihg m—oo and using (2.22), (2.24)
‘ ff(loc(u)]—]vl)dxdtgffw[oc(u)—v]dxdt; (2.30)
Q ) _
(2.27) and- (2.30) yield (1.12).
By (2.7) we have
whSwi—t if Wh<u,, ie. f)=u,
wh=wi"1 if uy<ul<u,, ie. wu <puy)<u,, (2.31)
wh=wh 1 if ul,=>u,, ie. p@,)=u,,

and by (2.6)

(uh,—uit)

k ‘;;Df Tm[v—ﬂ(u;')]-l—vu"m'v[‘v—'ﬁ(u;;)] o

=k Dy S o= @pdy= D" [ (wp—wi ) [Bp)—v] dxdr=0, (2.32)

VoeL? (0, T; V) such that u;,<v<u, a.e. in Q;
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£
notice that, setting B (&)= f B(mdyp VEeR,
o

Tim —2"': f(u,’;—-u','n_l)ﬁ(u;‘n)dx]<

m—0 n=1

m—oo m—oo p

<-lim > [ [B@:)—-B ;)] dx=—lim [ [B@unH—Bu)]dx<
= p=1 D
: < (as B is convex and lower semicontinuous)<

4 0
<— [ BE@)-B@ == [.{ 5 B@ Yy d;  23)

m=00 m=00 y=1 D

fim —kzm‘ fvu;:,-wuu;:.)dx]=—ﬁm k Zm‘ [ 198 @) 1? dxs

<= [[1VB @) dxdt=— [ [ Vu-Vp@)dxde; (234)

Q Q
taking the superior limit as m—oo in (2.32) and using (2.26), (2.33) and (2.34), we
get (1.13). B

3. Another approximation procedure

It appears natural to approach the relation between » and w by means of the
one sketched in fig. 2 and then to take A— +co.

Fig. 2. The slope of BC and AD is A>0. Arrows indicate direction of movement of (u (¢), w (2))
as ¢ increases. £ € [—1, 1] is generic.

The situation of fig. 2 has already been considered in [6] (see § 5, example 2).
Denote by £, the union of the closed parallelogram ABCD with. the half-lines
01, 0, and by &, the corresponding multi-application R—& (R). Set

A on ]4, D]

_ 3.1
#7 o in 24,1, G

_ A on [B, C[ 3.2)
5=10 i 2,3 CI. &
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For all ue C* ([0, 7)) and w° € [—1, 1] with w® € &, (u (0)), the relation sketched
in fig. 2 can be expressed as follows

ow ou \* ou \~ ;
6—t=g' (u, w) (-ét—) —g, (u, w) (—é?) a.e. in ]0, T] (3.3)
w (0)y=w°.
As it has been shown in [6], this Cauchy problem can be integrated, yielding
w()=F; (u, t, w°) (3.4)
where &, and &, fulfill the following conditions:
, Y (v, 1, E)_such that v € C° ([0, T]), te [0, T], €%, (v (0)) 6.5
F,0,t8eZ,(v(®); :
Yoe C° ([0, T)), Ve &, (v (0)), the function t—>F, (v, t, &) 3.6

is continuous in [0, 77 ;
Vo e CO ([Oa TD: VE € Spl (‘Z) (O))a yﬂ. (‘U, 05 E)—':E 5 . (3.7)
Vie 0, T[, Yoi,v, € C° ([0, T]) such that v,=v, in [0, ],

VEe F, (v, (0), F1 (1,1, O)=F, (05,1, 8). )
Assume that (1.9), ..., (1.11) hold. For every A<0, set |
w0
we=w°, u)=u — ae inD. (3.9
By theorem 1 of [6], there exists at least one
u, € H (0, T; L* (D)) NL™ (0, T; V) (3.10)
such that
u, (x, 0)=u3 (x) ae. inD (3.1D
and, if ' '

wy (%, )=F, (up (x, ), t, w* (x)) Vte[0,T], ae. inD, (3.12)
then w, € H' (0, T; L* (D)) NL*® (0, T; V) and

0
6—t(u,_+w,l)—4fu,lf——f in ¥/, ae. in ]0,T]J. (3.13)

THEOREM 2: For all A€ R*, let u;, w, be such as in (3.10), ..., (3.13); then there
exists at least one u such that, possibly after taking a subsequence.

u, —»u in H* (0, T; L? (D)) NL® (0, T; V) weak star '(3.19)

Moreover such u is a solution of problem (P).
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ou
Proof: Multiply (3.13) against a—;; by a standard procedure this yields

24 I+ 0, 75 22 (D) - L (0, 7; vy <<Const. (indep. of 1),
therefore there exist u, w such that, possibly taking subsequences,
w,—u in H' (0, T;L* (D)) nL* (0, T; V) weak star

w,—=w in L® (Q) weak star.

