
Control 
and Cybernetics 
VOL. 11 (1982) No. 1-2 

A Phase Transition Problem with Delay 

by 

AUGUSTO VISINTIN*) 

Istituto di Analisi Numerica del C.N.R. 
Corso Carlo Alberto, 5 
27100 Pavia, Italy 

A delay is introduced into the jump function in the weak formulation of the Stefan problem 
similarly to what happens for super-cooling and super-heating effects. An existence result is proved. 

Introduction 

Let u1 , u2 eR (u1 <u2 ) be given. Let the variables u, w: [0, T]-tR be related 
by a "jump condition with delay" according to the following conditions: for age­
netic t e [0, T] . 

(If u (t)<u1 (respect. u (t)>u2 ), then w (t)= -1 

I (respect. w (t)= 1) 

if u1 ,;;:;u (t),;;:;u2 , then -1 ,;;:;w (t),;;:;1 

{I if U1 < u (t) < Uz, then w (t) is constant in a neighbourhood of u (t) 

if u (t)=u1 (respect. u (t)=u2 ), then w (t) is non-increasing 
(respect. is non-decreasing). (see fig. 1) _ _ 
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Fig. 1. u1, u2 ER, u1 < u2 Arrows indicate direction of movement of (u (t), w (t)) as t increases. 
<! E1-1, 1] is generic 

(*) -This work has been realized during a stay supported by the Polish Academy of Sciences 
at the Systems Research Institute of P.A.N. in Warsaw in September-October 1981. 
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Therefore w is controlled by the function u, but the specification of the latter 
is not sufficjent to determine the former. 

Let D be an open bounded subset of RN (N?o 1), T>O. Set Q=D x [0, T]. 
Relation (1) is assumed to hold in Q and is coupled with the equation 

a at (u + w)- ..du= f in Q . (2) 

( 

n az ) 
where f is a datum, L1 = 

1

J; ax; , with suitable initial and boundary conditions. 

If u1 =u2 then (1) degenerates into the usual jump condition and we get the weak 
formulation of the Stefan problem (cf. [4], pag. 196-204, e.g.). 

This la&t is a model for several phase transition phenomena; an example is 
given by change of state (transition between water and ice, say), with u temperature 
and u + w enthalpy. In this physical setting generalization (1) corresponds to a water 
freezing temperature u1 strictly less than ice melting temperature u2 , as it arises 
in super-cooling and super-heating. 

The transition set is characterized by u1 ~u~u2 and it is to be expected to have 
the same dimemion of the space. 

Also here free boundaries are present, corresponding to u= u1 (i = 1, 2); formally 
the following jump conditions hold 

[w]·vt=[Vu]·v:, on S 1={(x,t)eQJ u (x, t)=u1} (i=l,2) (3) 

(where v=(iix, v,) is normal to S;, which is assumed regular enough, and [ ·] denotes 
the jump across S1), with 

-2~ [w] ~2 on S1 (i=l, 2) (4) 

and w decreasing (increasing) w.r.t. time across S1 (S2 respect.). 
au 

Still formally the diffusion equation at- ..du= f holds in Q"' (S1 u S2), in par-

ticular in the transition set !!/ = {(x, t) E Q I u1 < u (x, t) < u2}. However notice that 
this setting does not correspond to so-called "three-phase problem". 1 

The above relation between u and w has the features of hysteresis: for every 
instant tin order to evaluate w (t) the value of u (t) is not sufficient, but information 
about the preceding evolution of the process in a neighbourhood of t is required 
(short-memory effect). 

Mathematical models of hysteresis have be,en studied by Krasnosel'skii and 
eo-workers (e.g., cf. [2] and (3] for a survey of their results and for a large collection 
of refe1ences). 

In [6] the author has dealt with a long-memory effect in which at any instant t 
the "output parameter" w (t) is completely determined by its initial value and by 
the evolution in [0, T] of the "input parameter" u. This does not hold for relation (1 ). 

