Control
 and Cybernetics

A Phase Transition Problem with Delay

by
AUGUSTO VISINTIN*)
Istituto di Analisi Numerica đel C.N.R.
Corso Carlo Alberto, 5
27100 Pavia, Italy

A delay is introduced into the jump function in the weak formulation of the Stefan problem similarly to what happens for super-cooling and super-heating effects. An existence result is proved.

Introduction

Let $u_{1}, u_{2} \in \boldsymbol{R}\left(u_{1}<u_{2}\right)$ be given. Let the variables $u, w:[0, T] \rightarrow \boldsymbol{R}$ be related by a "jump condition with delay" according to the following conditions: for a genetic $t \in[0, T]$

```
If \(u(t)<u_{1}\) (respect. \(u(t)>u_{2}\) ), then \(w(t)=-1\)
(respect. \(w(t)=1)\)
if \(u_{1} \leqslant u(t) \leqslant u_{2}\), then \(-1 \leqslant w(t) \leqslant 1\)
if \(u_{1}<u(t)<u_{2}\), then \(w(t)\) is constant in a neighbourhood of \(u(t)\)
if \(u(t)=u_{1}\) (respect. \(u(t)=u_{2}\) ), then \(w(t)\) is non-increasing
(respect. is non-decreasing). (see fig. 1)
```


Fig. 1. $u_{1}, u_{2} \in \mathbf{R}, u_{1}<u_{2}$ Arrows indicate direction of movement of $(u(t), w(t))$ as t increases. $\xi \in[-1,1]$ is generic
(*) - This work has been realized during a stay supported by the Polish Acađemy of Sciences at the Systems Research Institute of P.A.N. in Warsaw in September-October 1981.

Therefore w is controlled by the function u, but the specification of the latter is not sufficient to determine the former.

Let D be an open bounded subset of $\boldsymbol{R}^{N}(N \geqslant 1), T>0$. Set $Q=D \times[0, T]$.
Relation (1) is assumed to hold in Q and is coupled with the equation

$$
\begin{equation*}
\frac{\partial}{\partial t}(u+w)-\Delta u=f \text { in } Q . \tag{2}
\end{equation*}
$$

(where f is a datum, $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$), with suitable initial and boundary conditions.
If $u_{1}=u_{2}$ then (1) degenerates into the usual jump condition and we get the weak formulation of the Stefan problem (cf. [4], pag. 196-204, e.g.).

This last is a model for several phase transition phenomena; an example is given by change of state (transition between water and ice, say), with u temperature and $u+w$ enthalpy. In this physical setting generalization (1) corresponds to a water freezing temperature u_{1} strictly less than ice melting temperature u_{2}, as it arises in super-cooling and super-heating.

The transition set is characterized by $u_{1} \leqslant u \leqslant u_{2}$ and it is to be expected to have the same dimension of the space.

Also here free boundaries are present, corresponding to $u=u_{i}(i=1,2)$; formally the following jump conditions hold

$$
\begin{equation*}
[w] \cdot v_{t}=[\bar{\nabla} u] \cdot \bar{v}_{x} \quad \text { on } S_{i}=\left\{(x, t) \in Q \mid u(x, t)=u_{i}\right\} \quad(i=1,2) \tag{3}
\end{equation*}
$$

(where $\bar{v}=\left(\bar{v}_{x}, v_{\tau}\right)$ is normal to S_{i}, which is assumed regular enough, and $[\cdot]$ denotes the jump across S_{i}), with

$$
\begin{equation*}
-2 \leqslant[w] \leqslant 2 \quad \text { on } S_{i}(i=1,2) \tag{4}
\end{equation*}
$$

and w decreasing (increasing) w.r.t. time across $S_{1}\left(S_{2}\right.$ respect.).
Still formally the diffusion equation $\frac{\partial u}{\partial t}-\Delta u=f$ holds in $Q \backslash\left(S_{1} \cup S_{2}\right)$, in particular in the transition set $\mathscr{T}=\left\{(x, t) \in Q \mid u_{1}<u(x, t)<u_{2}\right\}$. However notice that this setting does not correspond to so-called "three-phase problem".

The above relation between u and w has the features of hysteresis: for every instant t in order to evaluate $w(t)$ the value of $u(t)$ is not sufficient, but information about the preceding evolution of the process in a neighbourhood of t is required (short-memory effect).

Mathematical models of hysteresis have been studied by Krasnosel'skii and co-workers (e.g., cf. [2] and [3] for a survey of their results and for a large collection of references).

In [6] the author has dealt with a long-memory effect in which at any instant t the "output parameter" $w(t)$ is completely determined by its initial value and by the evolution in $[0, T]$ of the "input parameter" u. This does not hold for relation (1).

In this work we give a weak formulation of (1), (2) (§1); for this formulation we prove an existence result by approximation, at first by time-discretization (§2), then by smoothing the jumps of (1) and using a result of [6] (§3). Finally we show that letting $u_{1}-u_{2} \rightarrow 0$, we get the usual Stefan problem (§4).

1. Variational formulation

We introduce some notations:

$$
\begin{gather*}
\alpha(\bar{\xi})=\left(\bar{\xi}-u_{2}\right)^{+}-\left(\bar{\xi}-u_{1}\right)^{-}, \quad \forall \bar{\xi} \in \boldsymbol{R} \tag{1.1}\\
\beta(\bar{\xi})=\left\{\begin{array}{lll}
u_{1} & \text { if } \bar{\xi} \leqslant u_{1} \\
\xi & \text { if } u_{1}<\bar{\xi}<u_{2}, & \forall \bar{\xi} \in \boldsymbol{R} \\
u_{2} & \text { if } \bar{\xi} \geqslant u_{2}
\end{array}\right. \tag{1.2}\\
S(\bar{\xi})=\left\{\begin{array}{lll}
\{-1\} & \text { if } \bar{\xi}<0 & \\
{[-1,1]} & \text { if } \bar{\xi}=0, & \forall \bar{\xi} \in \boldsymbol{R} \\
\{1\} & \text { if } \bar{\xi}>0 & \\
R(\bar{\xi})=\left\{\begin{array}{lll}
{[-\infty, 0]} & \text { if } \bar{\xi} \leqslant u_{1} \\
\{0\} & \text { if } u_{1}<\bar{\xi}<u_{2}, & \forall \bar{\xi} \in \boldsymbol{R} \\
{[0,+\infty[} & \text { if } \bar{\xi} \geqslant u_{2}
\end{array}\right.
\end{array} . \begin{array}{l}
\end{array}\right] \tag{1.3}
\end{gather*}
$$