Taking A—+oco in (3.14) we get
%(u+ w)y—du=f in V’, ae. in 10, T[,
whence by time integration
u+w—Afu(z)d1=g in V', tel0,T].
0

Notice that

P e g =1, 2
ot o I u, ) ?‘-'ll,; (l_ s )’
whence
‘6“;' f W, '_ 1 2
a ( Wl) af 1 U, }‘ #ut (l— ) )’
Flmry e "
0 if u;_—":.{—:ui (l=13 2) s
therefore
W,
U= o in H* (0, T; L? (D)) weak ;
similarly we get
Wy
ul_T —u in L* (0, T; V) weak star,

and thus, as « and B are Lipschitz-continuous,

w ,
oc(u,l—-——f—) — o) in H! ((), T;L* (D))nL* (0, T; V) weak star,

w
B (ul1 —-—Tl) —fw) in H'(0,T;L*(D))NL* (0, T; V) weak star.
We have

_ »
w, €S (oc (u‘—T)) ae. in Q;

(3.15)

(3.16)
(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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by a standard procedure, (3.17) and (3.24) yiéld
weS(x(w) ae. inQ, (3.27)

which together with (3.19) gives (1.12).
By (3.13) and (3.20) we have

H ouy [ (ul—__)] dxdt+” Tu, - [ ﬂ(ul—%—)] S
—ofw<f,v—ﬂ(w )> dr= “ 5 [«u (u,l——)]dxdt>0 (3.28)

Vo € V such that u;<v<u, a.. in D;

(3.16) and (3.25) yield

]f?;%ﬁ( )dxdt—*ff B (w)dx dt, (3.29)
Q

notice that

i Wa A
\% Up=—- ={ = (3.30)
I 0 if ul—Tr—ul (i=1,2),

i w,
quz if w——+#u; (i=1,2),

and then

lim Vu, 'V dx dt=
jim [ [0 08 53
_ wi\ _ w
= lim foV(ua"—ii)'Vﬂ(uz—Tl)dxdt':

>(by 3.25) 1B @) lIZ2 0, 151 =

L2{0,T;V),

|
=”’V7u-w(u)dxdt; (3.31)
Q

thus taking the upper limit as A—+oo in (3.28) we get (1.13). W

4. Other results

Let u; ;<XO<{u,; for every je N; let u;;—0 (in R) as j—oo, for i=1, 2; accordingly
for every je N define o, and f; similarly to (1.1) and (1.2), define also (P.) as (P),
with « and f replaced by «; and f;.
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THEOREM 3: For every jeN, let u; be a solution of (Pj) Assume that g € L* (Q).
Then

[ u;(x,)dt»U in H'(0,T;L> (D)) NL? (0, T; H* (D)) weak, (4.1)
0

where U is the unique solution of the following variational inequality

(VD): — Find Ue H* (0, T; L* (D)) N L? (0, T; H* (D)N V) such that

[ [ U~4U-g) @=U) dx dt+ [ [ (101=|U,)) dx dt=0, YoeL* (0, T; V). (4.2)
Q Q
U©0)=0 ae inD. (4.3)
ReMARrK: (VI) is a weak formulation of the classical Stefan problem (cf. [1D).

Proof: For every jeN, set U, (x, t)= fu (x,t)dr ae. in Q; the correspon-
ding (1.12) yields

| Uje— AU L2 (@y<Const. 4.4)
whence (cf. [5], chap. 4)
| Ujllas o, 7,22 (by) m L2 (0, T: B2 (D) ~ H<<CoMSL . 4.5)
Therefore there exists U such that, possibly taking a subsequence,
U—-U in H*(0,T;L*(D))nL*(0,T; H*(D)NV) weak (4.6)
whence, as «;— Identity uniformly in R,
o; (U;)—» U in L*(Q) strong. : 4.7