In this work we give a weak formulation of (1), (2) (§1); for this formulation 
we prove an existence result by approximation, at first by time-discretization (§2), 
then by smoothing the jumps of (1) and using a result of (6] (§ 3). Finally we show 
that letting u1 - u2 --+0, we get the usual Stefan problem ( § 4). 
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1. Variational formulation 

We introduce some notations: 

s (~)=! f ~ :: 1] 
{1} 

1
[-oo,O] 

R (~)= {0} . 
[0, +oo[ 

if ~u1 
if u1 <~ <u2 , 

if ~~ u2 

if ~<0 
if ~==0, 
if ~>0 

if ~C:u1 
if u1 <~ <u2 , 

if ~ '?-u2 

all of these being maximal monotone graphs, and 

I 
{0} 

!jl (~)= [- oo, 0] 
[0, +oo] 

this graph being non-monotone. 
By (1) we get 

the last yields 

ow 

if ~#u1 , Uz 

if ~=u1 , 
if ~=u2 

ate R (fJ (u)) in Q; 

7 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

V~ eR, (1.5) 

(1.6 

(1.7) 

(1.8) 

ow 
notice that in this deduction no information has been lost, as the behavior of a 
for ut/= [ul> u2 ] may be obtained by (1.6). t 

Both So a and R o fJ are non-monotone graphs; as subsets of R 2 they have 
a non-empty interior, which corresponds to a lack of information. However it is 

aw 
meaningful to compare (1.6) with (1.8), as the relation between w and at is one-

-to-one (at least for "smooth" functions); moreover the informations given by 
them are complementary, in the sense that .So a is single-valued where R o fJ is multi­
-valued and conversely, with the exceptions of u=u1 and u=u2 . 

Therefore (1. 6) and (1.8) seem to describe suitably the relation between u and w. 
The fact that they are expressed by means of maximal monotone graphs (as S, a, 
R, fJ are) will be useful for the study of a weak formulation. 
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Set V=H~(D), Hilbert space with the norm [[vffv=lfVvffrL2(D)JN· Let 

f El.} (0, T; V') 

and 
t 

g= J f(r) dr+u0 +w0 in H 1 (0, T; V'). 
0 

The problem under consideration takes then the form 

(P):- Find u E L 2 (0, T; V) n H 1 (0, T; V') ( c C0 ([0, T]; V (D))) such that 

t 

J J {u[v-a(u)]+V J u(x,r)dr·V[v-a(u)]}dxdt+ 
Q 0 

T 

(1.9) 

(1.11) 

+ J J [lv 1-1 ex (u) IJ dx dt ~ J v' <g, v-cx(u))v dt, V·v EL2 (0, T; V) (1.12) 
Q 0 

T OU T 

J v' <at' v-[J (u))v dt+ J J Vu· V [v-[J(u)] dx dt~ J v' <J,v-[J(u))v dt 
0 Q 0 

Vv E L 2 (0, T; V) such that u1 "'(v"'(u2 a. e. in Q (1.13) 

u (0)=u0 a. e. in D. (1.14) 

S is the subdifferential of the convex functional L 2 (0, T; V)--+ R defined by v H 
s 

HJ jlvl dxdt; therefore (1.12) can be written in the form 
Q 

t 

u-Lf J u(x,r)dr+S(a(u)):3g in L 2 (0,T; V') 
0 

which can be justified by integrating (2) w.r.t. t and using (1.6). 
By (2) and (1.8) we get 

ou at- Lfu-R (fJ {u)) :3/ in Q 

which formally corresponds to (1.13). 

2. An existence result 

THEOREM 1 : Assume that (1.10), (1.11') hold and 

u0 E V 

f=f1 +!2, with /1 eU (Q), / 2 E W1
'
1 (0, T; V'). 

Then (P) has at least one solution such that moreover 

u E H 1 (0, T; L 2 (D)) nLoo (0, T; V). 