all of these being maximal monotone graphs, and

$$
\psi(\bar{\xi})=\left\{\begin{array}{ll}
\{0\} & \text { if } \bar{\xi} \neq u_{1}, u_{2} \tag{1.5}\\
{[-\infty, 0]} & \text { if } \bar{\xi}=u_{1}, \\
{[0,+\infty]} & \text { if } \bar{\xi}=u_{2}
\end{array} \quad \forall \bar{\xi} \in \boldsymbol{R},\right.
$$

this graph being non-monotone.
By (1) we get

$$
\begin{align*}
& w \in S(\alpha(u)) \quad \text { in } Q \\
& \frac{\partial w}{\partial t} \in \psi(u) \quad \text { in } Q \tag{1.7}
\end{align*}
$$

the last yields

$$
\begin{equation*}
\frac{\partial w}{\partial t} \in R(\beta(u)) \quad \text { in } Q \tag{1.8}
\end{equation*}
$$

notice that in this deduction no information has been lost, as the behavior of $\frac{\partial w}{\partial t}$ for $u \notin\left[u_{1}, u_{2}\right]$ may be obtained by (1.6).

Both $S \circ \alpha$ and $R \circ \beta$ are non-monotone graphs; as subsets of \boldsymbol{R}^{2} they have a non-empty interior, which corresponds to a lack of information. However it is meaningful to compare (1.6) with (1.8), as the relation between w and $\frac{\partial w}{\partial t}$ is one--to-one (at least for "smooth" functions); moreover the informations given by them are complementary, in the sense that $S \circ \alpha$ is single-valued where $R \circ \beta$ is multi--valued and conversely, with the exceptions of $u=u_{1}$ and $u=u_{2}$.

Therefore (1.6) and (1.8) seem to describe suitably the relation between u and w. The fact that they are expressed by means of maximal monotone graphs (as S, α, R, β are) will be useful for the study of a weak formulation.

Set $V=H_{0}^{1}(D)$, Hilbert space with the norm $\|v\|_{V}=\|\bar{\nabla} v\|_{\left[L^{2}(D)\right]^{1}}$. Let

$$
\begin{array}{ll}
f \in L^{2}\left(0, T ; V^{\prime}\right) \\
u^{0} \in L^{2}(D), \quad w^{0} \in L^{\infty}(D) \quad \text { be such that } w^{0} \in S\left(\alpha\left(u^{0}\right)\right) \quad \text { a.e. in } D \tag{1.10}
\end{array}
$$

and

$$
\begin{equation*}
g=\int_{0}^{t} f(\tau) d \tau+u^{0}+w^{0} \quad \text { in } H^{1}\left(0, T ; V^{\prime}\right) \tag{1.11}
\end{equation*}
$$

The problem unider consideration takes then the form
$(\mathbb{P}):-$ Find $u \in L^{2}(0, T ; V) \cap H^{1}\left(0, T ; V^{\prime}\right)\left(\subset C^{0}\left([0, T] ; L^{2}(D)\right)\right)$ such that
$\iint_{Q}\left\{u[v-\alpha(u)]+\bar{\nabla} \int_{0}^{t} u(x, \tau) d \tau \cdot \bar{\nabla}[v-\alpha(u)]\right\} d x d t+$
$+\iint_{Q}[|v|-|\alpha(u)|] d x d t \geqslant \int_{V^{\prime}}^{T}\langle g, v-\alpha(u)\rangle_{V} d t, \quad \forall v \in L^{2}(0, T ; V)$
$\int_{0}^{T} V^{\prime}\left\langle\frac{\partial u}{\partial t}, v-\beta(u)\right\rangle_{V} d t+\iint_{Q} \bar{\nabla} u \cdot \bar{\nabla}[v-\beta(u)] d x d t \geqslant \int_{0}^{T} V^{\prime}\langle f, v-\beta(u)\rangle_{V} d t$
$\forall v \in L^{2}(0, T ; V)$ such that $u_{1} \leqslant v \leqslant u_{2}$ a.e. in Q

$$
\begin{equation*}
u(0)=u^{0} \quad \text { a.e. in } D . \tag{1.13}
\end{equation*}
$$

S is the subdifferential of the convex functional $L^{2}(0, T ; V) \rightarrow \boldsymbol{R}$ defined by $v \mapsto$ $\mapsto \iint_{Q}^{s}|v| d x d t$; therefore (1.12) can be written in the form

$$
\begin{equation*}
u-\Delta \int_{0}^{t} u(x, \tau) d \tau+S(\alpha(u)) \ni g \quad \text { in } L^{2}\left(0, T ; V^{\prime}\right) \tag{1.15}
\end{equation*}
$$

which can be justified by integrating (2) w.r.t. t and using (1.6).
By (2) and (1.8) we get

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\Delta u-R(\beta(u)) \ni f \quad \text { in } Q \tag{1.16}
\end{equation*}
$$

which formally corresponds to (1.13).

2. An existence result

Theorem 1: Assume that (1.10), (1.11') hold and

$$
\begin{gather*}
u^{0} \in V \tag{2.1}\\
f=f_{1}+f_{2}, \text { with } f_{1} \in L^{2}(Q), f_{2} \in W^{1,1}\left(0, T ; V^{\prime}\right) . \tag{2.2}
\end{gather*}
$$

Then (P) has at least one solution such that moreover

$$
\begin{equation*}
u \in H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) . \tag{2.3}
\end{equation*}
$$