For every je N, multiply the corresponding (1.12) against v—u; and take the
upper limit as j—o0; notice that for any choice of ¢;: Q—R measurable such that

9, €8 (¢, (1)) ae. in Q, by (4.7)
lim ff @; (0—u;) dx dt=Tim ff(pl [v— ocj(uj)]dxdt+

Jj=oo Jjooo
+lm [ [ g, Loy () —u;] dx dt <
FHea g
<Fm [ [[lol—]o; @)l dxdt+0<(by(47))<”[|v1—|U dxdt; (4.8)
J—oo Q

thus we get (4.2). As the solution of (VI) is unique, the whole sequence {U;} con-
verges to U. &

ProPOSITION 1: Assume that (1.9), ..., (1.11) hold. If

f<0 in 2°(Q), u, =0, u°<u, ae inD 4.9)
then for any solution u of problem (P)
' u<u, ae inQ. (4.10)

Similarly if f=0 in 97 (Q), u; <0 and u;<u® a.e. in D, then u,<u a.e. in Q.
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Proof: Assume that (4.9) holds. Let r€]0,T] and ke ]0,T—¢]. By (1.12) (cf.
also (1.15)) we get
t+k)—u(t
f L’L])C_i‘ﬂ[u(,+k)~u2]++

D

l t+k
+E(V f u(x,'c)dr)'V [u (z+k)—u2]+] dx—
t+k

l
v g [ 1@ wt-u] )y =
=[(p/—¢") [t +R)~u]* dx, (411)

with ¢’ €S (« (u (1)), "' €S (« (u(t+k))). The last term is non-positive, as it is
easy to check; taking k—0 we get

dx =

1. .@ _
f = [ (@) —u) ]IV (u ()~ )t |2
=y, {f(0), () —u)* Dy<0, (4.12)

whence we get the thesis after integration w.r.t. 7. i
Uniqueness of solution of problem (P) is an open question. We are only able
to prove the following result.

PROPOSITION 2: Assume that (1.9), ..., (1.11) hold and that
=0 ae. inQ; u<O0<u,, u;<u’<u, ae. inD. (4.13)
Then problem (P) has at most one solution.

Proof: By proposition 1, for any solution of (P) we have u; <u<u, a.e. in Q;
therefore f (u)=u and (1.13) reduces to a standard variational inequality, having
at most one solution. [l

GENERALIZATIONS: The above developments can be generalized in many ways.
V can be replaced by a Dirichlet space, other boundary conditions may be
taken into account. If the constants u,, u, are replaced by two functions u; € L® (D)N
NV (i=1, 2) with u, <u,, then the above results still hold.
It is also possible to modify the constitutive relation (1); in some cases this

0 0
is equivalent to replacing En (u+w) by a [a (w)+w] in (2), with a: R—R non-de-

creasing. More generally the linear operator £ A can be replaced by a non-linear

pacabolic one of the form uHEt—a(u)—Ab (w); if 0<a, <a<a,<+o0, 0<b; <

<b<b,<+oo (with ay, a,, by, b, constant) in a neighbourhood of [uy, u,], under
regularity assumptions the above results can be extended.

2
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One may also couple (1) with the following hyperbolic equation

(’)2u+aw dup
e TR 2 B 2 (4.19)

an existence result for the corresponding weak formulation does not seem immediate.
Notice that for approximating problem obtained by smoothing the jumps of (1)
existence is 2 consequence of the results of [6].
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Zagadnienie przemiany fazowej z opéZnieniem

Do funkgji skokowej wystepujacej w slabym sformutowaniu zagadnienia Stefana wprowadzone
zostaje opOzZnienie, co odpowiada uwzglednieniu zjawisk przechlodzenia i przegrzania. Udowod-
niony zostaje wynik dotyczacy istnienia rozwigzania.

IIpo6aema ¢a3oBoro mepexoja ¢ 3ama3bIBAHHEM

BBOAUTCA 3ama3bIBAHKE B CKAYKOOOpasHyio (YHKLHMIO BBICTYIAIOIIYIO B Ciiaboit Gpopmyin-
poske npobaeMsl Credana, 9TO MOXOKE Ha CHTYAIIHIO XapaKTEPHCTHYECKYIO IS sIBICHUE mepe-
OXJaXIEHNs] W IIEpPeHarpesa.

Joxa3bIBaeTCs CYLIECTBOBAHUE PEIICHUA IPOOIIEMBI.