(1.15) 

{1.16) 

(2.1) 

(2.2) 

(2.3) 



A phase transition 

Proof: i) Approximation: 
T 

· Let meN, k=-. Set 
m 

1 nk 

/{'m (x)=k J /1 (x, t) dt 
(n-1) k l J~: = ffm + J;m, 

f~'m=fz (nk) in V' 

{ -1} 

a.e. in D, 

[-l,1J] 
K(~,17)= {17} 

[1J, 1] 
{1} 

for n=l, ... ,m 

if ~<u1 1 
if ~=U1 
if u1 <~ <u2 } 

if ~=u2 I 
if ~>u2 J 

V~eR, VIJE[-1,1] . 
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(2.4) 

(2.5) 

We introduce a time-discretized problem (Pm):- Find u;:, e V, w:, e L "' (D) for 

n=l, ... ,m such that- setting u~=u0 , w~=w0 a.e. in D-

u" - un -1 w','n- wn,n- 1 
_m_!!'__ + A n /,n 

k k - LIUm= m in V', for n=l, ... ,m, (2.6) 

w;:, e K(u::,, w::,- 1
) a. e. in D, for n= 1, ... ,m. (2.7) 

For every meN we solve (Pm) step by step. Fix ne {1, ... , m} and assume that 
u::,- 1 and w~- 1 are known. K (., w::,- 1 (x)) is a maximal monotone graph a.e. in D, 
therefore there exists a convex, lower sem;-continuous functional L:,: L 1 (D)~ R 
such that K(., w::,- 1)=8£::, a.e. in D. 

Introduce the coercive, strictly convex, lower semi-continuous functional 
J~: v~R, defined by 

1 k 
VH 2//v /l i• (D)+ L::, (v)+2 1/v //~- J (u;~- 1 

+ w::,- 1
) v dx-kv' <J~, v)v, (2.8) 

D 

which has a unique minimizing argument, denoted by u:,. We have 

8J~ (u::,)=u::,+K(u::,, w::,- 1)-(u::,- 1 +w::,- 1)-k (Liu::, +J;) 3 0 in V'; (2.9) 

therefore defining w::, by means of (2.6) we get (2.7). 
Solution of (Pm) is unique. Numerical resolution of (Pm) can be performed by 

standard space-discretization methods. 
ii) Estimates: 
Fix a generic I e {1, ... ,m}; multiply (2.6) by u::,- u~,- 1 and sum for n= 1, ... ,I. 

Notice that 

(2.10) 

(2.11) 
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I I 

1: V'<- Au~, u~ -u~- 1)v.= 1: J vu~. V (u~ -u~- 1) dx?: 
n=1 n=1 D 

1 I 1 1 
~ 2 1: (I I vu~ II[L· (D)]N -11 vu~,- 1 llrL• (D)]N) = 2 11 u~ 11~- 2 11 U 0 11~ (2.12) 

n= 1 

(2.13) 

I 

~ (fn n n-1) _ (fl · I) (f.1 0) L.J y, 2m' um-um v-v· 2m' urn v-v, 2m' u v-
n=1 

I 

- 1; v' (f;m-f;;,\ u~- 1)v::;:;Const.llfzmllw,,l(O,T,v') ·max 1\u~llv· (2.14) 
n=1 n=O, ... ,l 

Thus we get 

m 11 un -un-1 1/2 
k ~ J_!E_f-J :(;Const. (indep. of m), 

n=l L 2 (D) 

(2.15) 

max 11 u~ llv:(;Const. (indep. of m). (2.16) ' 
n=O, ... ,nl 

Denote by urn (x, t) the function obtained interpolating linearly the values Um (x, nk)= 
=u~ (x) for n=O, ... ,m a.e. inD; define Wm similarly. Set Ctm (x, t)=u~ (x), Wm (x, t)= 
=w~ (x) a.e. in D a:il.d !m (t)=J,;: in V' if (n-1) k< t~nk; for n= 1, ... ,m. 