Proof: i) Approximation:
Let $m \in N, k=\frac{T}{m}$. Set

$$
\begin{gather*}
\begin{cases}f_{m}^{n}=f_{1 m}^{n}+f_{2 m}^{n}, & f_{1 m}^{n}(x)=\frac{1}{k} \int_{(n-1) k}^{n k} f_{1}(x, t) d t \quad \text { a.e. in } D, \\
f_{2 m}^{n}=f_{2}(n k) \text { in } V^{\prime} & \text { for } n=1, \ldots, m\end{cases} \tag{2.4}\\
K(\bar{\xi}, \eta)=\left\{\begin{array}{ll}
\{-1\} & \text { if } \bar{\xi}<u_{1} \\
{[-1, \eta]} & \text { if } \xi=u_{1} \\
\{\eta\} & \text { if } u_{1}<\bar{\xi}<u_{2} \\
{[\eta, 1]} & \text { if } \bar{\xi}=u_{2} \\
\{1\} & \text { if } \bar{\xi}>u_{2}
\end{array}\right\} \forall \bar{\xi} \in R, \forall \eta \in[-1,1] . \tag{2.5}
\end{gather*}
$$

We introduce a time-discretized problem $\left(\mathbf{P}_{m}\right)$:- Find $u_{m}^{n} \in V$, $w_{m}^{n} \in L^{\infty}(D)$ for $n=1, \ldots, m$ such that - setting $u_{m}^{0}=u^{0}, w_{m}^{0}=w^{0} \quad$ a.e. in $D-$

$$
\begin{gather*}
\frac{u_{m}^{n}-u_{m}^{n-1}}{k}+\frac{w_{m}^{n}-w_{m}^{n-1}}{k}-\Delta u_{m}^{n}=f_{m}^{n} \quad \text { in } V^{\prime}, \quad \text { for } n=1, \ldots, m, \tag{2.6}\\
w_{m}^{n} \in K\left(u_{m}^{n}, w_{m}^{n-1}\right) \quad \text { a.e. in } D, \text { for } n=1, \ldots, m . \tag{2.7}
\end{gather*}
$$

For every $m \in N$ we solve $\left(P_{m}\right)$ step by step. Fix $n \in\{1, \ldots, m\}$ and assume that u_{m}^{n-1} and w_{m}^{n-1} are known. $K\left(., w_{m}^{n-1}(x)\right)$ is a maximal monotone graph a.e. in D, therefore there exists a convex, lower semi-continuous functional $L_{m}^{n}: L^{1}(D) \rightarrow \boldsymbol{R}$ such that $K\left(., w_{m}^{n-1}\right)=\partial L_{m}^{n}$ a.e. in D.

Introduce the coercive, strictly convex, lower semi-continuous functional $J_{m}^{n}: V \rightarrow R$, defined by

$$
\begin{equation*}
v \mapsto \frac{1}{2}\|v\|_{L^{2}(D)}^{2}+L_{m}^{n}(v)+\frac{k}{2}\|v\|_{V}^{2}-\int_{D}\left(u_{m}^{n-1}+w_{m}^{n-1}\right) v d x-k_{V^{\prime}}\left\langle f_{m}^{n}, v\right\rangle_{V}, \tag{2.8}
\end{equation*}
$$

which has a unique minimizing argument, denoted by u_{m}^{n}. We have

$$
\begin{equation*}
\partial J_{m}^{n}\left(u_{m}^{n}\right)=u_{m}^{n}+K\left(u_{m}^{n}, w_{m}^{n-1}\right)-\left(u_{m}^{n-1}+w_{m}^{n-1}\right)-k\left(\Delta u_{m}^{n}+f_{m}^{n}\right) \ni 0 \quad \text { in } V^{\prime} ; \tag{2.9}
\end{equation*}
$$

therefore defining w_{m}^{n} by means of (2.6) we get (2.7).
Solution of $\left(P_{m}\right)$ is unique. Numerical resolution of $\left(P_{m}\right)$ can be performed by standard space-discretization methods.
ii) Estimates:

Fix a generic $l \in\{1, \ldots, m\}$; multiply (2.6) by $u_{m}^{n}-u_{m}^{n-1}$ and sum for $n=1, \ldots, l$. Notice that

$$
\begin{align*}
& \sum_{n=1}^{l} \int_{D} \frac{\left(u_{m}^{n}-u_{m}^{n-1}\right)}{k}\left(u_{m}^{n}-u_{m}^{n-1}\right) d x=k \sum_{n=1}^{l}\left\|\frac{u_{m}^{n}-u_{m}^{n-1}}{k}\right\|_{L^{2}(D)}, \tag{2.10}\\
& \sum_{n=1}^{l} \int_{D} \frac{\left(w_{m}^{n}-w_{m}^{n-1}\right)}{k}\left(u_{m}^{n}-u_{m}^{n-1}\right) d x \geqslant 0 \quad(\text { by }(2.7)), \tag{2.11}
\end{align*}
$$

$$
\begin{align*}
& \sum_{n=1}^{l} v^{\prime}\left\langle-\Delta u_{m}^{n}, u_{m}^{n}-u_{m}^{n-1}\right\rangle_{V}=\sum_{n=1}^{l} \int_{D} \bar{\nabla} u_{m}^{n} \cdot \bar{\nabla}\left(u_{m}^{n}-u_{m}^{n-1}\right) d x \geqslant \\
& \quad \geqslant \frac{1}{2} \sum_{n=1}^{l}\left(\left\|\bar{\nabla} u_{m}^{n}\right\|_{\left[L^{2}(D]^{\top}\right.}^{2}-\left\|\bar{\nabla} u_{m}^{n-1}\right\|_{\left[L^{2}(D)\right]^{N}}^{2}\right)=\frac{1}{2}\left\|u_{m}^{l}\right\|_{V}^{2}-\frac{1}{2}\left\|u^{0}\right\|_{V}^{2} \tag{2.12}\\
& \quad \sum_{n=1}^{l} \int_{D} f_{1 m}^{n}\left(u_{m}^{n}-u_{m}^{n-1}\right) d x \leqslant\left\|f_{1}\right\|_{L^{2}(Q)} \cdot\left(k \sum_{n=1}^{l}\left\|\frac{u_{m}^{n}-u_{m}^{n-1}}{k}\right\|_{L^{2}(D)}^{2}\right)^{\frac{1}{2}}, \tag{2.13}\\
& \sum_{n=1}^{l} V,\left\langle f_{2 m}^{n}, u_{m}^{n}-u_{m}^{n-1}\right\rangle_{V}={ }_{V^{\prime}}\left\langle f_{2 m}^{l}, u_{m}^{l}\right\rangle_{V}-{ }_{V^{\prime}}\left\langle f_{2 m}^{1}, u^{0}\right\rangle_{V}- \\
& -\sum_{n=1}^{l}{ }_{V^{\prime}}\left\langle f_{2 m}^{n}-f_{2 m}^{n-1}, u_{m}^{n-1}\right\rangle_{V} \leqslant \text { Const. }\left\|f_{2 m}\right\|_{W^{1}, 1}\left(o, T, V^{\prime}\right) \cdot \max \left\|u_{n=0, \ldots, l}^{n}\right\|_{V} . \tag{2.14}
\end{align*}
$$