Then (2.6) becomes 

a at (Um + Wm)- Aum= !m in V', a.e. in ro. T]; (2.17) 

(2.15) and (2.16) yield 

1\um lln'(O,T;L•(D))nL""(O,T;V)::;;;Const. (indep. of m), (2.18) 

1 
11 Um IIH, (O, T: L2 CD)) n L"" (O, r; V)~ Const. (indep. of m) V-r <2, (2.19) 

moreover 

(2.20) 

iii) Limit: 
By (2.18) and (2.20) there exist u, w such that- possibly taking subsequences-

Um-+U in H 1 (0, T; £2 (D)) n Loo (0, T; V) weak star, (2.21) 

Wm-+W in Loo (Q) weak star t2.22) 

whence 

- 1 
Ctm--.u in H<(O, T;£2 (D))nL"" (0, T;Y) weak star, V-r<2,, (2.23) 
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and, as o: and p are Lipschitz-continuous, 

1 
o:(um)~Ct.(u) in H<(O,T;U(D))nLco (O,T; V) weak star, Vr<2, (2.24) 

1 
p(um)~fJ(u) in H<(O,T;U(D))nL00 (0,T; V) weak star, Vr<2. (2.25) 

Notice that 

fm~f in L 2 (0, T; V') stron~; 

integrating (2.17) w.r.t. t and taking m:...,.oo we get 

(2. 7) yields 

t 

u+w-Llju(x,r)dr=g in V', te=[O,T]. 
0 

that is for every v E £2 (Q) 

(2.26) 

(2.27) 

(2.28) 

J J ( lo:(um)l- lv\)dxdt ~J J wm[o:(u,)-v]dxdt, (2.29) 
Q Q 

whence taking m~oo and using (2.22), (2.24) 

_ J J (I o: (u) 1-1 v \) dx dt ~ J J w [o:(u)-v] dx dt; 
Q Q 

(2.27) and-- (2.30) yield (1.12). 

By (2.7) we have 

l 
w" ~wn-1 

m"" m 

w~=w::,- 1 

w~~w::,- 1 • 

and by (2.6) 

if u~~u1 , i.e. P(u~n)=u1, 

ifu1 <u~<u2 , i.e. u1 </3(u~)<u2 , 

if u~~u2 , i.e. /3 (u~)=u2 , 

m { (u" -u•-1) } 
k "J; j '" km [v- f3 (u~)] +vu~· v [v -p (u~)J dx-

m m 

(2.30) . 

(2.31) 

- k}; V' <J;, v-p (u~,))v=}; J (w::,- w~,- 1)[/3 (u~)-v] dx dt ~O, (2.32) 
n=l n=1 D 

Vv e £2 (0, T; V) such that u1 ~v~u2 a.e. in Q; 
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; 

notice that, setting B (~)=JP (1'/) d11 V~ eR, 
0 

~ \-n~ 1 (u~-u~- 1) p (u~) dxl~ 
m 

~ -lim 2; J [B (u~)-B (u~- 1)] dx= -lim J [B (u:)-B (u0
)] dx~ 

m-+oo n= 1 D m-+co D 

~(as B is convex and lower semicontinuous)~ 
T OU 

~- J [B(u(T))-B(u0~]dx=- jv'( at' fi(u))vdt; (2.33) 
D 0 

!~ \-k 
11

.1; j vu~· vP (u~) ax}= -;~~ k n~ 11 vP (u~) 12 dx~ 
~- J J 1Vfi(u)l 2 dxdt=- J Jvu·Vfi(u)dxdt; (2.34) 

Q Q 

taking the superior limit as m-+oo in (2.32) and using (2.26), (2.33) and (2.34), we 
get (1.13). • 

3. Another approximation procedure 

It appears natural to approach the relation between u and w by means of the 
one sketched in fig. 2 and then to take A-+ + oo. 

w 

D ---- c 

{ 

u u 

-1 

- A --- B 

Fig. 2. The slope of BC and AD is .4>0. Arrows i.ndicate direction of movement of (u (t), w (t)) 
as t increases. ~ E [ -1, 1] is generic. 