Thus we get

$$
\begin{align*}
& k \sum_{n=1}^{m}\left\|\frac{u_{m}^{n}-u_{m}^{n-1}}{k}\right\|_{L^{2}(D)}^{2} \leqslant \text { Const. (indep. of } m \text {) } \tag{2.15}\\
& \quad \max _{n=0, \ldots, \mathrm{~m}}\left\|u_{m}^{n}\right\|_{V} \leqslant \text { Const. (indep. of } m \text {) } \tag{2.16}
\end{align*}
$$

Denote by $u_{m}(x, t)$ the function obtained interpolating linearly the values $u_{m}(x, n k)=$ $=u_{m}^{n}(x)$ for $n=0, \ldots, m$ a.e. in D; define w_{m} similarly. Set $\hat{u}_{m}(x, t)=u_{m}^{n}(x), \hat{w}_{m}(x, t)=$ $=w_{m}^{n}(x)$ a.e. in D and $\hat{f}_{m}(t)=f_{m}^{n}$ in V^{\prime} if $(n-1) k<t \leqslant n k$, for $n=1, \ldots, m$.

Then (2.6) becomes

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(u_{m}+w_{m}\right)-\Delta \hat{u}_{m}=\hat{f}_{m} \text { in } V^{\prime}, \text { a.e. in }[0 . T] \tag{2.17}
\end{equation*}
$$

(2.15) and (2.16) yield

$$
\begin{equation*}
\left.\left\|u_{m}\right\|_{H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V)} \leqslant \text { Const. (indep. of } m\right) \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left\|\hat{u}_{m}\right\|_{H^{\tau}\left(0, T: L^{2}(D)\right) \cap L^{\infty}(0, T ; V)} \leqslant \text { Const. (indep. of } m\right) \forall \tau<\frac{1}{2} \tag{2.19}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\left\|w_{m}\right\|_{L^{\infty}(Q)} \leqslant 1 \tag{2.20}
\end{equation*}
$$

iii) Limit:

By (2.18) and (2.20) there exist u, w such that - possibly taking subsequences -

$$
\begin{gather*}
u_{m} \rightarrow u \quad \text { in } H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star, } \tag{2.21}\\
w_{m} \rightarrow w \quad \text { in } L^{\infty}(Q) \text { weak star } \tag{2.22}
\end{gather*}
$$

whence

$$
\begin{equation*}
\hat{u}_{m} \rightarrow u \quad \text { in } H^{\tau}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star, } \forall \tau<\frac{1}{2} \tag{2.23}
\end{equation*}
$$

and, as α and β are Lipschitz-continuous,

$$
\begin{align*}
& \alpha\left(\hat{u}_{m}\right) \rightarrow \alpha(u) \quad \text { in } H^{\tau}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star, } \forall \tau<\frac{1}{2} \tag{2.24}\\
& \beta\left(\hat{u}_{m}\right) \rightarrow \beta(u) \quad \text { in } H^{\tau}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star, } \forall \tau<\frac{1}{2} \tag{2.25}
\end{align*}
$$

Notice that

$$
\begin{equation*}
\hat{f}_{m} \rightarrow f \quad \text { in } L^{2}\left(0, T ; V^{\prime}\right) \text { strong ; } \tag{2.26}
\end{equation*}
$$

integrating (2.17) w.r.t. t and taking $m \rightarrow \infty$ we get

$$
\begin{equation*}
u+w-\Delta \int_{0}^{t} u(x, \tau) d \tau=g \quad \text { in } V^{\prime}, \quad t \in[0, T] \tag{2.27}
\end{equation*}
$$

(2.7) yields

$$
\begin{equation*}
\hat{w}_{m} \in S\left(\alpha\left(\hat{u}_{m}\right)\right) \quad \text { a.e. in } Q \tag{2.28}
\end{equation*}
$$

that is for every $v \in L^{2}(Q)$

$$
\begin{equation*}
\iint_{Q}\left(\left|\alpha\left(\hat{u}_{m}\right)\right|-|v|\right) d x d t \leqslant \iint_{Q} \hat{w}_{m}\left[\alpha\left(\hat{u}_{m}\right)-v\right] d x d t \tag{2.29}
\end{equation*}
$$

whence taking $m \rightarrow \infty$ and using (2.22), (2.24)

$$
\begin{equation*}
\iint_{Q}(|\alpha(u)|-|v|) d x d t \leqslant \iint_{Q} w[\alpha(u)-v] d x d t \tag{2.30}
\end{equation*}
$$

(2.27) and (2.30) yield (1.12).

By (2.7) we have

$$
\begin{cases}w_{m}^{n} \leqslant w_{m}^{n-1} & \text { if } u_{m}^{n} \leqslant u_{1}, \quad \text { i.e. } \quad \beta\left(u_{m}^{n}\right)=u_{1}, \tag{2.31}\\ w_{m}^{n}=w_{m}^{n-1} & \text { if } u_{1}<u_{m}^{n}<u_{2}, \quad \text { i.e. } \quad u_{1}<\beta\left(u_{m}^{n}\right)<u_{2} \\ w_{m}^{n} \geqslant w_{m}^{n-1}, & \text { if } u_{m}^{n} \geqslant u_{2}, \quad \text { i.e. } \quad \beta\left(u_{m}^{n}\right)=u_{2},\end{cases}
$$

and by (2.6)

$$
\begin{gather*}
k \sum_{n=1}^{m} \int_{D}\left\{\frac{\left(u_{m}^{n}-u_{m}^{n-1}\right)}{k}\left[v-\beta\left(u_{m}^{n}\right)\right]+\bar{\nabla} u_{m}^{n} \cdot \bar{\nabla}\left[v-\beta\left(u_{m}^{n}\right)\right]\right\} d x- \\
-k \sum_{n=1}^{m} V^{\prime}\left\langle f_{m}^{n}, v-\beta\left(u_{m}^{n}\right)\right\rangle_{V}=\sum_{n=1}^{m} \int_{D}\left(w_{m}^{n}-w_{m}^{n-1}\right)\left[\beta\left(u_{m}^{n}\right)-v\right] d x d t \geqslant 0 \tag{2.32}\\
\forall v \in L^{2}(0, T ; V) \text { such that } u_{1} \leqslant v \leqslant u_{2} \quad \text { a.e. in } Q
\end{gather*}
$$

notice that, setting $B(\bar{\xi})=\int_{0}^{\xi} \beta(\eta) d \eta \quad \forall \bar{\xi} \in \boldsymbol{R}$,

$$
\begin{align*}
& \lim _{m \rightarrow \infty}\left\{-\sum_{n=1}^{m} \int_{D}\left(u_{m}^{n}-u_{m}^{n-1}\right) \beta\left(u_{m}^{n}\right) d x\right\} \leqslant \\
& \leqslant-\varliminf_{m \rightarrow \infty} \sum_{n=1}^{m} \int_{D}\left[B\left(u_{m}^{n}\right)-B\left(u_{m}^{n-1}\right)\right] d x=-{\underset{m}{m \rightarrow \infty}}^{l_{D}}\left[B\left(u_{m}^{m}\right)-B\left(u^{0}\right)\right] d x \leqslant \\
& \leqslant(\text { as } B \text { is convex and lower semicontinuous }) \leqslant \\
& \leqslant-\int_{D}\left[B(u(T))-B\left(u^{0}\right)\right] d x=-\int_{0}^{T}\left\langle\frac{\partial u}{\partial t}, \beta(u)\right\rangle_{V} d t ; \tag{2.33}\\
& \varlimsup_{m \rightarrow \infty}\left\{-k \sum_{n=1}^{m} \int_{D} \bar{\nabla} u_{m}^{n} \cdot \bar{\nabla} \beta\left(u_{m}^{n}\right) d x\right\}=-\lim _{m \rightarrow \infty} k \sum_{n=1}^{m} \int_{D}\left|\bar{\nabla} \beta\left(u_{m}^{n}\right)\right|^{2} d x \leqslant \\
& \leqslant-\iint_{Q}|\bar{\nabla} \beta(u)|^{2} d x d t=-\int_{Q} \int_{Q} \bar{\nabla} u \cdot \bar{\nabla} \beta(u) d x d t ; \tag{2.34}
\end{align*}
$$

taking the superior limit as $m \rightarrow \infty$ in (2.32) and using (2.26), (2.33) and (2.34), we get (1.13).

3. Another approximation procedure

It appears natural to approach the relation between u and w by means of the one sketched in fig. 2 and then to take $\lambda \rightarrow+\infty$.

Fig. 2. The slope of BC and AD is $\lambda>0$. Arrows indicate direction of movement of $(u(t), w(t))$ as t increases. $\xi \in[-1,1]$ is generic.

The situation of fig. 2 has already been considered in [6] (see §5, example 2). Denote by $\mathscr{R}_{\mathcal{A}}$ the union of the closed parallelogram ABCD with the half-lines δ_{1}, δ_{2} and by \mathscr{S}_{λ} the corresponding multi-application $\boldsymbol{R} \rightarrow \mathscr{S}(\boldsymbol{R})$. Set

$$
\begin{align*}
& g_{l}= \begin{cases}\lambda & \text { on }] A, D] \\
0 & \text { in } \left.\mathscr{R}_{\lambda} \backslash A, D\right],\end{cases} \tag{3.1}\\
& g_{r}= \begin{cases}\lambda & \text { on }[B, C[\\
0 & \text { in } \mathscr{R}_{\lambda} \backslash[B, C[.\end{cases} \tag{3.2}
\end{align*}
$$

For all $u \in C^{1}\left(\left[0, T_{j}\right]\right)$ and $w^{0} \in[-1,1]$ with $w^{0} \in \mathscr{S}_{\lambda}(u(0))$, the relation sketched in fig. 2 can be expressed as follows

$$
\left\{\begin{array}{l}
\left.\frac{\partial w}{\partial t}=g_{r}(u, w)\left(\frac{\partial u}{\partial t}\right)^{+}-g_{l}(u, w)\left(\frac{\partial u}{\partial t}\right)^{-} \quad \text { a.e. in }\right] 0, T[\tag{3.3}\\
w(0)=w^{0}
\end{array}\right.
$$

As it has been shown in [6], this Cauchy problem can be integrated, yielding

$$
\begin{equation*}
w(t)=\mathscr{F}_{\lambda}\left(u, t, w^{0}\right) \tag{3.4}
\end{equation*}
$$

where \mathscr{S}_{λ} and \mathscr{F}_{λ} fulfill the following conditions:

$$
\left\{\begin{array}{l}
\forall(v, t, \bar{\xi}) \text { such that } v \in C^{0}([0, T]), \mathrm{t} \in[0, T], \bar{\xi} \in \mathscr{S}_{\lambda}(v(0)) \tag{3.5}\\
\mathscr{F}_{\lambda}(v, t, \bar{\xi}) \in \mathscr{S}_{\lambda}(v(t))
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\forall v \in C^{0}([0, T]), \forall \bar{\xi} \in \mathscr{S}_{\lambda}(v(0)), \text { the function } t \mapsto \mathscr{F}_{\lambda}(v, t, \bar{\xi}) \tag{3.6}\\
\text { is continuous in }[0, T]
\end{array}\right.
$$

$$
\begin{equation*}
\forall v \in C^{0}([0, T]), \forall \bar{\xi} \in \mathscr{S}_{\lambda}(v(0)), \mathscr{F}_{\lambda}(v, 0, \bar{\xi})=\bar{\xi} ; \tag{3.7}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\forall \tilde{\epsilon} \in] 0, T\left[, \forall v_{1}, v_{2} \in C^{0}([0, T]) \text { such that } v_{1}=v_{2} \text { in }[0, \dot{t}],\right. \tag{3.8}\\
\forall \bar{\xi} \in \mathscr{S}_{\lambda}\left(v_{1}(0)\right), \mathscr{F}_{\lambda}\left(v_{1}, t, \bar{\xi}\right)=\mathscr{F}_{\lambda}\left(v_{2}, t, \bar{\xi}\right)
\end{array}\right.
$$