The situation of fig. 2 has already been considered in [6] (see § 5, example 2). 
Denote by r!Jl_. the union of the closed parallelogram ABCD with the half-lines 

oh 02 and by [!' _. the corresponding multi-application R-+Y (R). Set 

g
1
= { Ao on ]A, D] (3.l) 

in r!Jl_.',JA, D], 

{
A on [.B, C[ 

g,= 0 inr!ll;.',JB,C[ . (3.2) 



A phase transition 13 

For all u e C1 ([0, Ti]) and w0 e [ -1, 1] with w0 e g;. (u (0)), the relation sketch~d 
in fig. 2 can be expressed as follows 

l ~; = g, (u, w) ( ~: ) + - g 1 (u, w) ( ~: ) - a. e. in ]0, T[ (
3

.
3
) 

w(O)=w0
• 

As it has been shown in [6], this Cauchy problem can be integrated, yielding 

w (t)=ff;. (u, t, w0 ) 

where g;. and ff;. fulfill the following conditions: 

[
V (v, t, ~)._such that v e C0 ([0, T]), t e [0, T], ~ e g;. (v (0)) 

ff;. (v, t, ~) E [//;. (v (t)); . 

[ 

Vv e C 0 ([0, T]), V~ e g;. (v (0)), the function tHff;. (v, t, ~) 

is continuous in [0, T] ; 

Vv e C0 ([0, T]), V~ E [//;. (v (0)), ff;. (v, 0, ~)=~; 

·{ V~e ]0, T[, Vvl> v2 E C0 ([0, _T]) such that_ v 1 =v2 -in [0, f], 

V~ e [//;.(vi (0)), ff;. (vl> t, ~)=ff., (v2 , t, ~). 

Assume that (1.9), ... , (1.11) hold. For every A<O, set 

WO 

W
0 =w0 u0 =u0 -- a e I·n D ;. ' A A . . . 

By theorem 1 of [6], there exists at least one 

u;. e Hi (0, T; V (D)) nLoo (0, T; V) 

such that 

u;. (x, O)=u~ (x) a.e. in D 

and; if 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

' w;.(x,t)=ff;.(u;.(x, .),t,w0 (x)) Vte[O,T], a.e.inD, (3.12) 

then W;. e H 1 (0, T; V (D)) nL00 (0, T; V) and 

a 
at(u;.+w;.)-Lfu;.~f in V', a.e. in ]O,T[. (3.13) 

THEOREM 2: For all A eR+, let u;., W;. be such as in (3.10), ... , (3.13); then there 
exists qt least one u such that, possibly after taking a subsequence. 

u;. ~ u in Hi (0, T; V (D)) nL00 (0, T; V) weak star (3.14) 

Moreover such u is a solution of problem (P). 
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OU;. 
Proof: Multiply (3.13) against Tt; by a standard procedure this yields 

11 U;.IJH,(O, T; L2 (D)) n LOO (0, T; V)<Const. (indep. Of A), (3 .15) 

therefore there exist u, w such that, possibly taking subsequences, 

u;.--+ u in H 1 (0, T; U (D)) nL00 (0, T; V) weak star (3.16) 

w;.--+ w in L 00 (Q) weak star. (3.17) 

Taking .A-++= in (3.14) we get 

a 
at (u + w)- Lfu== f in V', a. e. in ]0, T[, 

whence by time integration 
t 

u+w- Lf J u (<) dr=g in V', t e [0, T]. 

Notice that 

whence 

o , 

aw;. 
-=0 at 

:, (u,- w; ){:: 

therefore 

W;. 
u ----+u ;. .A 

similarly we get 

if 
W;. 

(i=1, 2)' u;.-T#u1 

if 
W;. 