Assume that (1.9),.. , (1.11) hold. For every $\lambda<0$, set

$$
\begin{equation*}
w_{\lambda}^{0}=w^{0}, u_{\lambda}^{0}=u^{0}-\frac{\dot{w}^{0}}{\lambda} \quad \text { a.e. in } D . \tag{3.9}
\end{equation*}
$$

By theorem 1 of [6], there exists at least one

$$
\begin{equation*}
u_{\lambda} \in H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \tag{3.10}
\end{equation*}
$$

such that

$$
\begin{equation*}
u_{\lambda}(x, 0)=u_{\lambda}^{0}(x) \quad \text { a.e. in } D \tag{3.11}
\end{equation*}
$$

and, if

$$
\begin{equation*}
w_{\lambda}(x, t)=\mathscr{F}_{\lambda}\left(u_{\lambda}(x, .), t, w^{0}(x)\right) \quad \forall t \in[0, T], \quad \text { a.e. in } D \tag{3.12}
\end{equation*}
$$

then $w_{\lambda} \in H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V)$ and

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\left(u_{\lambda}+w_{\lambda}\right)-\Delta u_{\lambda}=f \quad \text { in } V^{\prime}, \quad \text { a.e. } \quad \text { in }\right] 0, T \Gamma . \tag{3.13}
\end{equation*}
$$

Theorem 2: For all $\lambda \in R^{+}$, let u_{λ}, w_{λ} be such as in (3.10), ..., (3.13); then there exists at least one u such that, possibly after taking a subsequence.

$$
\begin{equation*}
u_{\lambda} \rightarrow u \text { in } H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star } \tag{3.14}
\end{equation*}
$$

Moreover such u is a solution of problem (P).

Proof: Multiply (3.13) against $\frac{\partial u_{\lambda}}{\partial t}$; by a standard procedure this yields

$$
\begin{equation*}
\left.\left\|u_{\lambda}\right\|_{H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V)} \leqslant \text { Const. (indep. of } \lambda\right) \text {, } \tag{3.15}
\end{equation*}
$$

therefore there exist u, w such that, possibly taking subsequences,

$$
\begin{gather*}
u_{\lambda} \rightarrow u \text { in } H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star } \tag{3.16}\\
w_{\lambda} \rightarrow w \quad \text { in } L^{\infty}(Q) \text { weak star. } \tag{3.17}
\end{gather*}
$$

Taking $\lambda \rightarrow+\infty$ in (3.14) we get

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}(u+w)-\Delta u=f \quad \text { in } V^{\prime}, \text { a.e. in }\right] 0, T[, \tag{3.18}
\end{equation*}
$$

whence by time integration

$$
\begin{equation*}
u+w-\Delta \int_{0}^{t} u(\tau) d \tau=g \quad \text { in } V^{\prime}, \quad t \in[0, T] . \tag{3.19}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\frac{\partial w_{\lambda}}{\partial t}=0 \quad \text { if } u_{\lambda}-\frac{w_{\lambda}}{\lambda} \neq u_{i} \quad(i=1,2), \tag{3.20}
\end{equation*}
$$

whence

$$
\frac{\partial}{\partial t}\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)=\left\{\begin{array}{ccc}
\frac{\partial u_{\lambda}}{\partial t} & \text { if } \quad u_{\lambda}-\frac{w_{\lambda}}{\lambda} \neq u_{i} & (i=1,2) \tag{3.21}\\
0 & \text { if } \quad u_{\lambda}-\frac{w_{\lambda}}{\lambda}=u_{i} \quad(i=1,2)
\end{array}\right.
$$

therefore

$$
\begin{equation*}
u_{\lambda}-\frac{w_{\lambda}}{\lambda} \rightarrow u \quad \text { in } H^{1}\left(0, T ; L^{2}(D)\right) \text { weak ; } \tag{3.22}
\end{equation*}
$$

similarly we get

$$
\begin{equation*}
u_{\lambda}-\frac{w_{\lambda}}{\lambda} \rightarrow u \quad \text { in } L^{\infty}(0, T ; V) \text { weak star, } \tag{3.23}
\end{equation*}
$$

and thus, as α and β are Lipschitz-continuous,

$$
\begin{aligned}
& \alpha\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right) \rightarrow \alpha(u) \quad \text { in } H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star, } \\
& \beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right) \rightarrow \beta(u) \quad \text { in } H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{\infty}(0, T ; V) \text { weak star. }
\end{aligned}
$$

We have

$$
\begin{equation*}
w_{\lambda} \in S\left(\alpha\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)\right) \quad \text { a.e. in } Q ; \tag{3.26}
\end{equation*}
$$

by a standard procedure, (3.17) and (3.24) yield

$$
\begin{equation*}
w \in S(\alpha(u)) \quad \text { a.e. in } Q, \tag{3.27}
\end{equation*}
$$

which together with (3.19) gives (1.12).
By (3.13) and (3.20) we have

$$
\begin{aligned}
& \iint_{Q} \frac{\partial u_{\lambda}}{\partial t}\left[v-\beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)\right] d x d t+\iint_{Q} \bar{\nabla} u_{\lambda} \cdot \bar{\nabla}\left[v-\beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)\right] d x d t- \\
& -\int_{0}^{T} v^{\prime}\left\langle f, v-\beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)\right\rangle_{v} d t=\iint_{Q} \frac{\partial w_{\lambda}}{\partial t}\left[v-\beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)\right] d x d t \geqslant 0,
\end{aligned}
$$

$$
\forall v \in V \text { such that } u_{1} \leqslant v \leqslant u_{2} \quad \text { a.e. in } D \text {; }
$$

(3.16) and (3.25) yield

$$
\begin{equation*}
\iint_{Q} \frac{\partial u_{\lambda}}{\partial t} \beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right) d x d t \rightarrow \iint_{Q} \frac{\partial u}{\partial t} \beta(u) d x d t \tag{3.29}
\end{equation*}
$$

notice that

$$
\bar{\nabla}\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)=\left\{\begin{array}{lll}
\bar{\nabla} u_{\lambda} & \text { if } \quad u_{\lambda}-\frac{w_{\lambda}}{\lambda} \neq u_{i} & (i=1,2) \tag{3.30}\\
0 & \text { if } \quad u_{\lambda}-\frac{w_{\lambda}}{\lambda}=u_{1} & (i=1,2)
\end{array}\right.
$$

and then

$$
\begin{array}{r}
\varliminf_{\lambda \rightarrow+\infty} \iint_{Q} \bar{\nabla} u_{\lambda} \cdot \bar{\nabla} \beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right) d x d t= \\
\quad=\varliminf_{\lambda \rightarrow+\infty} \iint_{Q} \bar{\nabla}\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right) \cdot \bar{\nabla} \beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right) d x d t= \\
=\varliminf_{\lambda \rightarrow+\infty}\left\|\beta\left(u_{\lambda}-\frac{w_{\lambda}}{\lambda}\right)\right\|_{L^{2}(0, T ; V)}^{2} \geqslant(\text { by } 3.25)\|\beta(u)\|_{L^{2}(0, T ; V)}^{2}= \\
\quad=\iint_{Q} \bar{\nabla} u \cdot \bar{\nabla} \beta(u) d x d t ; \tag{3.31}
\end{array}
$$

thus taking the upper limit as $\lambda \rightarrow+\infty$ in (3.28) we get (1.13).

4. Other results

Let $u_{1 j} \leqslant 0 \leqslant u_{2 j}$ for every $j \in N$; let $u_{i j} \rightarrow 0$ (in R) as $j \rightarrow \infty$, for $i=1,2$; accordingly for every $j \in N$ define α_{J} and β_{j} similarly to (1.1) and (1.2), define also (P_{j}) as (P), with α and β replaced by α_{j} and β_{j}.

Theorem 3: For every $j \in N$, let u_{j} be a solution of $\left(P_{j}\right)$. Assume that $g \in L^{2}(Q)$.
Then

$$
\begin{equation*}
\int_{0}^{t} u_{j}(x, \imath) d \tau \rightarrow U \quad \text { in } \quad H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{2}\left(0, T ; H^{2}(D)\right) \text { weak, } \tag{4.1}
\end{equation*}
$$

where U is the unique solution of the following variational inequality
(VI): - Find $U \in H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{2}\left(0, T ; H^{2}(D) \cap V\right)$ such that

$$
\begin{gather*}
\iint_{Q}\left(U_{t}-\Delta U-g\right)\left(v-U_{t}\right) d x d t+\iint_{Q}\left(|v|-\left|U_{t}\right|\right) d x d t \geqslant 0, \forall v \in L^{2}(0, T ; V) . \tag{4.2}\\
U(0)=0 \quad \text { a.e. in } D . \tag{4.3}
\end{gather*}
$$

Remark: (VI) is a weak formulation of the classical Stefan problem (cf. [1]).
Proof: For every $j \in N$, set $U_{j}(x, t)=\int_{0}^{t} u_{j}(x, t) d \tau \quad$ a.e. in Q; the correspon-
ding (1.12) yields

$$
\begin{equation*}
\left\|U_{j t}-\Delta U_{j}\right\|_{L^{2}(Q)} \leqslant \text { Const. } \tag{4.4}
\end{equation*}
$$

whence (cf. [5], chap. 4)

$$
\begin{equation*}
\left\|U_{j}\right\|_{H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{2}\left(0, T: H^{2}(D) \cap V\right)} \leqslant \text { Const. } \tag{4.5}
\end{equation*}
$$

Therefore there exists U such that, possibly taking a subsequence,

$$
\begin{equation*}
U_{J} \rightarrow U \quad \text { in } H^{1}\left(0, T ; L^{2}(D)\right) \cap L^{2}\left(0, T ; H^{2}(D) \cap V\right) \text { weak } \tag{4.6}
\end{equation*}
$$

whence, as $\alpha_{j} \rightarrow$ Identity uniformly in \boldsymbol{R},

$$
\begin{equation*}
\alpha_{j}\left(U_{j t}\right) \rightarrow U \quad \text { in } \quad L^{2}(Q) \text { strong. } \tag{4.7}
\end{equation*}
$$

For every $j \in N$, multiply the corresponding (1.12) against $v-u_{j}$ and take the upper limit as $j \rightarrow \infty$; notice that for any choice of $\varphi_{j}: Q \rightarrow R$ measurable such that $\varphi_{j} \in S\left(\alpha_{j}\left(u_{j}\right)\right)$ a.e. in Q, by (4.7)

$$
\begin{array}{r}
\varlimsup_{j \rightarrow \infty} \iint_{Q} \varphi_{j}\left(v-u_{j}\right) d x d t=\lim _{j \rightarrow \infty} \iint_{Q} \varphi_{j}\left[v-\alpha_{j}\left(u_{j}\right)\right] d x d t+ \\
\quad+\lim _{j \rightarrow \infty} \iint_{Q} \varphi_{j}\left[\alpha_{j}\left(u_{j}\right)-u_{j}\right] d x d t \leqslant \\
\leqslant \lim _{j \rightarrow \infty} \iint_{Q}\left[|v|-\left|\alpha_{j}\left(u_{j}\right)\right|\right] d x d t+0 \leqslant(\text { by }(4.7)) \leqslant \iint_{Q}\left[|v|-\left|U_{t}\right|\right] d x d t ; \tag{4.8}
\end{array}
$$

thus we get (4.2). As the solution of (VI) is unique, the whole sequence $\left\{U_{j}\right\}$ converges to U.

Proposition 1: Assume that (1.9), ..., (1.11) hold. If

$$
\begin{equation*}
f \leqslant 0 \quad \text { in } \mathscr{D}^{\prime}(Q), \quad u_{2} \geqslant 0, \quad u^{0} \leqslant u_{2} \quad \text { a.e. in } D \tag{4.9}
\end{equation*}
$$

then for any solution u of problem (P)

$$
\begin{equation*}
u \leqslant u_{2} \quad \text { a.e. in } Q . \tag{4.10}
\end{equation*}
$$

Similarly if $f \geqslant 0$ in $\mathscr{D}^{\prime}(Q), u_{1} \leqslant 0$ and $u_{1} \leqslant u^{0}$ a.e. in D, then $u_{1} \leqslant u$ a.e. in Q.