(i=1,2), u --=u ;. .A t 

in H 1 (0, T; U (D)) weak ; 

W;. 
u;. -T--+ u in Loo (0, T; V) weak star, 

and thus, as oc and P are Lipschitz-continuous, 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

oc ( u;.- w; ) --+ (), (u) in H 1 (0, T; U (D)) n Loo (0, T; V) weak star, (3.24) 

p ( u;.- :;. ) --+ p (u) in H 1 (0, T; L 2 (D)) n L 00 (0, T; V) weak star. (3.25) 

We have 

(3.26) 
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by a standard procedure, (3.17) and (3.24) yield 

weS(a(u)) a.e. in Q, 

which together with (3.19) gives (1.12). 
By (3.13) and (3.20) we have 

15 

(3.27) 

fj ~0~4 [v--p(uA- w;)]axdt+ fjvuA·v[v-p(uA- w;)Jaxdt­

-jv,(J,v-P(uA- :A))vdt== Jj o;A [v-p(uA- ~)]dxdt~O, (3.28) 

Vv e V such that u1 C,.v ~ u2 a. e. in D ; 

(3.16) and (3.25) yield 

. f OUA ( W4) ff OU JQ at P u;.-T dx dt -+ Q at p (u) dx dt, (3.29) 

notice that 

. r-
if 

WA 
(i=l, 2)' rvu ... UA -:-;:#ui 

-( W;.) V u;.-T =~ W;. I 0 
if u -- ==u (i=l, 2)' ;. A t 

(3.30) 

and then 

== lim II P(u;.- ~) 11
2 

~(by 3.25) IIP(u)llz2(0,T;v)== 
).-> +oo L• ,o, T; V). 

= J J vu· VP(u)dxdt; (3.31) 
Q 

thus taking the upper limit as A-++ oo in (3.28) we get (1.13). • 

4. Other results 

Let u11C,.OC,.u21 for every jeN; let uu-+0 (in R) asj-+oo, for i=I, 2; accordingly 
for every j eN define aJ and PJ similarly to (1.1) and (1.2), define also (PJ as (P), 
with a and f3 replaced by rx1 and P1. 
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THEOREM 3: For every j eN, let ui be a solution of (P1). Assume that g e £2 (Q). 
Then 

t 

J ui (x, t) d~ ~ U in H 1 (0, T; £2 (D)) n£2 (0, T; H 2 (D)) weak, (4.1) 
0 

where U is the unique solution of the following variational inequality 

(VI):- Find U e H 1 (0, T; £2 (D)) n£2 (0, T; H 2 (D) n V) such that 

f j (Ut- A U- g) (v- Ut) dx dt+ j j (ivl-1 Uti) dx dt?O, \:fv e £2 (0, T; V). (4:2) 
Q Q 

U (0)=0 a.e. in D. (4.3) 

REMARK: (VI) is a weak formulation of the classical Stefan problem (cf. [1]). 
t 

Proof: For every jeN, set Uj (x, t)= J u; (x, t) dr a.e. in Q; the correspon-
ding (1.12) yields · o 

(4.4) 

whence (cf. [5], chap. 4) 

11 uj IIH1 (0, T; £2 W)) n £2 (0, T; H2 tD) n V)~Const. (4.5) 

Therefore there exists U such that, possibly taking a subsequence, 

U;~u in H 1 (0, T; £2 (D)) n £2 (0, T; H 2 (D) n V) weak (4.6) 

whence, as rx1~ Identity uniformly in R, 

rx1 (Ui 1) ~ U m £2 (Q) strong. (4.7) 

For every j eN, multiply the corresponding (1.12) against v- ui and take the 
upper limit asj~=; notice that for any choice of rp1 : Q~R measurable such that 
IJli e S (rx.~ (u1)) a.e. in Q, by (4.7) 

llni J J rp1 (v-u1)dxdt=~im J J IJli[v-rx1 (uJ]d~dt+ 
j->00 Q ;->00 Q 

+Iln:i J J rp1 [rx1 (u1)-u1] dxdt ~ 
j->00 Q 

~~m f f [lv 1-1 rxj (u1) ll dxdt+O-~(by (4.7))~ f f [lv 1-1 U1 ll dx dt; (4.8) 
J->00 Q Q . 

thus we get (4.2). As the solution of (VI) is unique, the whole sequence { U1} con­
verges to U. • 