Proof: Assume that (4.9) holds. Let $t \in] 0, T]$ and $k \in] 0, T-t]$. By (1.12) (cf. also (1.15)) we get

$$
\begin{align*}
& \int_{D}\left\{\frac{[u(t+k)-u(t)]}{k}\left[u(t+k)-u_{2}\right]^{+}+\right. \\
&\left.+\frac{l}{k}\left(\bar{\nabla} \int_{t}^{t+k} u(x, \tau) d \tau\right) \cdot \bar{\nabla}\left[u(t+k)-u_{2}\right]^{+}\right\} d x- \\
& \quad-V_{V^{\prime}}\left\langle\frac{l}{k} \int_{t}^{t+k} f(\tau) d \tau,\left[u(t+k)-u_{2}\right]^{+}\right\rangle_{V}= \\
&=\int_{D}\left(\varphi^{\prime}-\varphi^{\prime \prime}\right)\left[u(t+k)-u_{2}\right]^{+} d x, \tag{4.11}
\end{align*}
$$

with $\varphi^{\prime} \in S(\alpha(u(t))), \varphi^{\prime \prime} \in S(\alpha(u(t+k)))$. The last term is non-positive, as it is easy to check; taking $k \rightarrow 0$ we get

$$
\begin{align*}
\int_{D}\left\{\frac{1}{2} \frac{\partial}{\partial t}\left[\left(u(t)-u_{2}\right)^{+}\right]+\left|\bar{\nabla}\left(u(t)-u_{2}\right)^{+}\right|^{2}\right\} & d x= \\
={ }_{V^{\prime}} & \left\langle f(t),\left(u(t)-u_{2}\right)^{+}\right\rangle_{v} \leqslant 0, \tag{4.12}
\end{align*}
$$

whence we get the thesis after integration w.r.t. t.
Uniqueness of solution of problem (P) is an open question. We are only able to prove the following result.

Proposition 2: Assume that (1.9), ..., (1.11) hold and that

$$
\begin{equation*}
f=0 \quad \text { a.e. in } Q ; u_{1} \leqslant 0 \leqslant u_{2}, u_{1} \leqslant u^{0} \leqslant u_{2} \quad \text { a.e. in } D . \tag{4.13}
\end{equation*}
$$

Then problem (P) has at most one solution.
Proof: By proposition 1, for any solution of (P) we have $u_{1} \leqslant u \leqslant u_{2}$ a.e. in Q; therefore $\beta(u)=u$ and (1.13) reduces to a standard variational inequality, having at most one solution.

Generalizations: The above developments can be generalized in many ways.
V can be replaced by a Dirichlet space, other boundary conditions may be taken into account. If the constants u_{1}, u_{2} are replaced by two functions $u_{i} \in L^{\infty}(D) \cap$ $\cap V(i=1,2)$ with $u_{1} \leqslant u_{2}$, then the above results still hold.

It is also possible to modify the constitutive relation (1); in some cases this is equivalent to replacing $\frac{\partial}{\partial t}(u+w)$ by $\frac{\partial}{\partial t}[a(u)+w]$ in (2), with $a: \boldsymbol{R} \rightarrow \boldsymbol{R}$ non-decreasing. More generally the linear operator $\frac{\partial}{\partial t}-\Delta$ can be replaced by a non-linear parabolic one of the form $u \mapsto \frac{\partial}{\partial t} a(u)-\Delta b(u)$; if $0<a_{1}<a<a_{2}<+\infty, 0<b_{1}<$ $<b<b_{2}<+\infty$ (with $a_{1}, a_{2}, b_{1}, b_{2}$ constant) in a neighbourhood of $\left[u_{1}, u_{2}\right]$, under regularity assumptions the above results can be extended.

One may also couple (1) with the following hyperbolic equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial w}{\partial t}-\Delta u=f \quad \text { in } \quad Q ; \tag{4.14}
\end{equation*}
$$

an existence result for the corresponding weak formulation does not seem immediate. Notice that for approximating problem obtained by smoothing the jumps of (1) existence is a consequence of the results of [6].

References

[1] Duvaut G. The solution of a two-phaséStefan problem by a variational inequality. [in]: Moving Boundary Problems in Heat Flow and Diffusion J. R. Ockendon and W. R. Hodgkins, Eds. Oxford Clarendon Press 1975, 173-181.
[2] Krasnosel'skir M. A. Equations with nonlinearities of hysteresis type - VII Int. Konf. Nichtlineare Schwing, Berlin 1975, Bd I, 1; Abh. Akad. Wiss. DDR, Jahrg. 1977, 3N. 437-458 (Russian) - English abstract in Zentralblatt für Mathematik 406-93032, 1977.
[3] Krasnosel'skii M. A., Pokrovskif A. V. Operators representing nonlinearities of hysteresis type [in]: Theory of operators in functional spaces. G. P. Akilov, Ed. Novosibirsk, Nauka 1977. (Russian).
[4] Lrons J. L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires Paris Dunod, Gauthier-Villars 1969.
[5] Lions J. L., Magenes E. Non-Homogeneous Boundary Value Problems - vol. I, Grund. Math. Wiss. 181 Berlin Springer 1972.
[6] Visintin A. A model for hysteresis of distributed systems - (to appear).
[7] Visintin A. Hystérésis dans les systèmes distribués. Paris, C. R. Acad. Sc. 293 (1981), Série I, 625-628.

Received, December 1981

Zagadnienie przemiany fazowej z opóźnieniem

Do funkcji skokowej występującej w słabym sformułowaniu zagadnienia Stefana wprowadzone zostaje opóźnienie, co odpowiada uwzglęđnieniu zjawisk przechłođzenia i przegrzania. Udowodniony zostaje wynik dotyczący istnienia rozwiązania.

Проблема фазового перехода с запаздыванием

Вводится запаздывание в скачкообразную функцию выступающую в слабой формулировке проблемы Стефана, что похоже на ситуацию характеристическую для явлений переохлаждения и перенагрева.

Доказывается существование решения дроблемы.