PROPOSITION 1: Assume that (1.9), ... , (1.11) hold. If 

f ~ 0 in ~, (Q), u2 ? 0, u0 ~ u2 a.e. in D (4.9) 

then for any solution u of pr<Jblem (P) 

U~ Uz a.e. in Q. (4.10) 

Similarly if f?O in ~, (Q), u1 ~0 and u1 ~u
0 a.e. in D; then u1 ~u a. e. in Q. 
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Proof: Assume that (4.9) holds. Let te]O,T] and ke]O,T-t]. By (1.12) (cf. 
also (1.15)) we get 

j { [u(t+ki-u(t)] [u(t+k)-u2] + + 

1 ( t+k ) l +k V! u (x, r) dr ·V [u (t+k)-u2]+ dx-

1 t+k 

-v, (I J j(~)dr, [u(t+k)-u2]+ )v= 
t 

= J (rp: -rp") [u(t+k)-uJ+ dx, (4.11) 
D 

with rp' e S (<X: (u (t))), q/' e S (o: (u (t+k))). The last term is non-positive, as it is 
easy to check; taking k ~o we get 

J{~ :t [(u(t)-u2)+]+1v(u(t)-u2)+1 2}dx= 

=v· (f(t), (u (t)-u2 )+ )v~O, (4.12) 

whence we get the thesis after fntegration w.r.t. t . • 
Uniqueness of solution of problem (P) is an open question. We are only able 

to prove the following result. 

PROPOSITION 2: Assume that (1.9), ... , (1.11) hold and that 

Then problem (P) has at most one solution. 

Proof: By proposition I, for any solution of (P) we have u1 ~u~u2 a.e. in Q; 
therefore f3 (u)=u and (1.13) reduces to a standard variational inequality, having 
at most one solution .• 

GENERALIZATIONS: The above developments can be generalized in many ways. 
V can be replaced by a Dirichlet space, other boundary conditions may be 

taken into account. If the constants u1 , u2 are replaced by two functions u; e Loo (D)n 
n V (i =I , 2) with u 1 ~ u2 , then the above results still hold. 

It is also possible to modify the constitutive relation (1); in some cases this 
a a 

is equivalent to replacing a (u+w) by a [a (u)+w] in (2), with a: R~R non-de-
. t t a 

creasing. More generally the linear operator a- L1 can be replaced by a non-linear 
a t 

parabolic one of the form uf--vat a (u)- Ab (u); if 0 <a1 <a<a2 < +oo, 0<b1 < 

<b <b2 < + oo (with a1 , a2, bl> b2 constant) in a neighbourhood of [u1 , u2], under 
regularity assumptions the above results can be extended. 

2 
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One may also couple (1) with the following hyperbolic equation 

02 u aw 
--+--Au=f in Q; ot 2 at (4.14) 

an existence result for the corresponding weak formulation does not seem immediate. 
Notice that for approximating problem obtained by smoothing the jumps of (1) 
existence is a_ consequence of the results of [6]. 
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Zagadnienie przemiany fazowej z opoinieniem 

Do funkcji skokowej wyst((pUjllcej w slabym sformulowaniu zagadnienia Stefana wprowadzone 
zostaje op6znienie, eo odpowiada uwzgle<dnieniu zjawisk przech!odzenia i przegrzania. Udowod­
niony zostaje wynik dotyCZllCY istnienia rozwillzania. 

Tipo6JieMa $aJoBoro nepexo,ZJ;a c 3aUa3,ZJ;LmaHHeM 

BBO.!J;HTCll 3ana3)l,},IBalille B CKa'IK006pa3liYIO $)'RKL\Ill0 BbiCTynaiOil.\)'10 B CJia60H $opM)'JIH­
pOBKe npo6JieMbi CTe$aHa, '!TO noxo)J(e na CIITYal\HIO xapaKTepncTH'IeCKYIO .D;Jill HBJieHHH nepe· 
oxJia)!(.D;eliHH H nepeHarpena. 

,[I;oKa3hiBaeTCll cyll\eCTBOBaHne pemeliHH npo6neMhr. 


